第一篇:通信系统知识总结
DHCP: 动态主机设置协议(Dynamic Host Configuration Protocol, DHCP)是一个局域网的网络协议,使用UDP协议工作,主要有两个用途:给内部网络或网络服务供应商自动分配IP地址,给用户或者内部网络管理员作为对所有计算机作中央管理的手段。
SDH就是一种把协议,技术 融合在设备里进行传输的设备。
复杂点说是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络
重点是:采用光做为介质、采用字节间插、还有就是同步复用了。
也是PDH的升级吧。替代了PDH设备在通信方面的使用
SDH传输体制的产生
SDH是同步数字体系(Synchronous Digital Hierarchy)的缩写,根据ITU-T的建议定义,它为不同速度的数字信号的传输提供相应等级的信息结构,包括覆用方法和映射方法,以及相关的同步方法组成的一个技术体制。
SDH是一种新的数字传输体制。它将称为电信传输体制的一次革命。
——我们可将信息高速公路同目前交通上用的高速公路做一个类比:公路将是SDH传输系统(主要采用光纤作为传输媒介,还可采用微波及卫星来传输SDH)信号,立交桥将是大型ATM交换机SDH系列中的上下话量复用器(ADM)就是一些小的立交桥或叉路口,而在“SDH高速公路”上跑的“车”,就将是各种电信业务(语音、图像、数据等)。
什么是SDH?
在数字通信系统中,传送的信号都是数字化的脉冲序列。这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。
在数字传输系统中,有两种数字传输系列,一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH;另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。
采用准同步数字系列(PDH)的系统,是在数字通信网的每个节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准速率。尽管每个时钟的精度都很高,但总还是有一些微小的差别。为了保证通信的质量,要求这些时钟的差别不能超过规定的范围。因此,这种同步方式严格来说不是真正的同步,所以叫做“准同步”。
在以往的电信网中,多使用PDH设备。这种系列对传统的点到点通信有较好的适应性。而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要。SDH就是适应这种新的需要而出现的传输体系。
SDH技术与PDH技术相比,有如下明显优点:
1、统一的比特率,统一的接口标准,为不同厂家设备间的互联提供了可能。附图是SDH和PDH在复用等级及标准上的比较。
2、网络管理能力大大加强。
3、提出了自愈网的新概念。用SDH设备组成的带有自愈保护能力的环网形式,可以在传输媒体主信号被切断时,自动通过自愈网恢复正常通信。
4、采用字节复接技术,使网络中上下支路信号变得十分简单。
由于SDH具有上述显著优点,它将成为实现信息高速公路的基础技术之一。但是在与信息高速公路相连接的支路和叉路上,PDH设备仍将有用武之地。
分组交换也称包交换,它是将用户传送的数据划分成一定的长度,每个部分叫做一个分组。在每个分组的前面加上一个分组头,用以指明该分组发往何地址,然后由交换机根据每个分组的地址标志,将他们转发至目的地,这一过程称为分组交换。进行分组交换的通信网称为分组交换网。从交换技术的发展历史看,数据交换经历了电路交换、报文交换、分组交换和综合业务数字交换的发展过程。分组交换实质上是在“存储—转发”基础上发展起来的。它兼有电路交换和报文交换的优点。分组交换在线路上采用动态复用技术传送按一定长度分割为许多小段的数据—分组。每个分组标识后,在一条物理线路上采用动态复用的技术,同时传送多个数据分组。把来自用户发端的数据暂存在交换机的存储器内,接着在网内转发。到达接收端,再去掉分组头将各数据字段按顺序重新装配成完整的报文。分组交换比电路交换的电路利用率高,比报文交换的传输时延小,交互性好。
ATM是在电路交换和分组交换之后产生的,ATM交换技术是实现B-ISDN(宽带综合业务数字网)的核心技术。ATM面向连接,它需要在通信双方向建立连接,通信结束后再由信令拆除连接。
SDH[2](Synchronous Digital Hierarchy,同步数字系列)光端机容量较大,一般是16E1到4032E1。SDH是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。
WDM(Wavelength Division Multiplexing,波分复用)是利用多个激光器在单条光纤上同时发送多束不同波长激光的技术。每个信号经过数据(文本、语音、视频等)调制后都在它独有的色带内传输。WDM能使电话公司和其他运营商的现有光纤基础设施容量大增。制造商已推出了WDM系统,也叫DWDM(密集波分复用)系统。DWDM可以支持150多束不同波长的光波同时传输,每束光波最高达到10Gb/s的数据传输率。这种系统能在一条比头发丝还细的光缆上提供超过1Tb/s的数据传输率
DWDM是Dense Wavelength Division Multiplexing(密集波分复用)
PTN设备和SDH设备有什么区别?可以互通吗?
PTN=以太网+SDH+MPLS
从字面上解释,PTN叫做packet translate network(包传送网)(分组传送网),而SDH叫做同步数字体系。
从传输单元上看,PTN传送的最小单元是IP报文,而SDH传输的是时隙,最小单元是E1即2M电路。PTN的报文大小有弹性,而SDH的电路带宽是固定的。这就是PTN与SDH承载性能的最本质区别。
从协议上看,PTN遵循的叫做TMPLS,即经过改进的MPLS(多协议标签交换),即TMPLS=MPLS-IP+OAM。
从业务管理能力看,PTN通过硬件收发管理报文来实现对信道的监控和管理,而SDH通过
开销字节实现系统的OAM。
PTN与SDH基于不同的协议,所以两个体系不能混合组网,即网络之间不能实现对方的监控、管理及保护倒换,但标准接口的业务可以互通。比如PTN可以模拟2M等各种电路,一般提供E1电口,STM-1光口等接口;PTN也可传输MSTP承载的FE、GE业务,反之亦然。
二者都是传输,sdh是比较老的、成熟的技术了,发展在2G时代,可提供2M传输、STM-N(155m、622m、2.5G、10G)链路。ptn是基于以太网的新兴技术,主要适应3G,可提供100M、1G、10G等传输。
PTN设备是用在接入层和汇聚层代替SDH的光传输设备,其作用就是在固网和移动回传中用来传输语音业务和数据业务,最大的特点是通过实现统计复用功能弥补了SDH时隙电路刚性缺陷。
以后的传输网会是PTN+OTN的组网,不再是现在的SHD+DWDM的组网方式EPON简单的说,就是无源光网络。以太网无源光网络(Ethernet Passive Optical Network,EPON)是一种新型的光纤接入网技术,它采用点到多点结构、无源光纤传输,在以太网之上提供多种业务。它在物理层采用了PON技术,在链路层使用以太网协议,利用PON的拓扑结构实现了以太网的接入。因此,它综合了PON技术和以太网技术的优点:低成本;高带宽;扩展性强,灵活快速的服务重组;与现有以太网的兼容性;方便的管理等等。
EPON波分复用技术
EPON(Ethernet Passive Optical Network 以太网无源光网络)IEEE802.3定义了以太网的两种基本操作模式。第一种模式采用载波侦听多址接入/冲突检测(CSMA/CD)协议而应用在共享媒质上;第二种模式为各个站点采用全双工的点到点的链路通过交换机连接到一起。相应的,以太网MAC可以工作于这两种模式之一:CSMA/CD模式或全双工模式。
EPON媒质的性质是共享媒质和点到点网络的结合。在下行方向,拥有共享媒质的连接性,而在上行方向其行为特性就如同点到点网络。
下行方向:olt发出的以太网数据报经过一个1:n的无源光分路器或几级分路器传送到每一个ONU。N的典型取值在4~64之间(由可用的光功率预算所限制)。这种行为特征与共享媒质网络相同。在下行方向,因为以太网具有广播特性,与EPON结构和匹配:OLT广播数据包,目的ONU有选择的提取。
上行方向:由于无源光合路器的方向特性,任何一个ONU发出的数据包只能到达OLT,而不能到达其他的ONU。EPON在上行方向上的行为特点与点到点网络相同。但是,不同于一个真正的点到点网络,在EPON种,所有的ONU都属于同一个冲突域――来自不同 的ONU的数据包如果同事传输依然可能会冲突。因此在上行方向,EPON需要采用某种仲裁机制来避免数据冲突。
MPLS 90年代中期,基于IP技术的Internet快速普及。但由于硬件技术存在限制,基于最长匹配算法的IP技术必须使用软件查找路由,转发性能低下,因此IP技术的转发性能成为当时限制网络发展的瓶颈。
为了适应网络的发展,ATM(Asynchronous Transfer Mode)技术应运而生。ATM采用定长标签(即信元),并且只需要维护比路由表规模小得多的标签表,能够提供比IP路由方式高得多的转发性能。然而,ATM协议相对复杂,且ATM网络部署成本高,这使得ATM技术很难普及。
传统的IP技术简单,且部署成本低。如何结合IP与ATM的优点成为当时热门话题。多协议标签交换技术MPLS(Multiprotocol Label Switching)就是在这种背景下产生的。
MPLS最初是为了提高路由器的转发速度而提出的。与传统IP路由方式相比,它在数据转发时,只在网络边缘分析IP报文头,而不用在每一跳都分析IP报文头,节约了处理时间。随着ASIC(Application Specific Integrated Circuit)技术的发展,路由查找速度已经不是阻碍网络发展的瓶颈。这使得MPLS在提高转发速度方面不再具备明显的优势。但是MPLS支持多层标签和转发平面面向连接的特性,使其在VPN(Virtual Private Network)、流量工程、QoS(Quality of Service)等方面得到广泛应用。
MPLS概述
MPLS位于TCP/IP协议栈中的链路层和网络层之间,用于向IP层提供连接服务,同时又从链路层得到服务。MPLS以标签交换替代IP转发。标签是一个短而定长的、只具有本地意义的连接标识符,与ATM的VPI/VCI以及Frame Relay的DLCI类似。标签封装在链路层和网络层之间。
MPLS不局限于任何特定的链路层协议,能够使用任意二层介质传输网络分组。
MPLS起源于IPv4(Internet Protocol version 4),其核心技术可扩展到多种网络协议,包括
IPv6(Internet Protocol version 6)、IPX(Internet Packet Exchange)、Appletalk、DECnet、CLNP(Connectionless Network Protocol)等。MPLS中的“Multiprotocol”指的就是支持多种网络协议。
由此可见,MPLS并不是一种业务或者应用,它实际上是一种隧道技术。这种技术不仅支持多种高层协议与业务,而且在一定程度上可以保证信息传输的安全性。
IMS(IP Multimedia Subsystem)是IP多媒体系统,是一种全新的多媒体业务形式,它能够满足现在的终端客户更新颖、更多样化多媒体业务的需求。目前,IMS被认为是下一代网络的核心技术,也是解决移动与固网融合,引入语音、数据、视频三重融合等差异化业务的重要方式。但是,目前全球IMS网络多数处于初级阶段,应用方式也处于业界探讨当中
第二篇:通信系统总结
1.通信的定义:是指由一地向另一地进行消息的有效传递。
利用电子等技术手段,借助电信号(含光信号)实现从一地向另一地进行消息的有效传递称为通信。
• 古代:烽火台、驿站。近代:鸡毛信、消息树。现代:电话、广播、电视
通信的目的:传递消息,消息具有不同的形式,例如:语言、文字、数据、图像、符号
通信是信号与系统的集合2.通信系统的一般模型
发送设备:将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。
信道:信号传输的通道。
噪声源:是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。
接收设备:从带有干扰的接收信号中恢复出相应的原始电信号。(进行解调、译码、解码等)
信宿:将复原的原始电信号转换成相应的消息。3.数字通信的主要优点
(1)抗干扰能力强;(2)差错可控;(3)易加密;(4)易于与现代技术相结合。
亟待解决的问题(1)提高频带利用率 ;(2)简化系统设备结构。
4.按消息传送的方向与时间分 :通信方式可分为单工通信、半双工通信及全双工通信三种
5.有效性和可靠性是评价通信系统优劣的主要性能指标。
对于模拟通信来说,系统的有效性和可靠性具体可用系统频带利用率和输出信噪比(或均方误差)来衡量;对于数字通信系统而言,系统的可靠性和有效性具体可用误码率和传输速率来衡量。
6.信息量 I 和消息出现概率P(x)的关系为:
7.二进制等概时,每个符号的信息量相等,为1bit。
8.信息源的熵: P(x1)log2P(x1)P(x2)log2P(x2)P(xn)log2P(xn)n P(xi)log2P(xi)bit符号
i
1RBb当信源中每个符号独立等概出现时,信息源的熵为最大值.9.码元速率RB :码元速率与信号的进制数无关,只与码元宽度有关.单位:B(Tb为码元宽度)
10.信息传输速率Rb: 信息量与信号进制数N有关,因此,也与N有关.单位:比特/秒(bit/s) Rb2RB2log22RB
2RbNRBNlog2N
11.信道可大体分成:狭义信道和广义信道。
狭义信道 :仅指传输媒介,它包括有线信道和无线信道。广义信道:不但包括传输媒介,还可能包括有关的器件(馈线、天线、调制/解调器、编码/译码器)。通常分成:调制信道和编码信道。
12.恒参信道特征: k(t)~t不变或慢变。对信号传输的影响是固定不变的或者是变化极为缓慢。恒参信道模型:因而可以等效为一个线性时不变网络
13.信道的相位-频率特性或群迟延-频率特性,对于传输数字信号,会引起严重的码间串扰。减小相位-频率畸变的措施:采取相位均衡技术补偿群迟延畸变
14.随参信道传输媒质的特点:(1)信号的衰耗随时间随机变化;(2)信号传输的时延随时间随机变化;
1(3)多径传播。Bc15.相邻两个零点之间的频率间隔为: m这个频率间隔通常称为多径传播信道的相关带宽。
工程设计中,通常选择信号带宽为相关带宽的1/5~1/3。
16.白噪声是指它的功率谱密度函数在整个频域内是常数,即服从均匀分布。高斯白噪声是指噪声的概率密度函数满足正态分布统计特性,同时它的功率谱密度函数是常数的一类噪声。17.信道容量:信道无差错传输信息的最大信息速率为信道容量,记之为C。信道可以分为:离散信道(编码信道)和连续信道(调制信道)。18.香农公式
假设连续信道的加性高斯白噪声功率为N(W),信道的带宽为B(Hz),信号功率为S(W),则该信道的信道容量为 :
19.输出信噪比不是按比例地随着输入信噪比下降,而是急剧恶化。通常把这种现象称为门限效应。开始
出现门限效应的输入信噪比称为门限值。
20.AM信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍,即
B2B2fAMmH●包络检波不发生失真条件 Am(t)00
21.角度调制(非线性调制)分为:频率调制和相位调制。
频率调制:载波的幅度保持不变,载波的频率随基带信号变化;相位调制:载波的幅度保持不变,载波的相位随基带信号变化的调制方式。
调频(FM)与调相(PM)并无本质区别,两者之间可以互换。22.卡森公式:(大于n=mf+1次的边频分量,其幅度小于未调载波幅度的10%)
B2(mf1)fm2(ffm)FM
23.有三种基本的多路复用方式:频分复用(FDM)、时分复用(TDM)与码分复用(CDM)。频分复用(FDM)的目的:提高频带利用率。
频分复用:按频率区分信号的方法;时分复用:按时间区分信号的方法;
24.AMI码规则:是单极性方式的变形,即把单极性方式中的“0”码仍与零电平对应,而“1”码对应发送极性交替的正、负电平。
25.HDB3码:1)无直流分量、低频分量小;2)连0串不会超过3个,对定时信号的恢复十分有利;3)编码复杂,译码简单。代价:三电平。例如:
(a)代码:01000011 00000101(b)AMI码: 0 +10000-1+1 00000-1 0+1(c)加V:0 +1000 V+-1+1 0 00V-0-1 0+1(d)加补信码 0 +100 0V+-1+100 V-0-1 0+1
(e)调整0 +100 0V+-1+100 V-0 +1 0-1(f)HDB3:0 +100 0 +1-1+1-1 0 0-1 0 +1 0-1 26.码间串扰的消除 :
kb0
kj
对系统还要求适当衰减快一些,即尾巴不要拖得太长。27.频带利用率是指码元速率和带宽的比值: RB/B输入序列若以的码元速率1/Tb进行无码间串扰传输时,所需的最小传输带宽为1/2Tb(Hz),通常称1/2Tb为奈奎斯特带宽。
28.数字幅度调制又称幅度键控(ASK),二进制幅度键控记作2ASK。
2ASK是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。有载波输出时表示发送“1”,无载波输出时表示发送“0” 29.数字频率调制又称频移键控(FSK),是用载波的频率不同来传送数字消息,即用所传送的数字消息控制载波的频率。二进制频移键控记作2FSK,此时 “1”-- f1“0”-- f2 30.一路2FSK视为两路2ASK信号的合成。
ah[(jk)T
t]0
模拟信号的数字传输
图6-1 模拟信号的数字传输
模拟信号→抽样→量化利用M进制PAM直接进行传输编码→PCM信号进行传输 31.13折线码位的安排
设:C1C2 C3 C4C5 C6 C7 C8(1)极性码:C1
极性码段落码(8段)段内码(16级)C1=0---输入信号负极性(3象限)C1=1---输入信号正极性(1象限)(2)段落码:C2 C3 C48个状态分别代表8个落的起点电平32.插入导频法(外同步法):在发送有用信号的同时,在适当的频率位置上插入一个或多个称作载频的正弦波,接收端由导频提取载波;●直接法(自同步法):不专门发送导频,在接收端直接从发送信号中提取载波。33.均匀量化: 把抽样信号值域等幅分割的量化过程称为均匀量化
非均匀量化:好处: ●改善了小信号时的量化信噪比; ●输入信号具有非均匀分布的 pdf 时(实际中,小信号出现的概率大),可得到较高的平均信号量化噪声功率比。
实现方法:将抽样值先压缩,再进行均匀量化。在收端,相应地加有扩张器。34.数字幅度调制--幅度键控(ASK);数字频率调制--频移键控(FSK);
erfcr
1er
erfcr21rerfc22
1r
erfc24
12r
r1
r
er
12r
er/2
r
er/4
1r
e2
2/Tb
2/Tb
1r/2e2
f2f1
2Tb
1r/4e2
2/Tb
*Ub0*
Ub0
P(1)P(0)
*
Uba/2
第三篇:通信系统概论的总结
3G全称“第三代移动通信”,相比2G(第二代移动通信)是通信技术的进步。3G可以达到更高的网络速率,从而使得更多的互联网应用可以在手机上实现,比如手机上网,视频聊天,多媒体下载等等。
还有中国移动目前正在实验的4G(TDD-LTE)网络,带宽可达到100M。3g手机和2g手机的区别就在于手机支持的网络不一样,3G手机可获得更高的互联网速度。
均衡技术:理论和实践证明,在数字通信系统中插入一种可调滤波器可以校正和补偿系统特性,减少码间干扰的影响。这种起补偿作用的滤波器称为均衡器。
均衡技术-基本原理
均衡器通常是用滤波器来实现的,使用滤波器来补偿失真的脉冲,判决器得到的解调输出样本,是经过均衡器修正过的或者清除了码间干扰之后的样本。自适应均 衡器直接从传输的实际数字信号中根据某种算法不断调整增益,因而能适应信道的随机变化,使均衡器总是保持最佳的状态,从而有更好的失真补偿性能。
均衡技术 分类: 标签:技术
内容摘要:均 衡技术是指在数字通信系统中,由于多径传输、信道衰落等影响,在接收端会产生严重的码间干扰(Inter Symbol Interference,简称ISI),增大误码率。为了克服码间干扰,提高通信系统的性能,在接收端需采用均衡技术。均衡是指对信道特性的均衡,即接 收端的均衡器产生与信道特性相反的特性,用来减小或消除因信道的时变多径传播特性引起的码间干扰。
:
扩频
英文名称:
frequency spread
定义:
利用与信息无关的伪随机码,以调制方法将已调制信号的频谱宽度扩展得比原调制信号的带宽宽得多的过程。例如:跳频、混合扩频、直接序列扩频。:
交织
英文名称:
interleaving
定义:
将一个序列的部分项插入另外一个或多个序列的部分项中,并使各序列都能保持自身一致性的过程。
中文名称:
差错控制编码
英文名称:
error control coding;ECC
定义:
采用检错或纠错技术的编码。
分集技术(百度百科)根据信号论原理,若有其他衰减程度的原发送信号副本提供给接收机,则有助于接收信号的正确判决。这种通过提供传送信号多个副本来提高接收信号正确判决率的 方法被称为分集。分集技术是用来补偿衰落信道损耗的,它通常利用无线传播环境中同一信号的独立样本之间不相关的特点,使用一定的信号合并技术改善接收信 号,来抵抗衰落引起的不良影响。空间分集手段可以克服空间选择性衰落,但是分集接收机之间的距离要满足大于3倍波长的基本条件。
分集技术:是指通过查找和利用自然界无线传播环境中独立的(至少是高度不相关的)多径信号来实现,简单的说,如果一条无线传播路径中经历了深度衰落,而另一 条相对独立的路径中可能仍包含着较强的信号,因此可以在多个信号中选择两个或更多的信号进行合并,这样可以同时提高接收端的瞬时信噪比和平均信噪比,一般 可提高20dB到30dB。分集技术是移动通信的一种抗衰落技术,是一种用相对较低廉的投资就可以大幅度的改进无线链路性能的强有力的接收技术。分集技术 就是利用两个或更多的不相关信号进行处理,不相关信号的采集可以通过空域、时域和频域三种方式实现
MIMO
维基百科,自由的百科全书
多输入多输出(Multi-input Multi-output;MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO 此类多天线技术尚包含早期所谓的“智慧型天线”,亦即单输入多输出系统
(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。
由于 MIMO 可以在不需要增加带宽或总发送功率耗损(transmit power
expenditure)的情况下大幅地增加系统的资料吞吐量(throughput)及传送距离,使得此技术于近几年受到许多瞩目。MIMO 的核心概念为利用多根发射天线
与多根接收天线所提供之空间自由度来有效提升无线通信系统之频谱效率,以提升传输速率并改善通信品质。
一、什么是差错控制编码及为什么引入差错控制编码?
在实际信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收端所收到的数字信号不可避免地会发生错误。为了在已知信噪比情况下达到一定的误比特率指标,首先应该合理设计基带信号,选择调制解调方式,采用时域、频域均衡,使误比特率尽可能降低。但若误比特率仍不能满足要求,则必须采用信道编码(即差错控制编码),将误比特率进一步降低,以满足系统指标要求。
随着差错控制编码理论的完善和数字电路技术的发展,信道编码已经成功地应用于各种通信系统中,并且在计算机、磁记录与存储中也得到日益广泛的应用。差错控制编码的基本思路:在发送端将被传输的信息附上一些监督码元,这些多余的码元与信息码元之间以某种确定的规则相互关联(约束)。接收端按照既定的规则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误。研究各种编码和译码方法是差错控制编码所要解决的问题。
第四篇:短波通信系统(范文模版)
短波通信系统
省内部分边远地区等特殊情况下可能仍然采用短波通信系统进行语音通信,省应急平台就需要建设短波通信系统,作为通信的补充手段,实现远距离的点对点语音通信业务。具体要求如下:
使用3M-30M的频段,频点按规定申请;
固定和车载短波电台应具有自适应选频功能;
固定短波电台能实现与公众电话网、集群通信网的互通功能; 车载台与便携式短波电台之间的通信距离应达到30KM以上;
短波通信的电磁发射和敏感度要求应符合GJB151.4和GJB151.5的要求; 设备外部接口符合GJB880的规定;
相关标准
GB/T 16946-1997《短波单边带通信设备通用规范》
SJ 20492-95《便携式短波单边带电台通用规范》
SJ 20491-95《车载短波单边带通信设备通用规范》
SJ/T 10652-95《短波单边带通信设备通用技术条件》
第五篇:集群通信系统
集群通信系统
集群通信系统是一种用于集团调度指挥通信的移动通信系统,主要应用在专业移动通信领域。该系统具有的可用信道可为系统的全体用户共用,具有自动选择信道功能,它是共享资源、分担费用、共用信道设备及服务的多用途、高效能的无线调度通信系统。
1、简介
集群通信的最大特点是话音通信采用PTT(Push To Talk),以一按即通的方式接续,被叫无需摘机即可接听,且接续速度较快,并能支持群组呼叫等功能,它的运作方式以单工、半双工为主,主要采用信道动态分配方式,并且用户具有不同的优先等级和特殊功能,通信时可以一呼百应。
2、发展历程
中国在1989年开始引进模拟集群系统,1990年投入使用。随着数字通信技术的发展,集群通信系统也开始向第二代的数字技术发展,最主要的特点是采用了TDMA(时分多址)和CDMA(码分多址)通信方式。同时,由于各集群使用企业为了满足其各自不同的使用要求,采用了独立建设集群通信网络的方案,所以众多企业的集群网络在网间互联互通性、频率资源使用、整体建设等方面存在诸多问题。此外,国外通信巨头通过控制核心技术并设置专利等知识产权保护壁垒,使得内部接口基本不公开,技术开放性很差,系统和终端设备市场价格居高不下,也制约了中国数字集群的产业化进程和规模应用。2000年12月28日,我国信息产业部正式发布的《数字集群移动通信系统体制》(SJ/T11228-2000)行业推荐标准,参照国际标准TETRA(体制A)和美国国家标准iDEN(体制B),确定了两种集群通信体制。后来又加入了我国自主的GoTa和GT800两种体制。目前我国现有数字集群标准有四个:欧洲的Tetra,美国的Iden,以及我国中兴和华为公司的GOTA和GT800。国产的两个标准都是在公网基础上改进而来的,在入网时间及脱网直通等方面无法满足专业用户的需求。美国的Iden也是从公网改进而来的,存在同样的问题。只有Tetra能够满足包括公安在内的专业用户的需求。但Tetra也存在覆盖区域小、建网成本高、各厂商的设备无法互联、很难与模拟系统兼容以及国外知识产权壁垒等问题。中国公共安全行业亟需一个具备自主知识产权,并适合国内公共安全模拟系统数字化改造的新数字集群标准。
鉴于上述情况,公安部科技信息化局组织国内部分有研发能力的MPT模拟集群系统提供企业和研究单位,经过两年多的努力,参考了欧洲和美国的数字集群标准,制定了一部具有我国自主知识产权的数字集群标准——PDT(Professional Digital Trunking),简称PDT标准。PDT标准是一种根据中国的国情,注入了中国厂商自主创新因素的全新数字集群体制。PDT标准具有覆盖区域大、国产加密算法加解密、厂家系统互联互通、向下兼容模拟系统、技术简单造价低等优势。PDT标准将以公安警用需求为基础,逐步扩展到其他行业,力争成为全球主流的数字集群标准之一。
2008年8月4日,公安部科技信息化局在深圳组织国内5家集群通信系统生产企事业单位,探讨制定适合我国国情的数字集群新标准的可行性,此后陆续又有5家公司陆续加入了标准的制定。(海格通信、东方通信、海能达、优能通信、承联通信)
为加快系列标准的制定和完善,尽快推出符合实战需求的产品,参与企业自发成立了PDT数字集群产业创新技术战略联盟,集合国内产业界的力量共同推进。2010年,PDT获得2项国家标准立项批复,2011年获得7项公安行业标准立项批复,2012年又获得3项国家标准立项批复。截至目前,已有4项公安行业标准完成制定并报批,1项公安行业标准完成征求意见,另有2项公安行业标准正在制定中。3项国家标准达到征求意见稿的水平,即将进入标准发布流程,另有2项国标正在草案修订阶段。标准制定过程中,PDT联盟成员声明共享的专利技术多达三十余项,采纳并融入标准的专利技术多达十余项,使PDT标准技术含金量已经完全可以和国际主流技术标准进行抗衡。PDT标准具有广泛的适用性,既适用于公安、军队、交通、铁路、地铁、急救等行业部门,也适用于市政、石油石化、机场码头、高级酒店等大型企事业。
2013年6月,中国公安部以大庆市公安局为样板点,正式发布了我国第一个专业无线通信数字集群标准――PDT。据悉,该系统为海能达通信股份有限公司(以下简称海能达)承建,标志着中国首个自主数字无线通信标准PDT的成熟应用。
3、数字集群简介
数字集群,是相对于原模拟集群通信系统提出的,是指“数字制式的专用移动通信系统”,数字集群通信是二十世纪末兴起的新型移动通信系统,它除了具备公众移动通信网(GSM、CDMA)所能提供的个人移动通信服务外,还能实现个人与群体间的任意通信,并可进行自主编控,是集对讲机、GSM、CDMA和图像传输于一体的智能化通信网。数字集群通信在技术上的特点和优势决定了它不仅具备个人通信的全部功能,而且它能控制与实现个人与群
体间任意通讯,保密性高,功能丰富,真正全面实现了通讯的智能化。
4、数字集群特点(1)组呼和群呼功能
对用户进行分组,分为一组的用户可以使用同一个信道进行呼叫,组内的其他用户都可以收到,从而很容易完成同一个行动小组内的通信,并且不受其他的影响。RA支持延迟进入的模式,也就是小组成员可以随时加入小组,进行呼叫和接收。群呼功能就是“一呼百应”的模式,一个用户发起呼叫,全网用户都可以接收,并且只占用一个信道,这尤其适合大型集会等场合的调度指挥,是一般移动通信无法完成的。
(2)用户优先级
不同等级的用户具有不同的优先级,高等级的用户可以进行强拆和强插,也就是可以随时中断低等级用户的通信,从而有效的保证高等级用户的通信。这样可以保证在信道比较忙的时候,有效的保证高等级用户的信息发出(例如中心站的指挥信息,现场用户的实时信息等)。不会像公网那样因为信道阻塞而无法通信。
(3)单站模式和脱网直呼
设备在设计的过程中考虑了多种冗余、备份并支持降级使用功能。在基站和控制中心失去联系的情况下,基站自动转为单站模式,只要基站能保证供电。在这种情况下,同一基站覆盖范围的终端用户仍能保持通话,可以实现组呼等功能。并且可以启动备份的无线链路,从而保证基站与控制中心的连接。
终端还具有脱网直呼的功能,在接收不到基站的信号的时候,可以转为对讲模式,保证用户之间的通信。
(4)大区制组网
实施大区制低密度组网,一个基站可以覆盖几十公里的范围,因而只要少数几个基站就可以完成对一个地区的覆盖,如果在对基站进行备份和独立的电源设计,抗毁性高,可以有效的保证应急情况下的通信。
如果一个地区通信中断,还可以以移动基站等的形式进行覆盖,一个单载波移动基站,体积小,供电省,覆盖距离大,可以保证一定区域内有效地调度指挥等功能。
5、数字集群标准
国际上著名的数字集群标准有欧洲电信标准协会(ETSI)制定的欧洲集群标准TETRA系统和美国的iDEN系统,北美的APCO Project25,以色列的FHMA标准,欧洲的DMR标准,中国的PDT标准等。