初一数学知识点:推理与证明

时间:2019-05-14 14:16:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学知识点:推理与证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学知识点:推理与证明》。

第一篇:初一数学知识点:推理与证明

数学题 http://dayi.dezhi.com/shuxue

初一数学知识点:推理与证明

按规律写数

[ 初一数学]题型:填空题

一列数:0,1,2,3,6,7,14,15,30,____, _____, ____,这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()

A.31,32,64B.31,62,63C.31,32,33D.31,45,46

问题症结:找不到突破口,请老师帮我理一下思路

考查知识点:

归纳与类比推理

难度:中

解析过程:

解:依题意得:接下来的三组数为31,62,63.

选B

同学你好如有疑问可以讨论如我在线会及时回复。

祝你学习进步。

规律方法:

本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差

1.由此可解出接下来的3个数

找规律填数字

[ 初三数学]题型:填空题

知识点总结 http://www.xiexiebang.com/knowledge

加过程,在证明中添加的辅助线可作为已知条件参与证明。
常见考法

(1)灵活运用基础知识进行推理,运用综合法、分析法,从条件和结论两方面出发进行证明;(2)在中考中,考查类比推理,先设计一个条件、结论明确的问题,以此作为类比对象,然后再对其改造。比如,图形的变式,添加某些新的属性或改变某些属性,通过与原有问题的比较,推测新问题的结论与解 决方法。
误区提醒

(1)不能准确把握几何公理、定理的内容;(2)数学语言、符号语言、文字语言在相互转化中出现表述错误。

以上内容来自,转载请注明出处。

知识点总结 http://www.xiexiebang.com/knowledge


第二篇:《推理与证明》知识点

《推理与证明》

知识结构

一、推理

1.推理 :前提、结论

2.合情推理:

合情推理可分为

归纳推理和类比推理两类:

(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理.3.演绎推理:

从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。

重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明

题型1用归纳推理发现规律

1、;„.对于任意正实数a,b,成立的一个条件可以是____.点拨:前面所列式子的共同特征特征是被开方数之和为22,故ab222、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂

巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图.其中第一个图有1个蜂巢,第二个图

有7个蜂巢,第三个图有19个蜂巢,按此规律,以

f(n)表示第n幅图的蜂巢总数.则f(4)=_____;f(n)=___________.【解题思路】找出f(n)f(n1)的关系式

[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837

f(n)1612186(n1)3n23n

1【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系

题型2用类比推理猜想新的命题

[例]已知正三角形内切圆的半径是高的【解题思路】从方法的类比入手

[解析]原问题的解法为等面积法,即S1,把这个结论推广到空间正四面体,类似的结论是______.3111ah3arrh,类比问题的解法应为等体积法,22

31111VSh4Srrh即正四面体的内切球的半径是高 334

4【名师指引】(1)不仅要注意形式的类比,还要注意方法的类比

(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

二、直接证明与间接证明

三种证明方法:

综合法、分析法、反证法

反证法:它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:

(1)假设命题的结论不成立;

(2)根据假设进行推理,直到推理中导出矛盾为止

(3)断言假设不成立

(4)肯定原命题的结论成立

重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题

考点1综合法

在锐角三角形ABC中,求证:sinAsinBsinCcosAcosBcosC

[解析]ABC为锐角三角形,AB

2A

2B,ysinx在(0,)上是增函数,sinAsin(B)cosB 2

2同理可得sinBcosC,sinCcosA 

sinAsinBsinCcosAcosBcosC

考点2分析法

已知ab0,求证abab

[解析]要证aab,只需证(ab)2(ab)2

即ab2abab,只需证bab,即证ba

显然ba成立,因此aab成立

【名师指引】注意分析法的“格式”是“要证---只需证---”,而不是“因为---所以---”

考点3反证法已知f(x)axx2(a1),证明方程f(x)0没有负数根 x

1【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾

[解析]假设x0是f(x)0的负数根,则x00且x01且ax0x02 x01

0ax0101x021,解得x02,这与x00矛盾,2x01

故方程f(x)0没有负数根

【名师指引】否定性命题从正面突破往往比较困难,故用反证法比较多

三、数学归纳法

一般地,当要证明一个命题对于不小于某正整数N的所有正整数n都成立时,可以用以下两个步骤:

(1)证明当n=n0时命题成立;

(2)假设当n=k(

第三篇:推理与证明知识点

第十二讲推理与证明

数学推理与证明知识点总结:

推理与证明:①推理是中学的主要内容,是重点考察的内容之一,题型为选择题、填空题或解答题,难度为中、低档题。利用归纳和类比等方法进行简单的推理的选择题或填空题在近几年的中考中都有所体现。②推理论证能力是中考考查的基本能力之一,它有机的渗透到初中课程的各个章节,对本节的学习,应先掌握其基本概念、基本原理,在此基础上通过其他章节的学习,逐步提高自己的推理论证能力。第一讲 推理与证明

一、考纲解读:

本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。高考对直接证明与间接证明的考查主要以直接证明中的综合法为主,结合不等式进行考查。

二、要点梳理:

1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般性命题。

2.类比推理的一般步骤:

(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。

3.演绎推理

三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出判断。

4.直接证明与间接证明

①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。

②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。分析法的思维特点是:执果索因。

③反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的,即为反证法。一般地,结论中出现“至多”“至少”“唯一”等词语,或结论以否定语句出现,或要讨论的情况复杂时,常考虑使用反证法。

主要三步是:否定结论 → 推导出矛盾 → 结论成立。

实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。

④数学归纳法:一般地,证明一个与自然数n有关的命题P(n),有如下步骤:(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。/ 1

第四篇:数学《推理与证明(文科)

文科数学《推理与证明》练习题

2013-5-10

1.归纳推理和类比推理的相似之处为()

A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确

2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了()

A.归纳推理B.类比推理C. “三段论”,但大前提错误D.“三段论”,但小前提错误

3.三角形的面积为S1abcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理,2可得出四面体的体积为()

111abcB、VShC、VS1S2S3S4r(S1,S2,S3,S4分别为四面体的四33

31个面的面积,r为四面体内切球的半径)D、V(abbcac)h,(h为四面体的高)3A、V

4.当n1,2,3,4,5,6时,比较2和n的大小并猜想()

n2n2n2n2A.n1时,2nB.n3时,2nC.n4时,2nD.n5时,2n n

25.已知数列an的前n项和为Sn,且a11,Snn2an nN,试归纳猜想出Sn的表达式为()*

A、2n2n12n12nB、C、D、n1n1n1n

26.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a2b,2bc,2c3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为().

A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7

7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为

()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

8.下面使用类比推理恰当的是.①“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”

②“(a+b)c=ac+bc”类推出“abab=+” ccc

abab=+(c≠0)” ccc

nnn③“(a+b)c=ac+bc”类推出“nnn④“(ab)=ab”类推出“(a+b)=a+b”

9.“AC,BD是菱形ABCD的对角线,AC,BD互相垂直且平分。”补充以上推理的大前提是。

10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是。

11.补充下列推理的三段论:

(1)因为互为相反数的两个数的和为0,又因为a与b互为相反数且所以b=8.(2)因为又因为e2.71828是无限不循环小数,所以e是无理数.

12.在平面直角坐标系中,直线一般方程为AxByC0,圆心在(x0,y0)的圆的一般方程为(xx0)2(yy0)2r2;则类似的,在空间直角坐标系中,平面的一般方程为________________,球心在(x0,y0,z0)的球的一般方程为_______________________.13.在平面几何里,有勾股定理:“设ABC的两边AB、AC互相垂直,则ABACBC。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”.14.从1=1,14(12),149123,14916(1234)„,概括出第n个式子为.

15.对函数f(n),nN*,若满足f(n)222n100n3,试由f104,f103和ffn5n100

f99,f98,f97和f96的值,猜测f2f3116.若函数f(n)k,其中nN,k是3.1415926535......的小数点后第n位数字,例

如f(2)4,则f{f.....f[f(7)]}(共2007个f)17.设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).18.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边

形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则

f(4)=_____;f(n)=_____________.

19.在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式.:

20.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○„,按这种规律往下排,那么第36个圆的颜色应是.21.求垂直于直线2x6y10并且与曲线yx3x5相切的直线方程

32322.已知函数f(x)ax3(a2)x26x3 2

(1)当a2时,求函数f(x)极小值;

(2)试讨论曲线yf(x)与x轴公共点的个数。

《2.1合情推理与演绎推理》知识要点梳理

知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.

知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。其中归纳推理和类比推理是最常见的合情推理。

1.归纳推理

(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。

(2)一般模式:部分整体,个体一般

(3)一般步骤:

①通过观察个别情况发现某些相同性质;

②从已知的相同的性质中猜想出一个明确表述的一般性命题;

③检验猜想.(4)归纳推理的结论可真可假

2.类比推理

(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊

(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:

①找出两类对象之间的相似性或一致性;

②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);

③检验猜想.(5)类比推理的结论可真可假

知识点三:演绎推理

(1)定义:从一般性的原理出发,按照严格的逻辑法则,推出某个特殊情况下的结论的推理,叫做演绎推理.简言之,演绎推理是由一般到特殊的推理.

(2)一般模式:“三段论”是演绎推理的一般模式,常用的一种格式

① 大前提——已知的一般原理;

② 小前提——所研究的特殊情况;

③ 结论——根据一般原理,对特殊情况作出的结论.(3)用集合的观点理解“三段论”若集合的所有元素都具有性质,是的子集,那么中所有元素都具有性质

(4)演绎推理的结论一定正确

演绎推理是一个必然性的推理,因而只要大前提、小前提及推理形式正确,那么结论一定是正确的,它是完全可靠的推理。

合情推理与演绎推理(文科)答案

1——7.D C C D A C A8.③

9.菱形对角线互相垂直且平分。10.②③①。11.(1)a=-8;(2)无限不循环小数都是无理数

12.AxByCzD0;(xx0)2(yy0)2(zz0)2r2;

13.SBCDSABCSACDSABD;

14.122222223242(1)n1n2(123n);

18.【解题思路】找出f(n)f(n1)的关系式 15.97,98;16.1;17.5; n+1)(n-2);

[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837

f(n)1612186(n1)3n23n1

【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系.19.【解析】:在等差数列an中,由a100,得a1a19a2a18ana20n

an1a19n2a100

所以a1a2ana190即a1a2ana19a18an1

又a1a19,a2a18,a19nan1

a1a2ana19a18an1a1a2a19n

若a90,同理可得a1a2ana1a2a17n

相应地等比数列bn中,则可得:b1b2bnb1b2b17nn17,nN*

【点评】已知性质成立的理由是应用了“等距和”性质,故类比等比数列中,相应的“等距积”性质,即可求解。

20.白色

21.解:设切点为P(a,b),函数yx33x25的导数为y'3x26x

切线的斜率ky'|xa3a26a3,得a1,代入到yx3x5

得b3,即P(1,3),y33(x1),3xy6032

22.解:(1)a2f'(x)3ax23(a2)x63a(x)(x1),f(x)极小值为f(1) 2a

2(2)①若a0,则f(x)3(x1),f(x)的图像与x轴只有一个交点;

②若a0,f(x)极大值为f(1)a20,f(x)的极小值为f()0,2a

f(x)的图像与x轴有三个交点;

③若0a2,f(x)的图像与x轴只有一个交点;

'2④若a2,则f(x)6(x1)0,f(x)的图像与x轴只有一个交点;

⑤若a2,由(1)知f(x)的极大值为f()4(点; 2a1323)0,f(x)的图像与x轴只有一个交a44

综上知,若a0,f(x)的图像与x轴只有一个交点;若a0,f(x)的图像与x轴有三个交点。

第五篇:高考数学推理与证明

高考数学推理与证明

1.(08江苏10)将全体正整数排成一个三角形数阵:35 68 9 10

。。。

按照以上排列的规律,第n行(n3)从左向右的第3个数为▲.n2n6【答案】 2

【解析】本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n

n2nn2n-1)个,即个,因此第n 行第3 个数是全体正整数中第+3个,即为22

n2n6. 2

2.(09江苏8)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为▲.【解析】 考查类比的方法。体积比为1:8

3.(09福建15)五位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;

②若报出的数为3的倍数,则报该数的同学需拍手一次

已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.【答案】:5

解析:由题意可设第n次报数,第n1次报数,第n2次报数分别为an,an1,an2,所以有anan1an2,又a11,a21,由此可得在报到第100个数时,甲同学拍手5次。

4.(09上海)8.已知三个球的半径R1,R2,R3满足R12R23R3,则它们的表面积S1,S2,S3,满足的等量关系是___________.

【解析】S14R1S122

S22R2S32R3,即R1=R1,S1

2,R2=S2

2,R3=S3

2,由R1

2R23R3

5.(09浙江)15.观察下列等式:

1C5C55232,159C9C9C92723,15913C13C13C13C1321125,1593C1C17C17C171C71727125,1

………

由以上等式推测到一个一般的结论:

1594n1对于nN,C4n1C4n1C4n1C4n1*

答案:24n1122n1。【解析】这是一种需类比推理方法破解的问题,结论由二项构成,n

第二项前有1n,二项指数分别为24n1,22n1,因此对于nN

n*,1594n124n1122n1 C4n1C4n1C4n1C4n1

下载初一数学知识点:推理与证明word格式文档
下载初一数学知识点:推理与证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高二数学推理与证明知识点与习题(共五篇)

    推理与证明★知识网络★1.推理 :前提、结论2.合情推理:合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特......

    推理与证明

    第3讲 推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从......

    推理与证明

    推理与证明学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教......

    推理与证明

    推理与证明1. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂......

    推理与证明

    “推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。“推理与证明”是数学的基本思维过程,也是人们学习和生活中......

    推理与证明

    浅谈我对推理与证明的几点认识 初中数学中,推理与证明是非常重要的,主要是培养学生的逻辑思维能力,推理与证明是人类认识世界的重要手段。中学数学教育的一个重要职能是培养学......

    初一数学知识点

    初一数学知识点 第一册 第一章 有理数1.正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与......

    推理与证明练习

    推理与证明课后练习一、选择题1.观察下列各式:11,2343,345675,456789107,以得出的一般结论是A.n(n1)(n2)B.n(n1)(n2)C.n(n1)(n2)D.n(n1)(n2)(3n2)n2(3n2)(2n1)2 (3n1)n2 2222,可(3n1)......