第一篇:华师版初一数学知识点
课堂临时报佛脚,不如课前预习好。课堂临时报佛脚,不如课前预习好。其实任何学科都是一样的,学习任何一门学科,勤奋是最好的学习方法,没有之一。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
北师大版初一下册数学知识点总结
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级下册数学复习资料
【相似变换】
※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
【平移变换】
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
初一数学方法技巧
1.请概括的说一下学习的方法
曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
2.请谈谈超前学习的好处
曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”
其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。
3.请谈谈联想与总结
曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。
4.那么我们怎样预习呢?
曰:“先说说学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。
(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
(3)对于例题及习题的处理见上面的(2)及下面的第五条。
第二篇:初一数学上册知识点华师版
伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一下册数学《三角形》知识点
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
七年级下册数学辅导复习资料
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
七年级数学绝对值教案
●教学内容
七年级上册课本11----12页1.2.4绝对值
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作?__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念?———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系 ②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
第三篇:初一数学知识点
初一数学知识点
第一册 第一章 有理数1.正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。以前学过的0以外的数叫做正数。数0既不是正数也不是负数,0是正数与负数的分界。在同一个问题中,分别用正数和负数表示的量具有相反的意义
2.有理数(1)有理数 正整数、0、负整数统称整数,正分数和负分数统称分数。整数和分数统称有理数。
(2)数轴 规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。⑵同一根数轴,单位长度不能改变。一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
(3)相反数 只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。在任意一个数前面添上“-”号,新的数就表示原数的相反数。
(4)绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。⑵两个负数,绝对值大的反而小。
3.有理数的加减法(1)有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加。⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。⑶一个数同0相加,仍得这个数。两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)
(2)有理数的减法 有理数的减法可以转化为加法来进行。有理数减法法则: 减去一个数,等于加这个数的相反数。a-b=a+(-b)
4.有理数的乘除法(1)有理数的乘法 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。两个数相乘,交换因数的位置,积相等。ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用“” ⑵数字与字母相乘,当系数是1或-1时,1要省略不写。⑶带分数与字母相乘,带分数应当化成假分数。用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即 ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数。去括号法则: 括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
(2)有理数的除法 有理数除法法则: 除以一个不等于0的数,等于乘这个数的倒数。a÷b=a•(b≠0)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
5.有理数的乘方(1)乘方 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。有理数混合运算的运算顺序: ⑴先乘方,再乘除,最后加减; ⑵同级运算,从左到右进行; ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
(2)科学记数法 把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。用科学记数法表示一个n位整数,其中10的指数是n-1。
(3)近似数和有效数字 接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
第二章 一元一次方程
1.从算式到方程(1)一元一次方程 含有未知数的等式叫做方程。只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。(2)等式的性质 等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.从古老的代数书说起——一元一次方程的讨论⑴ 把等式一边的某项变号后移到另一边,叫做移项。
3.从“买布问题”说起——一元一次方程的讨论⑵ 方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。去分母: ⑴具体做法:方程两边都乘各分母的最小公倍数 ⑵依据:等式性质2 ⑶注意事项:①分子打上括号 ②不含分母的项也要乘
4.再探实际问题与一元一次方程
第三章 图形认识初步1.多姿多彩的图形 现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。(1)立体图形与平面图形 长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。长方形、正方形、三角形、圆等都是平面图形。许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。(2)点、线、面、体 几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线。线和线相交的地方是点。几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
2.直线、射线、线段 经过两点有一条直线,并且只有一条直线。两点确定一条直线。点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。直线桑一点和它一旁的部分叫做射线。两点的所有连线中,线段最短。简单说成:两点之间,线段最短。
3.角的度量 角也是一种基本的几何图形。度、分、秒是常用的角的度量单位。把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。3.4角的比较与运算 3.4.1角的比较 从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。3.4.2余角和补角 如果两个角的和等于90(直角),就说这两个角互为余角。如果两个角的和等于180(平角),就说这两个角互为补角。等角的补角相等。等角的余角相等。
第四章 数据的收集与整理 ——收集、整理、描述和分析数据是数据处理的基本过程。
1.喜爱哪种动物的同学最多——全面调查举例 用划记法记录数据,“正”字的每一划(笔画)代表一个
数据。考察全体对象的调查属于全面调查
2.调查中小学生的视力情况——抽样调查举例 抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
3.课题学习调查“你怎样处理废电池?” 调查活动主要包括以下五项步骤:
一、设计调查问卷 ⑴设计调查问卷的步骤 ①确定调查目的; ②选择调查对象; ③设计调查问题 ⑵设计调查问卷时要注意: ①提问不能涉及提问者的个人观点; ②不要提问人们不愿意回答的问题; ③提供的选择答案要尽可能全面; ④问题应简明; ⑤问卷应简短。
二、实施调查 将调查问卷复制足够的份数,发给被调查对象。实施调查时要注意: ⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者; ⑵告诉被调查者你收集数据的目的。
三、处理数据 根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流 根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告
第二册 第五章 相交线与平行线1.相交线(1)相交线 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。(2)两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。注意:⑴垂线是一条直线。⑵具有垂直关系的两条直线所成的4个角都是90。⑶垂直是相交的特殊情况。⑷垂直的记法:a⊥b,AB⊥CD。画已知直线的垂线有无数条。过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
2.平行线(1)平行线 在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
(2)直线平行的条件 两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法: 方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
3.平行线的性质平行线具有性质: 性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。
4.平移 ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。图形的这种移动,叫做平移变换,简称平移。
第六章平面直角坐标系
1.平面直角坐标系(1)有序数对 有顺序的两个数a与b组成的数对,叫做有序数对。(2)平面直角坐标系平
面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。平面上的任意一点都可以用一个有序数对来表示。建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
2.坐标方法的简单应用(1)用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下: ⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。(2)用坐标表示平移 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。第七章 三角形1.与三角形有关的线段(1)三角形的边 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。(2)三角形的高、中线和角平分线 7.1.3三角形的稳定性 三角形具有稳定性。
2.与三角形有关的角(1)三角形的内角 三角形的内角和等于180。(2)三角形的外角 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。
3.多边形及其内角和(1)多边形 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的对角线公式: 各个角都相等,各条边都相等的多边形叫做正多边形。(2)多边形的内角和 n边形的内角和公式:180(n-2)多边形的外角和等于360。
第八章 二元一次方程组
1.二元一次方程组 含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
2.消元 由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。3.再探实际问题与二元一次方程组
第九章 不等式与不等式组
1.不等式(1)不等式及其解集 用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。(2)不等式的性质 不等式有以下性质: 不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。
2.实际问题与一元一次不等式 解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解
一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。
3.一元一次不等式组 把两个不等式合起来,就组成了一个一元一次不等式组。几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。
第四篇:初一数学知识点总结
初一上册
四个章节:有理数、整式的加减 ;一元一次方程 ;图形的初步认识
第一章有理数(正负数、有理数、有理数的加减法、乘除法、乘方)(工具)
1、正负数:把0以外的数分为正数和负数,起源于表示两种相反意义的量
2、有理数: 引出数轴
①可以写成分数的形式,叫做有理数②数轴的认识③相反数④绝对值
3、有理数的加减 —— 加法、减法法则 ; 加法交换律、结合律
4、有理数的乘除—— 乘法交换律结合律分配率
注意:有理数的混合运算
5、有理数的乘方
(科学计数)
第二章整式的加减(工具)
整式——船速
系数次数单项式多项式
第三章一元一次方程
等式的性质
第四章图形初步认识(工具)
初一下册
六个章节:
相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理、描述
第五章相交线与平行线(相交线、平行线、性质、平移)
各种角的定义:邻补角、内错角、对顶角、同旁内角各角之间的关系
平行线及其判定、性质非常重要证明题
平移:主要应用于几何部分
第六章平面直角坐标系
坐标系的画法——引入的概念有序数对
坐标方法的简单应用——航海问题
第七章三角形
与三角形有关的线段、角—— 画图找规律
多边形的内角和、外角和
第八章二元一次方程组
定义是什么
重要的是二元一次方程组的解法——消元法:加减消元法
应用方面也非常重要
第九章不等式与不等式组
不等式——不等式的解、解集、一元一次不等式、不等式的性质(3种)
应用题部分
一元一次不等式组
第十章数据的收集、整理、描述——(本章主要是工具)
直方图部分常应用
第五篇:初一数学上册知识点
初一数学上册知识点:整式的加减
本文为大家介绍的是初一数学上册知识点,是有关整式的加减法的,希望同学们熟记这些公式并能灵活的运用。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.