第一篇:浅谈生物医学信号及传感器
浅谈生物医学信号及传感器
导论:
人体存在高度精密而复杂的生物信号,每一种信号都在传递着身体的工作状态,器官机能是否正常,呼吸、循环系统是否健全,人体是否处于一种健康状态……随着信息科技的发展,在医学研究领域,产生了“高端”的医生,它们通过接收人体信号,对人体信息进行检测,实现疾病的诊断和防治。
生物医学传感器好比人的五官,人通过五官,即眼(视觉)、耳(听觉)、鼻(嗅觉)、舌(味觉)和四肢(触觉)感知和接受外界信息,然后通过神经系统传递给大脑进行加工处理。传感器则是一个测量控制系统的“电五官”,他感测到外界的信息,然后送给系统的处理器进行加工处理。如果一个系统没有传感器,就相当于人没有五官。
生物医学信号处理是生物医学工程学的一个重要研究领域,也是近年来迅速发展的数字信号处理技术的一个重要的应用方面,正是由于数字信号处理技术和生物医学工程的紧密结合,才使得我们在生物医学信号特征的检测、提取及临床应用上有了新的手段,因而也帮助我们加深了对人体自身的认识。
生物医学传感器的认识
一、定义
我们定义:传感器是能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路组成。也可把传感器狭义地定义为:能把外界非电信号转换成电信号输出的器件或装置。
二、分类
生物医学传感器是一类特殊的电子器件,它能把各种被观测的生物医学中的非电量转换为易观测的电量,扩大人地感官功能,是构成各种医疗分析和诊断仪器与设备的关键部件。我们将生物医学传感技术中常用的传感器按被观测的量划分为以下三类:
(1)物理传感器:用于测量和监护生物体的血压、呼吸、脉搏、体温、心音、心电、血液的粘度、流速和流量等物理量的检测。
(2)化学传感器:用于生物体中气味分子,体液(血液、汗液、尿液等)中的PH值,氧和二氧化碳含量(pO2、pCO2),Na+、K+、Ca2+、Cl-以及重金属离子等化学量的检测。
(3)生物传感器:用于生物体中组织、细胞、酶、抗原、抗体、受体、激素、胆酸,乙酰胆碱、五羟色胺等神经递质,DNA与RNA以及蛋白质等生物量的检测。
传感器按尺寸划分有:常规传感器(毫米级,可用于组织检测),微型传感器(微米级,可用于细胞检测)和纳米传感器(纳米级,可用于细胞内检测)。
三、对传感器的性能要求:
(1)有较高的灵敏度和信噪比。
灵敏度高时,输入较小的信号即可产生较大的输出信号。传感器输出信号电压与噪声电压之比称为信噪比。信噪比越高,说明获得的有用的输出信号就越大,信噪比越小,信号与噪声越难分辨,严重时将出现信号被噪声淹没的现象,无法获得有用的信号,测量无效。
(2)有良好的线性和较高的响应速度
线性好是指传感器的输出信号在规定的工作范围内与输出信号成比例关系,而不产生信号非线性失真。响应速度快表明输出和输入的延迟时间短、实时性好。
(3)重复性、一致性和选择性好
重复性好是指传感器反复使用,其性能不变。一致性好是指传感器的互换性强,在生产与修理中尤为重要。选择性好是指传感器只对确定目标的变量有响应,不受其他变量的影响。
(4)化学、物理性能好
传感器必须与人体的化学成分相容,既不会腐蚀也不会给人体带来毒性。传感器的形状、尺寸和结构应与待测部位的解剖结构相适应,对被测对象的影响要小,使用时应不损伤组织。
(5)电气安全性好
传感器要与人体有足够的电绝缘,即使在传感器损伤的情况下,人体收到的电击也应在安全之下。
(6)操作性好
传感器应操作简单、维护方便、便于消毒。
生物医学传感器的意义
随着生物传感技术的不断发展,生物传感器必将在医学领域掀起一股热潮。
(1)生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。(2)生物传感器专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响,准确度高,一般相对误差可以达到1%;分析速度快,可以在一分钟得到结果。因此,这一技术应用于医学上不仅提高了检测结果的准确性,更是缩短了整个过程所需的时间,进一步提供了救治病人的先机。
(3)操作系统比较简单,容易实现自动分析。在临床中,许多操作对于病患来说是痛苦的,若能很好的利用生物传感器的这一特点,我相信将为他们减少很多的痛苦。
当前各种利用生物传感技术开发的仪器也已问世,但是在应用上还有许多技术需要深入研究。诊断各种疾病的医用传感器,还有待于引深研发,例如谷氨酸传感器是一种稳定的脱氢酶、转氨酶、血氨的指示性传感器,它在临床急症室等许多场合可取代光度法测定,有潜在应用前景;测定胸外科病人乳酸指标的生物传感器也已开始应用,与肾透析联用的几种生物传感器也有产业化开发价值。今后这些生物传感器将逐渐得到普及,给广大病患带来更多的福音。
生物医学信号
生物医学信号有一维、二维之分一般而言, 将一维信号称为信号, 二维信号称为图像自然界广泛存在的生物医学信号是连续的, 由于计算机巨大的计算能力, 一般先用转换器将
连续信号转换成数字信号, 然后在计算机内用各种方法编制成的软件进行分析处理限于篇幅, 这里只论一维生物医学信号的处理方法。
信号处理的领域是相当广泛而又深人的, 已在不同程度上渗透到几乎所有的医疗卫生领域从预防医学、基础医学到临床医学, 从医疗、科研到健康普查, 都已有许多成功的例子如心电图分析, 脑电图分析, 视网膜电图分析, 光片处理, 图像重建, 健康普查的医学统计, 疾病的自动诊断, 细胞、染色体显微图像处理, 血流速度测定, 生物信号的混沌测量等等。
一、生物医学信号特点
(1)信号弱:直接从人体中检测到的生理电信号其幅值一般比较小。如从母体腹部取到的胎儿心电信号仅为10~50μV,脑干听觉诱发响应信号小于1μV,自发脑电信号约5~150μV,体表心电信号相对较大,最大可达5mV。
因此,在处理各种生理信号之前要配置各种高性能的放大器。
(2)噪声强:噪声是指其它信号对所研究对象信号的干扰。如电生理信号总是伴随着由于肢体动作、精神紧张等带来的干扰,而且常混有较强的工频干扰;诱发脑电信号中总是伴随着较强的自发脑电;从母腹取到的胎儿心电信号常被较强的母亲心电所淹没。这给信号的检测与处理带来了困难。
因此要求采用一系列的有效的去除噪声的算法。
(3)频率范围一般较低:经频谱分析可知,除声音信号(如心音)频谱成分较高外,其它电生理信号的频谱一般较低。如心电的频谱为0.01~35Hz,脑电的频谱分布在l~30Hz之间。
因此在信号的获取、放大、处理时要充分考虑对信号的频率响应特性。
(4)随机性强:生物医学信号是随机信号,一般不能用确定的数学函数来描述,它的规律主要从大量统计结果中呈现出来,必须借助统计处理技术来检测、辨识随机信号和
估计它的特征。而且它往往是非平稳的,即信号的统计特征(如均值、方差等)随时间的变化而改变。这给生物医学信号的处理带来了困难。
因此在信号处理时往往进行相应的理想化和简化。当信号非平稳性变化不太快时,可以把它作为分段平稳的准平稳信号来处理;如果信号具有周期重复的节律性,只是周期和各周期的波形有一定程度的随机变异,则可以作为周期平稳的重复性信号来处理。更一般性的方法是采用自适应处理技术,使处理的参数自动跟随信号的非平稳性而改变。
二、生物医学信号的检测方法
(1)AEV方法
AEV方法原是通信研究中用于提高信噪比的一种叠加平均法, 在医学研究中也叫平均诱发反应法,简称方法所谓诱发反应是指肌体对某个外加刺激所产生的反应,AEV方法常用来检测那些微弱的生物医学信号如希氏束电图、脑电图、耳蜗电图等希氏束电图的信号幅度仅一拼, 它们在用丫方法检测出之前, 几乎或完全淹没在很强的噪声中, 这些噪声包括自发反应, 外界干扰, 仪器噪声方法要求噪声是随机的, 并且其协方差为零, 信号是周期或可重复产生的, 这样经过平方次叠加, 信噪比可提高N倍, 使用方法的关键是寻找叠加的时间基准点。
(2)生物医学信号的混沌测量
传统的测量技术以线性方法为主, 强调的是稳定、平衡和均匀性而非线性系统是在不稳定、非平衡的状态中提取信息、处理信息, 从而显示它特有的优点混沌用于测量闭可以说是一种尝试, 也许人们很难想象一个极不稳定的混沌系统能进行精确的测量, 可是生物的感觉器官就是极不稳定的混沌系统, 其检测灵敏度却远远超出目前的科技水平, 这是一个全
混沌系统的最大特点是初值敏感性和参数敏感性, 即所谓蝴蝶效应混沌测量的基本思路就是把蝴蝶效应倒过来应用将敏感元件作为混沌电路的一部分, 其敏感参数随待测量变化而变化, 并使系统的混沌轨道变化, 测出馄沌轨道的变化就可得到待测量, 这是一种不同于传统测量的新方法。
三、生物医学信号的处理方法
简单的信号处理是建立在线性时不变系统理论基础上的,这种理论只适用于平稳信号的处理,非平稳信号是多种多样的。其中有一种是均值缓慢变化而方差不变的信号。由于生物体对处界刺激的适应能力,生物体在接受外界刺激的适应过程中产生的生物信号就具有这样的特点。均值变化的规律称为趋势函数,一旦从这类信号中除去趋势函数,信号就变成了平稳的。因而在分析这种信号时,首先应进行消除趋势函数处理;另一类非平稳的信号可近似地看成是分段平稳的。脑电信号常具有这个特点,因为脑电信号随着精神状态的改变而改变,造成逐段平稳的状态。在处理这类信号的第一步是把它正确地分段,使它的每一段都可以认为是平稳的,再用平稳信号处理方法处理它们。
由于计算机技术的普及与发展,以及数字处理方法的通用性和灵活性,数字信号处理技术己成了信号处理技术的主流。为了进行数字信号处理,必须在正式处理前先把模拟信号时间离散化、量化。在数字信号处理中已经指出,采样导致信号频谱的周期延托,周期延拓结果造成频谱混叠。对一个频带宽度有限的信号,只要采样频率大于信号最高频率的两倍,就可以避免这种频谱混叠。然而,实际信号的频谱并不像理想的那样,在高于某个最高频率的区域上幅度就截然变为零,而只是比较小而已。因此,采样定理只能近似地满足,实际频谱混叠仍然存在。为了克服这个问题,必须在采样以前,将信号通过一个高频抑制能力较理想的低温滤波器(称为抗混迭滤波器)进行限带滤波处理。
根据信号处理系统任务要求,有时在取得信号后,不需立即得到处理结果,这时就可以来用离线处理。大多数情况下,要求处理结果在采集同时或采集结束后立即得到,就要用实时的或在线的处理方法。在实时和在线的处理中,处理(运算)速度要足够快,占用内存空间也有一定限制,均比离线处理要求高,有时为了实现足够快的处理速度,不得不采用专用的硬件处理器。
参考文献:
《现代仪器分析在生物医学研究中的应用》化学工业出版社钱小红 谢剑炜 主编 《生物医学测量与仪器》西安交通大学出版社李天钢马春排主编
《生物传感器的应用现状和发展趋势》 马莉萍毛斌 等著
《生物医学信号数字处理技术及应用》 科学出版社聂能 尧德中 等著
《生物医学信号处理》 电子科技大学出版社 李凌 饶妮妮 著
第二篇:生物医学信号处理总结
一、生物医学信号处理绪论
生物医学信号处理的对象:由生理过程自发产生的;把人体作为通道,外界施加于人体产生的电生理信号和非电生理信号。
生物信号的主要特点:复杂性,随机性强,噪声干扰强,非平稳性等
二、数字信号处理基础
傅立叶变换的意义:把一个无论多复杂的输入信号分解成复指数信号的线性组合,那么系统的输出也能通过图2.1的关系表达成相同复指数信号的线性组合,并且在输出中的每一个频率的复指数函数上乘以系统在那个频率的频率响应值。使得分析、处理信号变得简单。
数字滤波器的设计:IIR滤波器的设计:利用传统的模拟滤波器设计方法。
切比雪夫低通滤波器:
%低通滤波器设计0~35Hz
wp=35;ws=45;%WP通带截止频率,WS阻带截止频率
Rp=1;Rs=71;%Rp通带内的最大衰减,Rs阻带内的最小衰减
fs=1000;%采样频率
[N,wn]=cheb1ord(wp/(fs/2),ws/(fs/2),Rp,Rs);
[B,A]=cheby1(N,Rp,wn);
freqz(B,A,[],fs)%幅频特性
FIR滤波器设计:多采用窗函数和频率取样设计法。椭圆带通滤波器
[b_alpha,a_alpha] = ellip(5,1,40,[8 13]*2/500);
freqz(b_alpha,a_alpha,[],500)
例题2-11选择合适的窗设计FIR低通滤波器,画出滤波器的单位脉冲响应和该滤波器的幅度响应:
解:
wp = 0.2*pi;ws = 0.3*pi;%给出通带频率和阻带频率
tr_width = ws-wp;%求过渡带宽度
%,hamming window即可满足该条件,查表求得窗长度
M = ceil(6.6*pi/tr_width);
n=[0:1:M-1];
wc =(ws+wp)/2;%求截止频率
b= fir1(M,wc/pi);%求FIR低通滤波器的系数,默认就是hamming window
h=b(1:end-1);
[hh,w] = freqz(h,[1],'whole');%求滤波器的频率响应
hhh=hh(1:255);ww=w(1:255);%由于对称性,画一半图即可
% 画图
subplot(1,2,1);stem(n,h);title('实际脉冲响应')
axis([0 M-1-0.1 0.3]);xlabel('n');ylabel('h(n)')
subplot(1,2,2);plot(ww/pi,20*log10(abs(hhh)));title('幅度响应(单位: dB)');grid
axis([0 1-100 10]);xlabel('频率(单位:pi)');ylabel('分贝')
set(gca,'XTickMode','manual','XTick',[0,0.2,0.3,1])
set(gca,'YTickMode','manual','YTick',[-50,0])
例2-12】最常碰到的信号处理任务是平滑数据以抑制高频噪声。求几个数据点的平均值是减弱高频噪声的一种简单方法,这种滤波器被称为平滑滤波器或中值滤波器。
Y = MEDFILT1(X,N),如果没有给出N的值,则默认N=3;
当N是奇数时Y是X(k-(N-1)/2 : k+(N-1)/2)的平均;
当N是偶数时,Y是X(k-N/2 : k+N/2-1)的平均。
三、随机信号基础
平稳各态遍历的随机过程:如果随机信号的统计特性与开始进行统计分析的时刻无关,则为平稳随机过程,否则为非平稳随机过程。
如果所有样本在固定时刻的统计特征和单一样本在全时间上的统计特征一致,则为各态遍历的随机过程。
随机信号通过线性系统的四个关系式
1.Py(ej)H(ej)Px(ej)
2.Ry(m)Rx(m)h(m)h(m)
3.Pxy(ej)H(ej)Px(ej)
4.Rxy(m)Rx(m)h(m)
四、数字卷积和数字相关
卷积和相关运算的程序编写实现
线性相关函数:2
rxy(m)
nx(n)y(nm)
相关函数和功率谱的估计
估计质量的评估
五、维纳滤波
相关函数法推导维纳滤波器的维纳-霍夫方程
FIR法解维纳霍方程
预白化法解维纳霍夫方程
六、卡尔曼滤波
卡尔曼滤波的状态方程和量测方程
卡尔曼滤波的信号模型和估计模型
卡尔曼滤波的原理
七、随机信号的参数建模
AR模型中Y-W方程的推导
Y-W方程的估计法:L-D算法推导和编程
八、自适应滤波
LMS滤波过程
自适应滤波的实现
第三篇:生物医学信号处理
1.生物医学简述
1.1生物医学信号概述
生物医学信号是人体生命信息的体现,是了解探索生命现象的一个途径。因此,深入进行生物医学信号检测与处理理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法以及发展医疗仪器这一高新技术产业都具有极其重要的意义。国内外对于生物医学信号检测处理理论与方法的研究都给予极大的重视。人体给出的信号非常丰富,每一种信号都携带着对应的一个或几个器官的生理病理信息。由于人体结构的复杂性,因此可以从人体的不同的“层次”得到各类信号,如器官的层次、系统的层次以及细胞的层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。1.2生物医学信号的特点
生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。
⑴信号弱,如心电信号在mV级,脑电信号在µV级,而诱发电位信号的幅度更小。⑵噪声强,人体是电的导体,易感应出工频噪声;其次是信号记录时受试者移动所产生的肌电噪声,由此引起电极移动所产生的信号基线漂移。另外,凡是记录中所含有的不需要成分都是噪声,如记录胎儿心电时混入的母亲的心电。⑶随机性强且一般是非平稳信号,由于生物医学信号要受到生理和心理的影响,因此属于随机信号。
⑷非线性,非线性信号源于非线性系统的输出,人体体表采集到的电生理信号都是细胞膜电位通过人体系统后在体表叠加的结果,因此这些信号严格地说都是非线性信号,但目前都是把他们当作线性信号来处理[2]。
2.生物医学信号的检测
生物医学信号检测是对生物体中包含地生命现象、状态、性质和成分等信息进行检测和量化地技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域。绝大部分生物医学信号都是信噪比很低地微弱信号,且一般都是伴随着噪声和干扰地信号,对于此类信号必须采用抑制噪声地处理技术。由于生物系统十分复杂,生物体内的信息丰富,生物信号检测技术十分重要。生物信号的检测一般需要通过以下步骤:①生物医学信号通过电极拾取或通过传感器转换成电信号;②放大器及预处理器进行信号放大和预处理;③经A/D转换器进行采样,将模拟信号转变成数字信号;④输入计算机;⑤通过各种数字信号处理算法进行信号分析处理,得到有意义的结果[3]。
图1 生物医学信号检测流程
生物医学的检测技术分为以下几类:①无创检测、微创检测、有创检测;②在体检测、离体检测;③直接检测、间接检测;④非接触检测、体表检测、体内检测;⑤生物电检测、生物非电检测;⑥形态检测、功能检测;⑦处于拘束状态下的生物体检测、处于自然状态下的生物体检测;⑧透射法检测、反射法检测;⑨一维信号检测、多维信号检测;⑩分子级检测、细胞级检测、系统级检测[4]。
3.生物医学信号的处理
生物医学信号处理是研究被干扰和噪声淹没的信号中提取有用的生物医学信息的特征并作模式分类的方法。生物医学信号处理的目的是要区分正常信号与异常信号,在此基础上诊断疾病的存在。近年来对生物医学信号的处理广泛地使用了数字信号分析处理方法。以下为几种常用地处理方法:
⑴小波变换方法。在信号处理、图像处理、语音分析、模式识别、量子物理及众多非线性科学领域小波变换受到广泛地应用,被认为是近年来在工具及方法上地重大突破。所谓地小波变换是指把某一被称作为基本小波地函数作位移τ后,在不同尺度α下与待分析信号作内积[5]。小波变换具有以下特点:时频局部化特点,即可以同时提供时域和频域局部化信息;多分辨率,即多尺度的特点,可以由粗到细逐步观察信号;带通滤波的特点,可以根据中心频率的变化调节带宽,中心频率的高低与带宽成反向变化,可以观测出信号的低频缓变部分和高频突变部分[6]。这种变焦特性决定了它对非平稳信号处理的特殊功能。在生物医学工程中的信号处理,信号压缩,医学图像处理中,小波变换均有应用。
⑵频域滤波。频域滤波是数字滤波中常用的一种方法,是消除生物医学信号中噪声的另一种有效方法,当信号频谱与噪声频谱不相重叠时,或虽有重叠,但信号在重叠部分的能量很小时,可用频域滤波法来消除干扰。数字滤波器由于可做到非因果性,所以具有较模拟滤波器更为优越的频响特性,较之能更接近理想滤波器对数字滤波器的要求时相频线性,通带平坦,过度带窄[7]。
⑶生物医学信号的混沌测量。传统的测量技术以线性方法为主,强调的是平稳、平衡和均匀性。而非线性系统是在不稳定、非平衡的状态中提取信息、处理信息,从而显示它特有的优点。混沌用于测量可以说是一种尝试,也许人们很难想象一个极不稳定的混沌系统,其检测灵敏度却明显超出目前的科技水平,这是一个全新的测量概念,是很有发展前途的领域。该方法的最大的特点是初值敏感性和参数敏感性,即蝴蝶效应。其基本的思路就是把蝴蝶效应倒过来应用,将敏感元件作为混沌电路的一部分,其敏感参数随待测量变化而变化,并使系统的混沌轨道变化,测出混沌轨道的变化就可得到待测量。
⑷人工神经网络(ANN),人工神经网络是指由大量简单元件广泛相互连接而成的复杂网络系统。神经网络有很多具体模型,其共同的基本特征是以大规模并行处理为主,采用分布式存储具有较强的容错性和联想功能,强调自适应过程和学习训练过程[8]。人工神经网络的最新发展使其成为信号处理的强有力工具,对于那些用其他信号处理技术无法解决的问题,人工神经网络的应用开辟了新的领域,许多ANN的算法和它们的应用已广泛的在自然科学的各个领域被应用。这些网络模型中,多层感知器被认为是最有用的学习模型,广泛应用于脑电信号、心电信号的处理中。由于神经网络可以把专家知识和先验知识结合进一个数学框架来完成特征提取和分类识别等功能,而不需要任何对数据和噪声的先验统计假设,也不需要把专家知识和经验归纳成严密清晰的条文,所以最适应用于研究和分析生物医学信号。
4.生物医学信号处理的应用及发展前景
生物医学信号至今已在临床和生命学科的研究中获得了广泛的应用,而基于生物医学信号处理、医学成像系统和计算机的医疗仪器已成为现代医院的重要组成部分。随着科学技术的发展,现代医学已由过去的定性诊断逐渐转变为强调定量诊断。而定量诊断的依据即是病人的生理信号、医学图像和生化指标等。
4.1心电信号的应用 心电信号中最重要的特征是R波、P波、T波的位置、幅度和形态,此外还有S-T段的形态、Q波、S波、QRS宽度、U波、心室晚电位及T波交替等。心电R波检测是所有其他心电特征检测和自动诊断的基础,其检测的精度直接影响到仪器的性能,检测精度至少在99%以上。R波自动检测已有近40年的历史,从早期的差分域值法、模板匹配法、积分法、滤波器法,发展到20世纪90年代,基于小波变换的算法逐渐成为主流。至今新的R波检测算法仍然在不断的被提出,例如将R波检测和心电数据压缩相结合的算法,目的是使算法在用于可穿戴心电监护仪时具有实时分析功能并降低仪器的功耗,算法对R波的检测精度达到了99.64%。由于P、S、T等波形的幅度远低于P波,且形态多变,因此,用于对它们的检测非常困难。完成了P、Q、R、S和T等波形的检测,即可算出R-R间隔,从而得到瞬时心率以及P-R间隙、QRS宽度、P-T间隙以及S-T段形态等参数。这些参数总的又可分为两类:①心电形态学的信息②心电节律的信息,它们时心电图临床诊断的重要依据。根据检测出的参数、心脏疾病的原理和医生的临床经验,建立起各种心律异常的数学模型,从而对心电信号作出判别,决定是否异常,若异常时属于哪一种异常。这一工作即是心电的自动诊断,它也是信号处理的应用。
4.2脑电信号的应用
人类大脑无疑是自然界中最精密也是最复杂的巨系统。开展脑科学研究的目的:①阐明脑的功能和机理;②保护大脑,即脑疾病的预防、治疗及延缓衰老;③进一步开发大脑;脑科学的研究主要有两大研究方向:①微观层次的研究,包括神经生物学、分子生物学和细胞生物学等学科;②宏观层次的研究,即通过大脑宏观层次的测量来分析大脑内部隐含的生理、病理信息。目前,大脑宏观层次的测量主要是脑电图和脑部成像两大类。脑电图是无创并低价的脑测量手段,无论是在神经内科还是在神经外科都获得了广泛的应用,几乎是神经门诊的必做项目之一,同时它在脑的认知研究中也起着重要的作用。
5.结语
由于生物医学信号来自于人体器官、组织及细胞,因此存在信号的多样性、复杂性及应用的特殊性等突出特点。随着现代医学对定量诊断和精确治疗的要求越来越高,因此,生物医学信号处理的应用领域也越来越迅速扩展。正因为生物医学信号的上述属性,因此吸引了众多学科的信号处理工作者到该领域来探索。可以说生物医学信号处理领域充满了挑战性和创新机会,其给科研工作者带来了勇攀高峰的激情和期待。
参考文献
[1]何琳,郭静玉,胡志刚.生物医学信号处理方法概述[J].科技资讯,2012.[2]周杰.生物医学信号 处理方法概述[J].华章,2012.[3]许海青 陈柱 史婷奇.生物医学信号处理及应用[J].浙江临床医学,2010.[4]张阳德,周以,李小莉.基于生物医学信号处理技术的医疗检测与诊断[J].中国医学工程,2005.[5]王鸿雁.信息技术在生物医学工程中的应用[J].赤峰学院院报,2010.[6] 许海青 陈柱 史婷奇.生物医学信号处理及应用[J].浙江临床医学,2010.[7] 周杰.生物医学信号 处理方法概述[J].华章,2012.[8] 何琳,郭静玉,胡志刚.生物医学信号处理方法概述[J].科技资讯,2012.[9]梁世盛,乔凤斌,张燕.基于FPGA的数字相敏检波算法实现[J].自动化仪表,2013,34(11):13-16.59
生物医学工程学杂志 第33卷
[ J].自动化仪表,2013,34(11): 13 - 16
第四篇:传感器信号调理电路
传感器信号调理电路
传感器信号调理电路
信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。通常,传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字数据之前必须进行调理。调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。此链路工作的关键是选择运放,运放要正确地接口被测的各种类型传感器。然后,设计人员必须选择ADC。ADC应具有处理来自输入电路信号的能力,并能产生满足数据采集系统分辨率、精度和取样率的数字输出。
传感器
传感器根据所测物理量的类型可分类为:测量温度的热电偶、电阻温度检测器(RTD)、热敏电阻;测量压力或力的应变片;测量溶液酸碱值的PH电极;用于光电子测量光强的PIN光电二极管等等。传感器可进一步分类为有源或无源。有源传感器需要一个外部激励源(电压或电流源),而无源传感器不用激励而产生自己本身的电压。通常的有源传感器是RTD、热敏电阻、应变片,而热电偶和PIN二极管是无源传感器。为了确定与传感器接口的放大器所必须具备的性能指标,设计人员必须考虑传感器如下的主要性能指标:
·源阻抗
——高的源阻抗大于100KΩ
——低的源阻抗小于100Ω
·输出信号电平
——高信号电平大于500mV满标
——低信号电平大于100mV满标
·动态范围
在传感器的激励范围产生一个可测量的输出信号。它取决于所用传感器类型。
放大器功用
放大器除提供dc信号增益外,还缓冲和定标送到ADC之前的传感器输入。放大器有两个关键职责。一个是根据传感器特性为传感器提供合适的接口。另一个职责是根据所呈现的负载接口ADC。关键因素包括放大器和ADC之间的连接距离,电容负载效应和ADC的输入阻抗。
选择放大器与传感器正确接口时,设计人员必须使放大器与传感器特性匹配。可靠的放大器特性对于传感器——放大器组合的工作是关键性的。例如,PH电极是一个高阻抗传感器,所以,放大器的输入偏置电流是优先考虑的。PH传感器所提供的信号不允许产生任何相当大的电流,所以,放大器必须是在工作时不需要高输入偏置电流的型号。具有低输入偏置电流的高阻抗MOS输入放大器是符合这种要求的最好选择。另外,对于应用增益带宽乘积(GBP)是低优先考虑,这是因为传感器工作在低频,而放大器的频率响应不应该妨碍传感器信号波形的真正再生。
传感器和放大器匹配电路
PH电极缓冲器
高阻抗PH传感器可与具有低功率电路(仅需要2个1.5V电池供电)的放大器配对。放大器MOS输入晶体管为传感器提供高阻抗,传感器输出阻抗为1MW或更大。此放大器的输入偏置电流小于1pA,所以,放大器工作消耗非常小的电流。放大器的失调电压小于1mV。放大器提供轨到轨工作并具有高驱动能力,能在长线上发送信号(放大器远离ADC的情况)。在电路中增加了一个精密温度传感器,可以测量PH传感器的温度。这使得具有精确的PH温度补偿值。
完整的传感器桥接口
·测量应变片传感器通常要通过桥网络,应变片构成桥的两个(或4个)臂。应变片是低源阻抗器件,其输出信号范围是小的(几百微伏~几毫伏)。图3所示的电路能为精确测量传感器信号提供测量桥稳定激励电压和高共模电压抑制(CMR),消除了任何共模电压。用高精度和非常低漂移(随温度)的精密电压基准驱动放大器A1。这可为桥提供非常精确、稳定的激励源。因为共模电压大约为激励电压的一半,所以被测信号仅仅是桥臂之间小的差分电压。放大器A2、A3、A4必须提供高共模抑制比(CMRR),所以仅测量差分电压。这些放大器也必须具有低值输入失调电压(VOS)漂移(也称之为失调电压温度系数TCVOS)和输入偏置电流,以使得从传感器能精确地读数。放大器A1~A4连接成仪表放大器以达到上述目标。这种配置的电压增益(AV)为:AV=(1+2R2/bR2)(aR1/R1),其中a和b是确定总增益的比值。
辐射分析仪通道
辐射谱测量来自辐射源的发射能量的分布,辐射源可以是粒子,X射线或γ射线。辐射照到闪光晶体上并发射强度正比于能量的短脉冲。然后由PIN光电二极管把光转换为电流。放大器(见图4)用做首置放大器和PIN光电二极管输出的电流/电压转换器。此电路为用于基本辐射谱的单通道分析仪。信号的脉冲幅度包含重要信息,所以低输入失调电压和低失调电压漂移是重要的。宽带宽为处理脉冲(可窄到几纳秒)提供快速响应。首置放大器输出(VOUT)到脉冲幅度分析仪(如快速ADC)来测量和储存每个峰值发生的数。分布是单个源的光谱。反馈电阻R1值取决于来自PIN光电二极管的最大电流和到ADC的最大输出电压。因此,R1=(MaxVOUT)/(MaxISIGNAL)。电容C1用于PIN光电二极管寄生电容的补偿。R2和C2相当于R1和C1用于补偿放大器非倒相输入的输入偏置电流。
热电耦接口电路
热电偶根据两个不同金属线结点之间的温度差提供电压信号。热电偶温度传感器具有一个感测端(金属A/金属B连接端)和一个参考端(金属A和金属B与铜导线连接端)。冷端参考温度与热电偶信号一道进行控制和测量。热电偶具有大约10mV/℃~80mV/℃的小信号电平范围和小的源阻抗。配置成差分放大器的单放大器(图5)把信号放大到ADC输入所需的电平。差分放大器增益为:
AV=xR/R
其中x是电阻比,它决定增益。差分配置有助于抑制热电偶线的共模拾取。放大器应具有低失调电压和低失调电压漂移。
信号调理系统的最后级——ADC
信号调理系统的基本目标是尽可能快速、完整和便宜地把模拟传感器数据变换为数字形式,此任务就落在ADC身上。所用ADC的类型由一系列参数决定。这包括所需的分辨率(位数)、速度(数据吞吐率)、ac或dc信号输入、精度(dc和ac)、等待时间(取样周期开始和第一个有效数字输出之间的时间)和电源电平。在输出端(接口到微控制器或数字信号处理器)的重要参数包括串行或并行、处理器的输入电压电平、有效的电源电压和功耗考虑。
大多数信号调理应用采用逐次逼近(SAR)或积分型ADC。这两种ADC能很好地处理dc信号,而SAR型ADC对快速ac信号能提供更好的支持。SAR转换器是所有ADC中最通用的,这种转换器把高分辨率(高达
16位)和高吞吐能力结合在一起。
积分ADC具有长操作时间,这是因为所用转换方法的原因,但通过信号平均使其具有噪音低的特点。对于中频ac信号,D-S转换器是最好的选择,因为它们具有高分辨率和高精度。D-S转换器分辨率高达24位,但以降低速度为代价,其等待时间非常长。其他两类ADC—流水线和分段ADC是高速器件,非常适合用于转换高频ac信号。
第五篇:传感器与信号处理
传感器
一、名词解释
1.传感器;能感受规定的被测量并按照一定规律转化成可用输出信号的器件和装置。
2.应电效应
某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。
3.压阻效应
4.霍尔效应
金属或半导体薄片置于磁感应强度为B的磁场中,当有电流I通过时,在垂直于电流和磁场的方向上将产生电动势UH,这种物理现象称为霍尔效应。
5.热电效应
将两种不同的导体A和B连成闭合回路,当两个接点处的温度不同时,回路中将产生热电势。
6.光电效应
光电效应是物体吸收到光子能量后产生相应电效应的一种物理现象。
二、填空题
1.传感器通常由三部分组成。
2.按工作原理可以分为、。
3.误差按出现的规律分、。
4.对传感器进行动态的主要目的是检测传感器的动态性能指标。
1.敏感元件、转换元件、测量电路
2.电容传感器、电感传感器、电阻传感器、压电式传感器
3.系统误差、随机误差、粗大误差
4.标定(或校准或测试)
5.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过
6.传感检测系统目前正迅速地由模拟式、数字式,向
7.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为
5.测量范围
6.智能化
7.(△K0 / K0)×100%
8.电容式压力传感器是变
9.图像处理过程中直接检测图像灰度变化点的处理方法称为。
8.极距(或间隙)
9.微分法
10.目前应用于压电式传感器中的压电材料通常有、、。
11.根据电容式传感器的工作原理,电容式传感器有、12.热敏电阻按其对温度的不同反应可分为三类、。
13.光电效应根据产生结果的不同,通常可分为、三种类型。
14.传感器的灵敏度是指稳态标准条件下,输出与输入的比值。对线性传感器来说,其灵敏度是。
10.压电晶体、压电陶瓷、有机压电材料
11.变间隙型、变面积型、变介电常数型
12.负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)、临界温度系数热敏电阻(CTR)
13.外光电效应、内光电效应、光生伏特效应
14.变化量、变化量、常数
15.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。
16.采用热电阻作为测量温度的移时,为了得到较好的线性度和较好的灵敏度,应该让的距离小于。元件是将的测量转换为的测量。
17.利用涡流式传感器测量位
式电容传感器
15.压力加速度
16.温度、电阻
17.线圈与被测物、线圈半径
18.差动
19.由光电管的光谱特性看出,检测不同颜色的光需要选用不同的光电管,以便利用光谱特性的区段。
20.按热电偶本身结构划分,有热电偶、铠装热电偶、21.硒光电池的光谱响应区段与
19.光电阴极材料、灵敏度较高
20.普通、薄膜
21.人类
22.当半导体材料在某一方向承受应力时,它的发生显著变化的现象称为半导体压阻效应。
23.磁敏二极管工作时加。
24.可以测量加速度的传感器有
22.电阻率
23.正向、弱磁场
24.电容式传感器、压电式传感器、电阻应变式传感器18.空气介质变隙式电容传感器中,提高灵敏度和减少非线性误差是矛盾的,为此实际中大都采用
三、选择题
1.电阻应变片的初始电阻数值有多种,其中用的最多的是(B)。
A 60ΩB 120ΩC 200ΩD 350Ω
2.电涡流式传感器激磁线圈的电源是(C)。
A 直流B 工频交流C 高频交流D 低频交流
3.变间隙式电容传感器的非线性误差与极板间初始距离d0之间是(C)。
A 正比关系B 反比关系C 无关系
4.单色光的波长越短,它的(A)。
A 频率越高,其光子能量越大B 频率越低,其光子能量越大
C 频率越高,其光子能量越小D 频率越低,其光子能量越小
5.热电偶可以测量(C)。
A 压力B 电压C 温度D 热电势
6.光敏电阻适于作为(B)。
A 光的测量元件B 光电导开关元件C 加热元件D 发光元件
7.目前我国使用的铂热电阻的测量范围是(D)。
A-200~850℃B-50~850℃
C-200~150℃D-200~650℃
8.下列被测物理量适合于使用红外传感器进行测量的是(C)
A.压力B.力矩C.温度D.厚度
9.属于传感器动态特性指标的是(D)
A.重复性B.线性度C.灵敏度D.固有频率
10.按照工作原理分类,固体图象式传感器属于(A)
A.光电式传感器B.电容式传感器
C.压电式传感器D.磁电式传感器
11.测量范围大的电容式位移传感器的类型为(D)
A.变极板面积型B.变极距型
C.变介质型D.容栅型
12.利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小(C)
A.两个桥臂都应当用大电阻值工作应变片
B.两个桥臂都应当用两个工作应变片串联
C.两个桥臂应当分别用应变量变化相反的工作应变片
D.两个桥臂应当分别用应变量变化相同的工作应变片
13.影响压电式加速度传感器低频响应能力的是(D)
A.电缆的安装与固定方式B.电缆的长度
C.前置放大器的输出阻抗D.前置放大器的输入阻抗
14.将电阻R和电容C串联后再并联到继电器或电源开关两端所构成的RC吸收电路,其作用是(D)
A.抑制共模噪声B.抑制差模噪声
C.克服串扰D.消除电火花干扰
四、问答题
1.传感器有哪些组成部分?在检测过程中各起什么作用?
1.答:传感器通常由敏感元件、转换元件及测量电路三部分组成。
各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。转换元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量电路可将传感元件输出的电参量转换成易于处理的电量信号。
5.热电阻传感器有哪几种?各有何特点及用途?
5.答:热电阻可分为金属热电阻和半导体热电阻两类。前者称为热电阻,后者称为热敏电阻。以热电阻或热敏电阻为主要器件制成的传感器称为热电阻传感器或热敏电阻传感器。
热电阻传感器主要是利用电阻随温度变化而变化这一特性来测量温度的。
热敏电阻按其对温度的不同反应可分为负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)和临界温度系数热敏电阻(CTR)三类,7.电阻应变传感器主要由哪几部分组成?
8.概述电涡流式传感器的工作原理。
9.电容式传感器有什么主要特点?可用于哪些方面的检测?
9.答:电容式传感器具有以下特点:功率小,阻抗高,动态特性良好,具有较高的固有频率和良好的动态响应特性;可获取比较大的相对变化量;能在比较恶劣的环境条件下工作;可进行非接触测量;结构简单、易于制造;输出阻抗较高,负载能力较差;寄生电容影响较大;输出为非线性。
电容式传感器可用于直线位移、角位移、尺寸、液体液位、材料厚度的测量。
10. 根据工作原理可将电容式传感器分为哪几种类型?各自用途是什么?
10. 答:根据电容式传感器的工作原理,电容式传感器有三种基本类型,即变极距(d)型(又称变间隙型)、变面积(A)型和变介电常数(ε)型。变间隙型可测量位移,变面积型可测量直线位移、角位移、尺寸,变介电常数型可测量液体液位、材料厚度。
11.常用压电材料有那几种?
11.答:应用于压电式传感器中的压电材料通常有三类:一类是压电晶体,另一类是经过极化处理的压电陶瓷,;第三类是有机压电材料。
12.霍尔电动势的大小、方向与哪些因素有关?
12.答:霍尔电动势的大小正比于激励电流I与磁感应强度B,且当I或B的方向改变时,霍尔电动势的方向也随着改变,但当I和B的方向同时改变时霍尔电动势极性不变。
13.试说明热电偶的测温原理。
13.答:两种不同材料构成的热电变换元件称为热电偶,导体称为热电极,通常把两热电极的一个端点固定焊接,用于对被测介质进行温度测量,这一接点称为测量端或工作端,俗称热端;两热电极另一接点处通常保持为某一恒定温度或室温,称冷端。热电偶闭合回路中产生的热电势由温差电势和接触电势两种电势组成。热电偶接触电势是指两热电极由于材料不同而具有不同的自由电子密度,在热电极接点接触面处产生自由电子的扩散现象;扩散的结果,接触面上逐渐形成静电场。该静电场具有阻碍原扩散继续进行的作用,当达到动态平衡时,在热电极接点处便产生一个稳定电势差,称为接触电势。其数值取决于热电偶两热电极的材料和接触点的温度,接点温度越高,接触电势越大。
14.光电效应有哪几种类型?与之对应的光电元件各有哪些?简述各光电元件的优缺点。
14.答:光电效应根据产生结果的不同,通常可分为外光电效应、内光电效应和光生伏特效应三种类型。
15.抑制干扰有哪些基本措施?
15.答:第一,消除或抑制干扰源。
第二,破坏干扰途径。
第三,削弱接收电路对干扰信号的敏感性。