2014年考研数学大纲高等数学上册复习重点串讲(精选5篇)

时间:2019-05-12 20:35:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014年考研数学大纲高等数学上册复习重点串讲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014年考研数学大纲高等数学上册复习重点串讲》。

第一篇:2014年考研数学大纲高等数学上册复习重点串讲

大家期盼已久的2014年大纲已于今天正式公告,今年的大纲较之往年,仍然没有变化,那么在9月份大纲出来之后,我们考研数学的复习该怎么进行呢?下面我将为大家介绍高等数学上册的复习重点,供大家参考:

第一章函数、极限与连续

本章函数部分主要是从构建函数关系,或确定函数表达式等方面进行考查.而极限作为高等数学的理论基础,不仅需要准确理解它的概念、性质和存在的条件,而且要会利用各种方法求出函数(或数列)的极限,还要会根据题目所给的极限得到相应结论.连续是可导与可积的重要条件,因此要熟练掌握判断函数连续性及间断点类型的方法,特别是分段函数在分段点处的连续性.与此同时,还要了解闭区间上连续函数的相关性质(如有界性、介值定理、零点定理、最值定理等),这些内容往往与其他知识点结合起来考查.本章的知识点可以以多种形式(如选择题、填空题、)考查,平均来看,本章内容在历年考研试卷中数学

一、数学三大约占10分,分

本章重要题型主要有:

1、求极限;2;3;

4、间断点类型的判断。

第二章一元函数微分学

本章按内容可以分为两部分:第一部分是导数与微分,可导性与可;确定函数的二阶导数。,以凹凸性以及方程根的题..平均来看,本章内12分,分,数学三大约占10分.本章重要题型有:;

2、复合函数、反函数、隐函数和参数方程所确定的函数的求导;

3、;

4、利用导数研究函数的形态(判断单调、求极值与最值、求凹凸区间与拐点);5;

6、渐近线;

7、求边际和弹性(数三)。

第三章一元函数积分学

本章内容中,不定积分和定积分是积分学的基本概念,不定积分和定积分的计算是积分学的基本计算,利用定积分表示并计算一些几何、物理、经济量是积分学的基本应用。这一部分要特别注意变限积分,它的各种性质都是我们考查的重点。变上限积分函数跟微分方程结合的一个点也可以出题的。还有定积分的应用,求平面图形面积,求旋转体的体积,一定要熟悉,要掌握好微元法。

本章对概念部分的考查主要是出现在选择题中,对运算部分的考查通常出现在填空题和解答题中,而定积分的应用和有关定积分的证明题大多出现在解答题中.平均来看,本章内容在历年考研试卷中,数学一大约占15分,数学二大约占33分,数学三大约占20分。

本章重要题型有:

1、不定积分、定积分和反常积分的基本运算;

2、定积分等式或不等式的证明;

3、变上限积分的相关问题;

4、利用定积分求平面图形的面积和旋转体的体积。

第四章向量代数与空间解析几何(数一)

本章内容不是考研重点,很少直接命题。直线与平面方程是多元函数微分学的几何应用的基础,常见二次曲面的图形被应用到三重积分、曲面积分的计算中,用于确定积分区域。

以上是我们对于高数部分上册重点考点的一些总结,希望能助大家一臂之力。最后祝广大考生复习顺利,考研成功!

第二篇:高等数学第六版上册(同济)复习重点

高数重点

1、洛必达法则求未定式极限

2、隐函数的求导公式(隐函数存在的三个定理)

3、多元函数的极值及其求法(多元函数极值和最值的概念,二元函数极值存在的必要条件

和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值)

4、多元复合函数的求导法则(多元复合函数求导,全微分形式的不变性)

5、全微分(全微分的定义,课微分的必要条件和充分条件)

6、偏导数(概念,二阶偏导数求解)

7、二重积分的计算法(利用直角坐标、极坐标求二重积分)

8、微分方程的基本概念(微分方程及其阶,解,通解,初始条件,特解)

9、齐次方程

10、牛顿——莱布尼茨公式

一、1、夹逼定理

2、连续(定义证明函数连续,判断间断点类型)

二、1、导数(证明函数是否可导)连续不一定可导,可导不一定连续

2、求导法则

3、求导公式,微分公式

三、1、微分中值定理!

2、洛必达法则

3、泰勒公式,拉格朗日中值定理

4、曲线凹凸性,极值

5、曲率公式 曲率半径

四、积分不定积分

1、两类换元法

2、分部积分法(注意加C)

3、定积分定义、反常积分

五、定积分的应用

极坐标求做功求面积求体积求弧长

第三篇:高等数学上册复习

第一章复习提要 第一节 映射与函数

1、注意几个特殊函数:符号函数,取整函数,狄利克雷函数;这些函数通常用于判断题中的反例

2、注意无界函数的概念

3、了解常用函数的图像和基本性质(特别是大家不太熟悉的反三角函数)第二节 数列的极限 会判断数列的敛散性 第三节 函数的极限

1、函数极限存在的充要条件:左右极限存在并相等。(重要)

2、水平渐近线的概念,会求函数的水平渐近线(p37)。(重要)

3、了解函数极限的局部有界性、局部保号性。第四节 无穷大和无穷小

1、无穷小和函数极限的关系:limf(x)Af(x)A,其中是无穷小。

xx0x

2、无穷大和无穷小是倒数关系

3、铅直渐近线的概念(p41), 会求函数的铅直渐近线

4、无界与无穷大的关系:无穷大一定无界,反之不对。

5、极限为无穷大事实上意味着极限不存在,我们把它记作无穷大只是为了描述函数增大的这种状态 第五节 极限的运算法则

1、极限的四则运算法则:两个函数的极限都存在时才能用。以乘法为例比如f(x)x,g(x)但是limf(x)g(x)1

x01。limf(x)0,limg(x)。xx0x02、会求有理分式函数

p(x)的极限(P47 例3-例7)(重要)q(x)xx0时:若分母q(x0)0,则极限为函数值

0型极限,约去公因子 0 若只是分母为零,则极限为无穷大。(p75页9(1))

x时,用抓大头法,分子、分母同时约去x的最高次幂。第六节 极限存在的准则,两个重要极限(重要)

1、利用夹逼准则求极限: 例 p56也习题4(1)(2),及其中考试题(B)卷第三题(1)

2、利用两个重要极限求其他的极限(p56习题2)

1sinxsinx0;lim1 3 注意下面几个极限:limxsin0;limx0xx0xxx第七节 无穷小的比较(重要)

1、会比较两个无穷之间的关系(高阶、低阶、同阶,k 阶还是等价穷小)若分子和分母同时为零,则为

x22、常见的等价无穷小:sinx,tanx,arcsinx~x;1cosx~

2ex1~x;(1x)~1nx n13、若(x)为无穷小,则sin(x)~(x),(1(x))n~(x)n,ln(1(x))~(x),e(x)1~(x)。

4、替换无穷小时必须是因式

x0limtanxsinxx3limxx3x0x0

应该

x2xtanxsinxtanx(1cosx)1limlimlim2

2x0x0x0x3x3x35、会利用等价无穷小计算极限(p60页习题4)

第八节 函数的连续性与间断点(重要)

1、函数在点x0连续 limf(x)f(x0)

xx0左连续limf(x)f(x0)且

xx0f(x)f(x0)

右连续limxx02、会判断间断点及其类型。讨论分段函数的连续性。

3、f(x)在点a连续f(x)在点a连续;但反之不对。

第九节 连续函数的运算与初等函数的连续性

初等函数在其定义域上都是连续的,因而求某点处极限时可以直接把点代入求值。

4.注意三个例题:例6-例8(重要)

5、幂指函数u(x)v(x)求极限,可以利用等式u(x)v(x)=ev(x)lnu(x)来求。(重要)

6、若含有根式,则分子或者分母有理化(p75页9(2))是求极限的一种重要方法。(重要)

7、利用分段函数的连续性求未知数的值(如p70页 6)(重要)第十节 闭区间上连续函数的性质

最大值最小值定理、零点定理、介值定理的内容 会零点定理证明方程根的存在性。(重要)补充说明 请熟悉函数e当x0,x0,x时的极限。第二章复习提要

1、导数的定义

(1)利用导数的定义求一些极限的值:例如P86页第6题 例

1、设f(0)0,f(0)k0,则limf(x)____.x0x1x例

2、设f(x0)存在,则limf(x0h)f(x0)________.(重要)

hh0(2)利用左右导数讨论函数的可导性:P125页第7题

sinx,x0例

3、已知f(x),求f(x)

x,x0注意分点处的导数应该用定义来求。(重要)

(3)利用左右导数求未知数的值:P87页第17题(重要)

sinx,x0例

4、设f(x)为可导的,求a的值

ax,x0(4)利用导数几何意义求切线和法线方程(重要)

(5)可导连续,反之不成立!

2、求导法则

(1)复合函数求导不要掉项;

(2)幂指函数u(x)v(x)ev(x)lnu(x)转化成指数来求导

3、高阶导数

(1)一般的函数求到2阶即可;(2)几个初等函数的n阶导数:

(eax)(n)aneax;y(n)sin(xn);(cosx)(n)cos(xn)

22[ln(1x)](n)(1)n1(n1)!(1x)n,(n1)!(1x)n[ln(1x)](n)(1)n1(1)n(n1)!(1x)n

由上面的求导公式我们容易推出下列求导公式:

1(n)n!()[ln(1x)](n1)(1)nn11x(1x)1(n)n!()[ln(1x)](n1)n11x(1x)(1(n)n!)[ln(ax)](n1)(1)nn1ax(ax)1(n)n!)[ln(1x)](n1)n1ax(ax)((3)二项式定理

(uv)(n)(nk)(k)Ckuv nk0n(4)间接法求高阶导数:

1x2例

5、求y的n阶导数:提示y1。

1x1x(5)注意下列函数的求导

6、求下列函数的二阶导数:P103页第3题(重要)(1)yf(x2);(2)yln[f(x)]

4、隐函数及参数方程求导(重要)(1)一般方法,两边对x球到后解出

dy。dx(2)会求二阶导数

(3)对数求导法适用于幂指函数和连乘或连除的函数(4)注意参数方程二阶导数的公式

dydyd()2()tdydtdx。(重要)dxdx2dtdxdxdt(5)相关变化率问题:

根据题意给出变量x和y之间的关系;

两边对t(或者是其他变量)求导

dydx和之间的关系,已知其中一个求另外一个。dtdt5、函数的微分

(1)微分与可导的关系:可微可导且dyf(x)dx(2)利用微分的形式不变性求隐函数或显函数的微分: 显函数的例子见课本的例题;下面给出隐函数的例子 例

7、设ysinxcos(xy)0,求dy。解: 利用一阶微分形式不变性 , 有

d(ysinx)d(cos(xy))0

sinxdyycosxdxsin(xy)(dxdy)0

dyycosxsin(xy)dx。

sin(xy)sinx(3)近似计算公式:注意x0的选取原则。(一般不会考)f(x)f(x0)f(x0)(xx0)

第三章:微分中值定理与导数的应用复习提要 3.1 微分中值定理(重要)

罗尔定理、拉格朗日定理、柯西定理应用: 证明等式,一般通过证明导数为零

证明不等式:若不等式中不含x,则取x作为辅助函数的自变量;若含有x,则取t作为辅助函数的自变量。(重要)

判断方程的根(存在性用零点定理,唯一性或判断根的个数用中值定理,有时还要结合单调性,见153也习题6)(重要)

利用辅助函数和中值定理证明等式(一个函数用拉格朗日,二个用柯西)例1 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)0,证明至少存在一点(0,1)使得f()2f()。

证明:上述问题等价于f()2f()0。

令f(x)x2f(x),则f(x)在[0,1]上满足罗尔定理条件,于是少存在一点(0,1)使得

()2f()2f()0 即有f()2f()0。

(5)请熟悉132页例1.3.2 洛必达法则(重要)

(1)(其他类型的未定式)最终转化成0型和型未定式 0(2)每次用前需判断

(3)结合等价无穷小效果更佳。3.3 泰勒公式

(1)一般方法:求各阶导数代入公式即可;

(2)常见函数ex,ln(1x),sinx,cosx的麦克劳林公式 3.4 函数的单调性和凹凸性(1)会用列表法求函数的单调区间和凹凸区间(注意一般是闭区间),拐点。注意不要漏掉导数不存在的点也可能是单调区间的分点; 二阶导数不存在的点也可能是拐点。(2)利用单调性证明不等式(重要)(3)利用单调性判断方程的根(重要)3.5 极值和最值(重要)

(1)列表法求极值(极值可能点为驻点或不可导点)(2)最值(找出极值可能点再与端点比较)

(3)对于时间问题,若极值点唯一,则也为最值点。3.6 函数图形的描绘 注意渐近线 3.7 曲率

(1)弧微分公式

(2)曲率和曲率半径的计算公式(重要)第四章复习提要

4.1 不定积分的概念和性质

1、基本积分表

2、公式f(x)dxf(x)和f(x)dxf(x)C 

3、注意如下问题:(填空、选择、判断)若ex是f(x)的原函数,则x2f(lnx)dx若f(x)是ex的原函数,则12xC 2f(lnx)1dx C0lnxC xx若f(x)的导数为sinx,则f(x)的一个原函数是(B)。A 1sinx;B 1sinx;C 1cosx;D 1cosx

4.2 换元积分法(重要)

1、第一换元法的原理:g(x)dx

把被积函数g(x)凑成g(x)f((x))(x)的形式,因而这种方法也称为凑微分法。

2、一些规律: ①f(x)1xdx2f(x)(x)2f(x)dx

11f(axb)(axb)dxf(axb)d(axb)

aa②f(axb)dx1③f(lnx)dxf(lnx)(lnx)dxf(lnx)d(lnx)

x④sin(2k1)xcosnxdxsin2kxcosnxsinxdx(1cos2x)cosnxdcosx ⑤cos(2k1)kxsinxdxcosxsinxcosxdx(1sinx)sinnxdsinx n2kn2k注:sin(2k1)xdx和cos(2k1)xsinnxdx可以看做④和⑤的特殊情形。⑥sin2kxcos2nxdx用公式sin2x⑦tanxsecn2k2n2k1cos2x1cos2x和cos2x降次。22n2kxdxtanxsecxdtanxtanx(1tanx)dtanx

注sec2kxdx可以看做⑦的特殊情形

⑧csc2k2xdxcsc2kxcsc2xdx(1cot2x)dcotx

⑨tan(2k1)xsecnxdxtan2kxsecn1xdsecx(sec2x1)secn1xdsecx ⑩利用积化和差公式:

1cosAcosB[cos(AB)cos(AB)]

21sinAcosB[sin(AB)sin(AB)]

21cosAsinB[sin(AB)sin(AB)]

21sinAsinB[cos(AB)cos(AB)]

2第二换元法

被积函数中含有a2x2,利用代换xasint,t(被积函数中含有a2x2,利用代换xatant,t(kk,)22,)22被积函数中含有x2a2,利用代换xasect,t(0,)(一般要分情况讨论)被积函数为分式,分母次数比分子次数高,到代换 利用下列积分公式:

⒃tanxdxln|cosx|C;⒄cotxdxln|sinx|C

⒅secxdxln|secxtanx|C;⒆cscxdxln|cscxcotx|C ⒇dx1xdx1xaarctanC;(21)lnx2a22axaC aa2x2a(22)xdxarcsinC;ln(xa2x2)C(23)ax2a2a2x2dx(24)dxx2a2lnxx2a2C

4.3 分部积分法(重要)

1、分部积分公式:udvuvvdu

2、u的选取原则:反对幂指三。

这个原则不是绝对的,如通常exsinxdxsinxdex。

3、如果遇到反三角函数和对数函数的高次幂,通常先换元更容易算。如(arcsinx)2dxarcsinxtt2dsint;

ln2x2ttdxlnxtedt x2遇到根式axb,先令taxb去根号。会做形如例7、8那样具有典型特点的题目。

4.4 有理函数的积分(重要)

1、P(x),先用多项式除法化成真分式; Q(x)P(x)的分解式: Q(x)

2、对Q(x)分解因式,根据分解结果用待定系数法确定x1x1AB:应设

(x2)(x3)(x2)(x3)x2x3 x2x2ABxC:应设 (2x1)(x2x1)(2x1)(x2x1)(2x1)(x2x1)x2x2ABx3Cx2DxE(2x1)(x2x1)2:应设(2x1)(x2x1)(2x1)(x2x1)2

原则就是分子的次数总是要比分母低一次。

3、三角函数可以通过如下换元法转化为有理函数的积分

xxx2tan1tan22tan2;cosx2;tanx2 sinxxxx1tan21tan21tan2222x令tant,则三角函数就转化成为有理函数

24.被积函数含有naxb或naxbcxd,则令tnaxb或tnaxbcxd 几个典型题目 P207页(42)x1dxdx,(43)x1x2P211页例7、8 x22x3补充说明:这一章的内容需要大家在掌握一定规律的前提下多做练习,方能取得比较好的效果 第五章:定积分

5.1 定积分的概念和性质

1、定积分的定义:f(x)dxlimf(i)xi

abni02、定积分的几何意义:曲边梯形的面积

3、定积分的性质:利用定积分的性质判断积分的取值范围或比较两个积分的大小(p235,10,13)(重要)5.2 微积分基本公式

1、yf(x),axb的积分上限的函数(重要)

(x)xaf(t)dt,axb

及其导数:(如p243,5题)(1)(x)f(x)

d(x)f(t)dtf((x))(x)adxda(3)f(t)dtf((x))(x)

dx(x)d(x)(4)f(t)dtf((x))(x)f((x))(x)

dx(x)

2、利用上面的公式计算极限、判断函数单调性等: 相应例题(p242,例7,8),相应习题(p243-244:习题9,12,12,14)(重要)(2)

3、牛顿-莱布尼茨公式:函数F(x)为函数f(x)在区间[a,b]上的一个原函数,则

baf(x)dxF(b)F(a),记作[F(x)]a或F(x)bba

注意:分段函数(或者带绝对值的函数)的积分应为分段积分的和:典型题目p244,习题10.5.3 定积分的换元法和分布积分法(重要)

1、第一换元公式:f[(x)](x)dtf(t)dt

ab

2、第二还原公式:f(x)dxf[(t)](t)dt

ab注意:一般来说应用第一换元公式,我们一般不需要把新变量写出来,因而也就

cos2不需要写出新变量的积分限,如cossinxdx 但是应用第二换元。

30公式,一般要写出新变量及其积分限,如

2023aasinta2x2dx(a0)xa22cos2tdt

003、分布积分公式:u(x)dv(x)u(x)v(x)av(x)du(x)

baabb说明:无论是还原法还是分布积分法,定积分和不定积分的计算过程都是相似的。

4、利用下面的公式能帮助我们简化计算:(重要)(1)偶倍寄零

00(2)2f(sinx)dx2f(cosx)dx(3)xf(sinx)dx020f(sinx)dx(p248, 例6,p270, 10(6))

(4)设f(x)是周期为T的连续函数:则

aTaf(x)dxf(x)dx;0TanTaf(x)dxnf(x)dx(nN).(p249,例7,p253,0T1(26))

5、形如例9这样的积分。5.4 反常积分

1、无穷限的反常积分:设F(x)是f(x)的原函数,引入记号

F()limF(x);F()limF(x)

xx则

af(x)dxF(x)|aF()F(a);f(x)dxF(x)|F()F().bf(x)dxF(x)|bF(b)F();

反常积分收敛意味着相应的F(),F()存在;特别的积分F(),F()同时存在。

f(x)dx收敛必须注意:对于无穷限积分来说,偶倍寄零原则不在成立!

2、无界函数的反常积分(瑕积分):设F(x)是f(x)的原函数,则 若b为瑕点,f(x)dx F(x)aF(b)F(a);

bab若a为瑕点,则f(x)dxF(x)aF(b)F(a);

bab若a,b都为瑕点,f(x)dx F(x)aF(b)F(a);

bab则c(a,b)为瑕点,则f(x)dxf(x)dxf(x)dxF(x)c。aF(x)caacbcbb反常积分收敛意味着相应的F(a),F(b)存在;特别的积分f(x)dx(c(a,b)ab为瑕点)收敛必须F(c),F(c)同时存在。

说明:由上面的公式看出,反常积分与定积分的计算方法是一样的。都是先求原函数然后代入两个端点,只是对于非正常点(如和瑕点)算的是函数的极限。

3、换元法也适用于反常积分

4、会利用下面的两个重要反常积分来讨论一些函数的收敛性(重要)

ap1,dx(a0)1,p1xpp1(p1)a(ba)1qb,q1dx 1qa(xa)q,q1练习:p260,2题;求积分bdx的收敛性。

b(xb)qa5、遇到形如f(x)dx积分时,注意[a,b]是否含有瑕点。否则会得到错误的结果:

adx。1x第六章 定积分的应用

6.2 定积分在几何学上的应用

1、平面图形的面积(直角坐标系和极坐标下)(重要)

2、体积(特别是旋转体的体积)(重要)

3、三个弧长公式(重要)

6.3 定积分在物理学上的应用(做功、水压力重要,引力了解)如1

第四篇:2016考研数学大纲解析及复习重点--函数、极限、连续

凯程考研辅导班,中国最强的考研辅导机构

2016考研数学大纲解析及复习重点--函

数、极限、连续

9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:

一、大纲要求:函数、极限、连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点

本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:

利用极限的四则运算法则、幂指函数运算、连续函数代入法

利用两个重要极限求极限

利用洛必达法则

利用等价无穷小

极限存在准则:夹逼准则,单调有界准则

利用左右极限求分段函数分段点

利用导数定义

利用定积分定义

利用泰勒公式求极限

通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016

凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)

大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。

下面我们就看看今年数学二高等数学部分的大纲要求:

一、函数、极限、连续

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会

凯程考研辅导班,中国最强的考研辅导机构

描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学

1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学

1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.所以同学们继续按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。

第五篇:【考研数学辅导班】考研数学一:高等数学考研大纲_启道

www.xiexiebang.com

【考研数学辅导班】考研数学一:高等数学考研大纲_启道

考研数学是考研公共课中的必考科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学

一、数学二;针对经济学和管理学类的为数学三。

对于很多考生来说,考研数学是一门比较难的科目,很多同学为了取得更好的分数都会选择报考研数学辅导班!但面对市场上如此多的考研数学辅导机构,应该如何选择呢?到底哪个考研数学辅导班比较好呢?考生又该如何选择呢?小编只推荐启道考研数学辅导班.距离2019考研大纲的发布还有几个月,为了便于现阶段各位考生的备考,启道小编特此整理出2018考研数学一的大纲。基本上每年的大纲不会有太大的变动,各位2019考研er可以参照去年的大纲进行复习备考。

►考试科目:高等数学、线性代数、概率论与数理统计 ►考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟.

二、答题方式

答题方式为闭卷、笔试.

三、试卷内容结构 高等数学约56% 线性代数约22% 概率论与数理统计约22%

四、试卷题型结构

单选题8小题,每小题4分,共32分 填空题6小题,每小题4分,共24分 解答题(包括证明题)9小题,共94分 ►高等数学

一、函数、极限、连续 考试内容

函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段

www.xiexiebang.com

函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立

数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

6.掌握极限的性质及四则运算法则.

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容

导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径

考试要求

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面

www.xiexiebang.com

曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容

原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用

考试要求

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、www.xiexiebang.com

旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

四、向量代数和空间解析几何 考试内容

向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程

考试要求

1.理解空间直角坐标系,理解向量的概念及其表示.

2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.

3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.

4.掌握平面方程和直线方程及其求法.

5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.

6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.

8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.

五、多元函数微分学 考试内容

多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件

多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、www.xiexiebang.com

最小值及其简单应用

考试要求

1.理解多元函数的概念,理解二元函数的几何意义.

2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.

3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.

4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数.

7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式.

9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.

六、多元函数积分学 考试内容

二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用

考试要求

1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).

3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法.

5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的www.xiexiebang.com

方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.

7.了解散度与旋度的概念,并会计算.

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).

七、无穷级数 考试内容

常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数

考试要求

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.

2.掌握几何级数与级数的收敛与发散的条件.

3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 4.掌握交错级数的莱布尼茨判别法.

5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念.

7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.

9.了解函数展开为泰勒级数的充分必要条件.

10.掌握及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.

八、常微分方程

www.xiexiebang.com

考试内容

常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法.

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.

4.会用降阶法解下列形式的微分方程:和. 5.理解线性微分方程解的性质及解的结构.

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

8.会解欧拉方程.

9.会用微分方程解决一些简单的应用问题.

以上是高数一高等数学考研大纲,希望大家能将各个知识点一一掌握。最后,启道考研数学辅导班,期待大家取得优异成绩!

下载2014年考研数学大纲高等数学上册复习重点串讲(精选5篇)word格式文档
下载2014年考研数学大纲高等数学上册复习重点串讲(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    回顾:2009考研数学大纲数一之高等数学

    海天考研 http://www.xiexiebang.com/ 回顾:2009考研数学大纲数一之高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复......

    考研数学大纲

    2012考研数学高频考点盘点 第一,微分方程。高频考点:一阶微分方程的通解或特解;可降阶方程;线性常系数齐次和 非齐次方程的特解或通解;微分方程的建立与求解。 第二,向量代数和空......

    考研数学——高等数学重难点

    给人改变未来的力量考研数学——高等数学重难点不管对数学一、数学二还是数学三的考生,高等数学都是考研数学复习中的重中之重。首先,从分值上,数学一和数学三的高等数学都占到......

    考研.数学 高等数学总结1

    中值定理及应用 一、基本概念定理 1、极值点与极值—设连续yf(x)(xD),其中x0D。若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)的极大点;若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)......

    历年考研数学真题高等数学部分考查重点

    历年考研数学真题高等数学部分考查重点 一、函数、极限与连续 1.求分段函数的复合函数; 2.求极限或已知极限确定原式中的常数; 3.讨论函数的连续性,判断间断点的类型; 4.无穷......

    2015考研数学暑期复习:高等数学之多元函数微分学

    暑期,是考研黄金复习期。同学们要多利用这段时间夯实基础,千万不要眼高手低,无论是哪本数学复习书,大家一定要去做,去看。不要一份试题放到你面前,你根本就不知道无从下手。高数中......

    考研数学概率复习重点归纳(精)五篇

    考研数学概率复习重点归纳 考研数学的概率部分也是考查的重点所在,下面万学海文的数学考研辅导专家将概率中的复习重点逐一归纳如下,以方便2011年的考生对照复习。 一、随机......

    尚考:考研数学复习重点及方法

    尚考:考研数学复习重点及方法 考研数学线性代数暑期复习重点应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知......