中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理

时间:2019-05-12 20:35:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理》。

第一篇:中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理

智浪教育—普惠英才文库

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:

一、函数、极限、连续

1. 函数的概念及表示法、简单应用问题的函数关系的建立.2. 函数的性质:有界性、单调性、周期性和奇偶性.3. 复合函数、反函数、分段函数和隐函数、基本初等

函数的性质及其图形、初等函数.4. 数列极限与函数极限的定义及其性质、函数的左极

限与右极限.5. 无穷小和无穷大的概念及其关系、无穷小的性质及

无穷小的比较.6. 极限的四则运算、极限存在的单调有界准则和夹逼

准则、两个重要极限.7. 函数的连续性(含左连续与右连续)、函数间断点的类型.8. 连续函数的性质和初等函数的连续性.9. 闭区间上连续函数的性质(有界性、最大值和最小值

定理、介值定理).二、一元函数微分学

1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6.洛必达(L’Hospital)法则与求未定式极限.7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径.三、一元函数积分学

1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定 — 1 —

积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4.不定积分和定积分的换元积分法与分部积分法.5.有理函数、三角函数的有理式和简单无理函数的积分.6.广义积分.7.定积分的应用:平面图形的面积、平面曲线的弧长、旋

转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

四.常微分方程

1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2.变量可分离的微分方程、齐次微分方程、一阶线性微分

方程、伯努利(Bernoulli)方程、全微分方程.3.可用简单的变量代换求解的某些微分方程、可降阶的高

阶微分方程:y(n)f(x), yf(x,y), yf(y,y).4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数

齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项

式、指数函数、正弦函数、余弦函数,以及它们的和与积

7.欧拉(Euler)方程.8.微分方程的简单应用

五、向量代数和空间解析几何

1.向量的概念、向量的线性运算、向量的数量积和向量

积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方

向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方

程.5.平面与平面、平面与直线、直线与直线的夹角以及平

行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面

上的投影曲线方程.六、多元函数微分学

1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连

续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和

充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函

数的最大值、最小值及其简单应用.七、多元函数积分学

1.二重积分和三重积分的概念及性质、二重积分的计算

(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋

度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面

积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)

八、无穷级数

1.常数项级数的收敛与发散、收敛级数的和、级数的基

本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判

别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域

与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函

数在[0,l]上的正弦级数和余弦级数

第二篇:中国大学生数学竞赛

中国大学生数学竞赛

报名时间:每年九月(2011-9-20~30)

预赛时间:每年十月(2011-10-29)

决赛时间:次年三月(2012年3月份的第三周周六上午)

http://baike.baidu.com/view/2904171.htm#3百度资料

http:///中国大学生数学竞赛网

2009年,中国大学生数学竞赛(通称为“全国大学生数学竞赛”)开始举办。作为一项面向本科生的全国性高水平学科竞赛,全国大学生数学竞赛为青年学子提供了一个展示数学基本功和数学思维的舞台,为发现和选拔优秀数学人才并进一步促进高等学校数学课程建设的改革和发展积累了调研素材。

(1)参赛对象:大学本科二年级或二年级以上的在校大学生。竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业的学生)。数学专业学生不得参加非数学专业组的竞赛。(2)竞赛内容:非数学专业组竞赛内容为本科高等数学内容(高等数学内容为理工科本科教学大纲规定的高等数学的教学内容)。数学专业组竞赛内容含数学分析、高等代数和解析几何(均为数学专业本科教学大纲规定的教学内容),所占比重分别为50%、35%及15%左右。

第三篇:全国大学生数学竞赛大纲(非数学专业)

(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:

一、函数、极限、连续

1. 函数的概念及表示法、简单应用问题的函数关系的建立.2. 函数的性质:有界性、单调性、周期性和奇偶性.3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7. 函数的连续性(含左连续与右连续)、函数间断点的类型.8. 连续函数的性质和初等函数的连续性.9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学

1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6.洛必达(L’Hospital)法则与求未定式极限.7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径.三、一元函数积分学

1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4.不定积分和定积分的换元积分法与分部积分法.5.有理函数、三角函数的有理式和简单无理函数的积分.6.广义积分.7.定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

四.常微分方程

1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2.变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3.可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:.4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积

7.欧拉(Euler)方程.8.微分方程的简单应用

五、向量代数和空间解析几何

1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学

1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学

1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)

八、无穷级数

1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数

第四篇:浙江省大学生数学竞赛(微积分)内容大

浙江省大学生数学竞赛(微积分)大纲

浙江省大学生数学竞赛微积分组,主要面向全省各高校非数学系专业的在读本科和专科大学生。内容涉及到大学本科(专科)《微积分》或《高等数学》课程所涵盖的各知识点,以单变量内容为主,具体内容如下:

一、函数极限和连续性

考察考生对函数、极限概念的理解和掌握,函数极限的讨论和计算,函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、根的存在定理),并会应用这些性质。

二、导数及其应用

函数可导性的研究,微分中值定理及其应用,利用导数研究函数的性质(单调性,凹凸性等)以及导数的应用(极值、最大值和最小值等)。

三、积分

不定积分和定积分的计算,定积分的应用(面积、体积、引力、功、压力)和广义积分。

四、级数

级数的收敛性及其判别定理,几类特殊的级数的敛散性,如正项级数、一般级数等,幂级数的求和、函数的Taylor级数展开和Fourier级数展开等。

五、多元微积分

矢量及其运算和空间解析几何,多元函数的微分及其性质和应用。二重积分、三重积分、第一、二类曲线与曲面积分的计算,三个重要公式:Green公式、Gauss公式和Stokes公式以及曲线积分与路径无关性的应用和计算。

注:

1.经管类学生只考第一至第四部分(功、压力、引力、Fourier级数不要求)。专科和文科类考生只考第一至第三部分(功、压力、引力不要求)。

2.主要参考书:《高等数学竞赛教程》(浙江大学出版社出版)、《微积分》与《高等数学》教材。

第五篇:第四届全国大学生数学竞赛试题与解答(非数学类)

全国大学生数学竞赛(高等数学)全国大学生数学竞赛(高等数学)全国大学生数学竞赛(高等数学)全国大学生数学竞赛(高等数学)

全国大学生数学竞赛(高等数学)

全国大学生数学竞赛(高等数学)全国大学生数学竞赛(高等数学)

下载中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理word格式文档
下载中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中国大学生数学竞赛竞赛大纲(初稿)(含5篇)

    中国大学生数学竞赛竞赛大纲(初稿) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“......

    数学建模及大学生数学建模竞赛

    数学建模及大学生数学建模竞赛 近几十年来,随着科学技术的进步,特别是电子计算机的诞生和不断完善,数学的应用已不再局限于物理学等传统领域,生态学、环境科学、医学、经济学、......

    首届中国大学生数学竞赛各赛区联络人

    首届中国大学生数学竞赛各赛区联络人 国防科学技术大学赛区 联系人:丁青 单位:国防科技大学理学院数学与系统科学系 江西赛区 联系人:曾广洪 单位:江西师范大学数学与信息科学学......

    2014全国大学生数学建模竞赛

    嫦娥三号软着陆轨道设计与控制策略 摘要 随着月球探测任务的发展,未来月球探测考察目标将主要是 复杂地形特性的高科学价值区域。为了能够安全地在这些遍布岩石、 的区域......

    大学生数学建模竞赛承诺书

    西北民族大学研究生数学建模竞赛承诺书我们仔细阅读了西北民族大学研究生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、......

    大学生数学竞赛(优秀范文5篇)

    全国大学生数学竞赛 参赛对象: 大学本科二年级或二年级以上的在校大学生。竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业的学生)。数学专业学生不......

    大学生数学建模竞赛试题A

    2014桂电大学生数学建模竞赛试题 A题 计划生育新政对我国人口数量、结构 及其经济的影响研究 李克强总理代表国务院在2014年政府工作报告中指出:“坚持计划生育基本国策不动......

    全国大学生数学建模竞赛

    全国大学生数学建模竞赛 1、数模竞赛的起源与历史 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数......