第一篇:大一期末高数(同济 第六版)复习提纲
高数一期末考试复习大纲
题型: 解答题(共12小题)
类型: 求极限、求导数及微分(包括导数的应用)、求不定积分、求定积分(包括定积分的应用)、求解微分方程
具体知识点
第一章
数列的极限、函数的极限(以上只需掌握求极限方法、极限定义了解即可)无穷小与无穷大、极限运算法则、极限存在准则,两个重要极限 无穷小的比较、函数的连续性、连续函数的运算和初等函数的连续性
第二章
导数定义及几何意义、函数的求导法则、高阶导数、隐函数导数、参数方程所确定的函数的导数(会求二阶导数)、函数的微分公式
第三章
洛必达法则、函数的单调性与曲线的凹凸性、函数的极值与最值
第四章求不定积分(换元法、分部积分法)、有理函数的积分
第五章微积分基本公式、定积分的换元法和分部积分法
第六章定积分在几何学上的应用
第七章可分离变量微分方程、齐次方程、一阶线性微分方程
第二篇:高数复习提纲
第一章
1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、五章不定积分:
1、两类换元法
2、分部积分法(注意加C)定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第三篇:高数(上)(复习提纲)
《高等数学I》复习提纲
一、基本概念、公式、法则:
“极限,连续,导数,微分,积分”的定义、性质--------基础
1、导数(微分)部分:无穷小之间的比较(高阶、同阶、等价、k阶),常见的等价无穷小(x→0),两个重要极限,初等函数的连续性,闭区间上连续函数的介值定理,基本初等函数的求导公式,复合函数求导的链式法则,求极限的洛必达法则,微分中值定理(Rolle、Lagrange、Cauchy),泰勒公式(特别地,麦克劳林公式),函数的单调性与凹凸性,极值存在的必要条件与充分条件,曲线的水平(竖直)渐近线,平面曲线(直角坐标系、极坐标系、参数方程)的曲率公式、弧微分公式;求极限夹逼准则,可导与连续的关系,可导与可微的关系。
2、积分部分:微积分基本定理(积分上限函数的导数、牛顿-莱布尼茨公式),积分基本性质,基本积分表,换元积分法和分部积分法,弧长公式,一阶线性非齐次微分方程的常数变易法,二阶常系数线性非齐次微分方程特解形式。
二、重要知识点:
1、求函数(可能含有变上、下限的积分)的极限;
2、判断函数在某点的连续性、可导性(注意分段函数);
3、利用介值定理证明函数存在(唯一)零点或者方程有(唯一)根;
4、求函数的一阶、二阶导数以及两个特殊函数积的高阶导数;
5、隐函数以及由参数方程所确定的函数的导数(一阶、二阶);
6、求函数的微分;
7、函数在某点的泰勒展式(一般由已知函数的泰勒展式间接求出);(熟记常见几个函数的麦克劳林公式:ex,ln(1x),(1x),sinx,cosx)
8、利用导数判定函数的单调性,求极值与最值、拐点,证明恒等式或不等式;
9、利用微分中值定理证明恒等式、不等式或者一阶导数有零点;
10、求不定积分与定积分;
11、判定反常积分的敛散性;
12、应用定积分求平面图形的面积、立体的体积,简单的物理应用;(熟悉常见的几种曲线图形:圆、心形线、星形线、摆线)
13、求解一阶微分方程(可分离变量的、齐次的、线性齐次的、线性非齐次的);
14、求解可降阶的二阶微分方程(形如yfx,y,yfy,y);
15、求解二阶常系数线性齐次(非齐次)微分方程的通解与特解。各知识点的复习请参考练习册上的题型,认真作练习册上每一道题!
第四篇:高数1复习提纲
高等数学1复习提纲(2011年下期)
题型:选择题、填空题、计算题、应用题、(5420)(5420)(6636)(2816)
证明题(188)
一、函数与极限
1、函数的定义、性质及定义域的求(教材:P214、10;练习册:P1,一;P11一)
2、函数极限的计算:两个重要极限、无穷小的比较。
(教材:P47例5;P561;P58例2;P591;练习册:P5,一、二;P1
2二、三(2)(3)(4)(7))
3、函数的连续性
(教材:P652;P706;P74总习题一
T
;
P7510;练习册:P7,一、三、四;P13五)
4利用闭区间上连续函数的性质证明
(教材:P72例1;P74习题1—10T2、3;
P7613;练习册:P9,一、三、四)
二、微分学
1、导数的概念、几何意义(教材:P866;P8713、14、15;练习册:P142、复合函数求导(教材:P986、11;练习册:P16,一、二)
3、高阶导数(教材:P1031;练习册:P17一(3)(4))
4、中值定理证明(教材:P1346、8、9、10;练习册:P2
3六、七;P32六)
5、用洛必达法则求极限(教材:P138例9;P1381;练习册:P2
4一、二)
6、函数的极值点与拐点的判定(教材:P15412、;P1822
练习册:P26一、二一、四)))
(教材:P162例7;P1638、9;P16415、16;练习册:P28一
7、函数的最大值最小
三、积分学
1、不定积分的概念(教材:P187关系(1)(2);练习册:P3
3一、二、四
2、求不定积分(换元法、分部积分)(教材:P198例14;P2072
167111324
3032344143)
;P209例2、3、9;P2131,6,2
4练习册:P34二;P35一;P36一,二,三)
3、定积分的计算(教材:P24364练习册:P41
58
;P247例5;P251例11;P2531
一.)
8101819202122,7
12
;
三;P43一;P444、反常积分的计算
(教材:P256例1、2;P258例4;P2601练习册:P4
5一、三;
37
;
P46一910;二347)
5、求平面图形的面积和旋转体的体积(教材:P274例1、2;P278
例6、7;P2841、12;练习册:P49一12;P50一.)
第五篇:高数下册总结(同济第六版)
高数同济版下 高数(下)小结
一、微分方程复习要点
解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解.一阶
微分方程的解法小结:
高数同济版下 二阶微分方程的解法小结:
非齐次方程的特解的形式为:
高数同济版下 主要 一阶
1、可分离变量方程、线性微分方程的求解;
2、二阶常系数齐次线性微分方程的求解;
3、二阶常系数非齐次线性微分方程的特解
二、多元函数微分学复习要点
一、偏导数的求法
1、显函数的偏导数的求法 时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运 用的是一元函数的求导法则与求导公式
2、复合函数的偏导数的求法 设,,则,几种特殊情况: 1),,则2),则 3),则
3、隐函数求偏导数的求法 1)一个方程的情况,设是由方程唯一确定的隐函数,则,高数同济版下 或者视,由方程两边同时对 2)方程组的情况 由方程组.两边同时对求导解出即可
二、全微分的求法 方法1:利用公式 方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:
三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为,则当时,在曲线上对应 处的切线方向向量为,切线方程为 法平面方程为 2)若曲面的方程为,则在点处的法向,切平面方程为 法线方程为 高数同济版下 若曲面的方程为,则在点处的法向,切平面方程为 法线方程为
四、多元函数极值(最值)的求法 1 无条件极值的求法 设函数在点的某邻域内具有二阶连续偏导数,由,解出驻点,记,1)若 时有极小值 2)若,则在点处无极值 3)若,不能判定在点处是否取得极值,则在点处取得极值,且当时有极大值,当 2 条件极值的求法 函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法 作辅助函数,其中为参数,解方程组 高数同济版下 求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法 若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值.主要
1、偏导数的求法与全微分的求法;
2、空间曲线的切线及空间曲面的法平面的求法
3、最大值与最小值的求法
三、多元函数积分学复习要点 七种积分的概念、计算方法及应用如下表所示:
高数同济版下 高数同济版下 *定积分的几何应用 定积分应用的常用公式:(1)面积(2)体积(型区域的面积)(横截面面积已知的立体体积)(所围图形绕 的立体体积)(所围图形绕 体体积)(所围图形绕轴 的立体体积)