第一篇:植物生理学实验预习报告
植物生理学实验预习报告
班级:12级农业资源班
成员:杨存虎(12012243270)江凯(12012243246)张渊浩(12012243301)孙旭(12012243213)
一 实验名称
低温胁迫对小麦幼苗的影响研究。
二 实验目的(1)验证低温胁迫对小麦幼苗生长造成的生理伤害,并以各项生理
指标定定性的检测出来。
(2)掌握各项生理指标测定的原理和方法。
三 实验原理:
小麦在整个生长发育过程中,需要外界有一个适宜的温度范围。当外界气温和地温明显地狱小麦所需的适宜温度,接近或超过其在这一时期生理状态所能忍受的极限最低温就会造成胁迫和伤害。
(1)目前。对小麦抗寒性的研究 已总结出许多度量指标,但细胞膜是对逆境最敏感的原始反应部位,低温胁迫时,被伤害的关键部位是膜系统。
(2)低温胁迫对膜破坏的程度,即对膜透性的影响,在研究小麦抗寒性方面是至关重要的指标。目前电导法已成为小麦抗性栽培、育种上鉴定小麦抗逆性强弱的一个方法。
(3)过氧化物酶是植物保护酶之一,它和超氧化物歧化酶(S O
D)、过氧化氢酶(C A T),等组成植物的防御系统。因此过氧化物
酶的活性也可反映小麦的抗寒性。
三 实验材料与设计
(1)实验材料
小麦(种子由实验室提供)
(2)实验设计
采土:5月11日下午
播种:5月11日晚上(将沙壤土完全浸湿 等待播种 将已浸泡24小时的小麦种子播下)
生长时期:预定5月11日—5月21日
逆境处理:
①设置对照组和处理组:分别将花盆编号为A B C,选取C号为对照处理,让其在正常土壤下正常生长,A B号分别至于不同温度下进行低温处理。
②处理时间:处理6h后取出,开始分别测量对照组和处理组的各项指标。
四测定指标
(一)电导法测定植物组织抗逆性
(二)植物组织过氧化物酶活性的测定材料与方法
1.1 材料
小麦
1.2 方法
(一)电导法测定植物组织抗逆性
1、将小麦叶片置于-20摄氏度冰箱中冷冻处理10分钟作为处理,另一份小麦叶片置于室温做对照。
2、各加20ml蒸馏水,用注射器抽气使叶片下沉入水下,浸泡10分钟后测电导率(S1),用微波炉煮沸后测电导率(S2).(二)植物组织过氧化物酶活性的测定
实验材料:2.9ml0.05M磷酸缓冲液;1ml 2%H2O2;
1.0ml 0.05M愈创木酚和0.1ml酶液。
实验步骤:
1、酶液的制备
取0.5g叶片、加入少量磷酸缓冲液研磨至匀浆,转入离心管中,4000r、离心10min,然后取上清液定容至10ml,备用。
2、过氧化物酶活性的测定
用加热煮沸5min后的酶液作对照,反应体系加入酶液后,立即于37摄氏度水浴中保温15min,并加入20ml 20%的三氯乙酸终止反应,然后于470nm波长下测定吸光值。
1.2 生理指标的测定方法
外渗电导率测定:电导法
植物组织受到逆境伤害时,由于膜的功能受损或结构破坏,而使其透性增大,细胞内的盐类或有机物将有不同程度生出,从而引起组织浸泡液电导率发生变化。
通过测定外渗液电导率的变化,就可以反映出质膜的伤害程
度和所测材料抗逆性的大小,伤害越重,外渗越多,电导率的值也就越大。
过氧化物活性测定:愈创木酚法
在过氧化物酶的催化下,过氧化氢将愈创木酚氧化成茶褐色产物。此产物在470nm处有最大吸光值。故通过测470nm下的吸光值变化测定过氧化物酶的活性。结果与分析
公式:
L=(St1-S0)/(St2-S0)伤害度(%)=(Lt-Lck)/(1-Lck)×100
过氧化物酶活性=(ΔA470×Vt)/(W×Vs×0.01×t)
2.1外渗电导率的变化
冷冻后的小麦叶片的外渗电导率比室温的要大;煮沸后的小麦叶片的外渗电导率比煮沸前的要大。也就说明当植物受到逆境影响时,如高温或低温、干旱、盐渍、病原菌侵染后,细胞膜遭到破坏,膜透性增大,从而使细胞内的电解质外渗,以致植物细胞浸提液的电导率增大。由此可得出,电导率越大,表明小麦叶片受到伤害的程度也越大。
2.2过氧化物酶活性的变化
经低温处理过的小麦叶片过氧化酶活性低于室温下测得的小麦叶片的过氧化酶活性,但却并未完全消失。而过氧化酶是植物体内普遍存在的、活力较高的一种酶,它与呼吸作用、光合作用及生长素的氧化等都有密切关系,在植物生长发育过程中,它的活力不断发
生变化,因此测量这种酶,可以反映某一时期植物内代谢的变化。△OD470越大,说明对应的过氧化物酶活力越高,反之亦然。
五 实验结果预测讨论
抗寒性研究一直是小麦抗逆性研究中的热点,当小麦叶片受到低温胁迫后,细胞膜发生了变化,这就破坏了膜的结构,膜透性增大,从而使细胞内的电解质外渗,以致小麦浸泡的电导率增大。所测得的电导率越大,植物叶片的抗寒性越弱,植物组织所受伤害越大;电导率越小,植物叶片的抗寒性越强,伤害越小。过氧化物酶是一种由一单一肽链与卟啉构成的血红素蛋白。同工酶普遍存在于植物体各组织中,是一种对环境条件十分敏感的氧化酶类。低温胁迫下,植物叶片中的过氧化物酶的活性越大,膜的稳定性越强,植物的抗寒性越强;若过氧化物酶的活性越小,则植物膜的稳定性越弱,伤害越大。本实验以小麦叶片为材料,研究低温胁迫对小麦叶片的外渗液电导率和过氧化物酶的活性影响,结果表明,小麦叶片具有一定抗寒性。
第二篇:植物生理学实验小结
生态工程学院
植物生理学期中设计性试验小结
题目探究不同pH对菠菜气孔开度的影响 班级
2012及生物本科班
队员 符广勇 赵英松 罗昌琴 聂艳梅 王伟 李茂吉
指导老师 胥老师
完成 日 期
2014年12月27日
实验小结
菠菜(Spinacia oleracea L.)又名波斯菜、赤根菜、鹦鹉菜等,属苋科藜亚科菠菜属,一年生草本植物。植物高可达1米,根圆锥状,带红色,较少为白色,叶戟形至卵形,主要食用其叶子和根,味道鲜美,是很受欢迎的一道菜,而菠菜要长得好,主要靠其光合作用的强度,光合作用与气孔有密切的关系,而影响气孔开度的因素及多,影响气孔开放的渗透物质代谢有三条途径:
1、伴随着K+的进入,苹果酸和Cl-也不断地进入,以维持电中性;
2、淀粉水解或通过卡尔文循环形成的中间产物转变为蔗糖,同时也形成苹果酸;
3、叶肉细胞产生的蔗糖,从之外提进入保卫细胞。影响气孔的因素有蓝光、温度、CO2、脱落酸。在一定程度上影响着气孔的开闭。以上的气孔运动机理中K+中提到pH的升高会会驱动K离子从表皮细胞经过保卫细胞质膜上的钾通道进入保卫细胞,在进入液泡。脱落酸会引起胞质pH升高,激活外向钾离子通道,导致钾离子从保卫细胞流出,引起保卫细胞丧失膨压,气孔变关闭。由此可见pH会对气孔的开度可能会有一定的影响,因此本实验研究的是不同pH对菠菜叶气孔开度的影响,以为农业种植及教学提供一定的理论依据。
操作过程:整理好一切实验材料之后便按照以下程序进行实验
1、配置pH为3、4、5、6、7的溶液各50mL。
2、在6个培养皿中分别加入50mL pH为3、4、5、6、7的溶液以及相同体积的蒸馏水
3、取校园植物(菠菜叶)撕去下表皮若干分别放在上述6个培养皿中。
4、培养皿放入25℃光照培养箱中,培养1个小时,蒸馏水做对照组。
5、分别在显微镜下观察气孔的开度。
6、记录
实验结果:
实验结果显示:随着pH的升高,气孔趋于逐渐关闭,在pH=5时气孔开得比较大,而蒸馏水浸泡的菠菜表皮气孔多数关闭有少数张开,但经过pH处理过后的叶片表皮气孔张开的个数明显多于蒸馏水处理的张开个数。
实验结果显示表明:随着pH的升高缓冲液中Na+浓度也逐渐升高,但是气孔的开度并没有随着Na+浓度的升高而增大这说明此时影响气孔开度的因素主要是pH,而蒸馏水浸泡的菠菜表皮气孔多数关闭有少数张开,但经过pH处理过后的叶片表皮气孔张开的个数明显多于蒸馏水处理的张开个数。这表明Na+可能是促进气孔开度因素。
实验感想及建议:
感想:本次实验中,收获了不少东西,其中有好不足,好的是:首先,懂得了专学习理论的知识是不够的,还要懂得怎样将其运用到实践中去,实践总是检验真理的唯一标准,要把理论与实践相结合,才能懂得其重要的意义。其次,提高了我们动手操作的能力及实践的基础,培养了我们严谨的科学精神及意识。最后,小组的同学都很努力,很刻苦勤劳,一起加入这个实验的研究中,发现问题,一起解决问题,提高了我们的团队精神。不足的是本实验还有很多的不足之处,比如本实验中(1)只设计了酸及中性的pH梯度,而没有设置碱性的pH梯度.(2)每个视野中只测了10个保卫细胞的气孔开闭情况,犹于时间问题,我们只测了10组,(3)取的材料过于单一。
建议:(1)从同一个视野同一张叶表皮中看到保卫细胞大小不一,有的很大有的又比较小,所以建议取表皮时,应取同一片叶子的对称部位。
(2)撕取表皮时要薄,便于观察。
(3)在进行培养皿培养时,要严格控制时间,时间过高过低度可能影响观察结果。
第三篇:实验预习报告格式
实验预习报告格式
实验名称
一、实验目的:参考“DSP实验项目”及ICETEK-VC5416-A评估板及教学实验箱实验指导书。
二、实验设备:
ICETEK-VC5416-A实验箱、装有CCS软件的PC机。
三、实验要求:
1.实验前,仔细阅读教材相关内容,设计能够完成实验内容的实
验步骤,写好实验预习报告。
2.实验后,完成实验报告,其中的实验步骤应是经过实验证明为
正确的步骤。
四、实验内容:参考“DSP实验项目”及ICETEK-VC5416-A评估板及教学实验箱实验指导书。
五、实验步骤:自己设计。
六、程序清单:
第四篇:实验预习报告及报告格式
实验预习报告
实验名称
一.实验目的二.实验原理图
三.实验内容及数据记录
一.实验目的二.实验设备及仪器
三.实验原理图
四.实验内容及数据记录和处理
五.实验分析实验报告 实验名称
第五篇:植物生理学总结
植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。
一、光合速率及表示单位
光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2·m-2·s-1(以前用mg·dm-2·h-1表示,1μmol·m-2·s-1=1.58mg·dm-2·h-1)、μmol O2·dm-2·h-1 和mgDW(干重)·dm-2·h-1。CO2吸收量用红外线CO2气体分析仪测定,O2释放量用氧电极测氧装置测定,干物质积累量可用改良半叶法等方法测定(请参照植物生理实验指导书)。有的测定光合速率的方法都没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,因而所测结果实际上是表观光合速率(apparent photosynthetic rate)或净光合速率(net photosynthetic rate,Pn),如把表观光合速率加上光、暗呼吸速率,便得到总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)。
二、内部因素
(一)叶片的发育和结构
1.叶龄 新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低。(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。
依据光合速率随叶龄增长出现“低—高—低”的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合速率往往最高;而在结实期,叶片的光合速率应自上而下地衰减。
2.叶的结构 叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传因素控制,另一方面还受环境影响。
C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因而阳生叶有较高的光合速率。
同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶的中下部低,这是因为叶尖部较薄,且易早衰的缘故。
(二)光合产物的输出
光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶sucrose phosphate synthetase,SPS)的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体,另一方面,由于淀粉粒对光有遮挡,从而直接阻碍光合膜对光的吸收。
三 外部因素
(一)光照
光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。
1.光强
(1)光强-光合曲线 图4-26是光强-光合速率关系的模式图。
图4-26 光强-光合曲线图解
图4-27 不同植物的光强光合曲线
暗中叶片不进行光合作用,只有呼吸作用释放CO2(图4-26中的OD为呼吸速率)。随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点(light compensation point)。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点(light saturation point),此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。用比例阶段的光强-光合曲线的斜率(表观光合速率/光强)可计算表观光合量子产额。
由图4-27,表4-5可见,不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片接受到的光强往往会超过光饱和点,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点为40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。
植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2才能保证光合作用的顺利进行。
在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高 ②PEPC对CO2的亲和力高,以及具有“CO2泵”,所以空气中CO2浓度通常不成为C4植物光合作用的限制因素。
(2)强光伤害—光抑制 光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制(photoinhibition of photosynthesis)。
晴天中午的光强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑制产生的原因及其防御系统引起了人们的重视。
光抑制机理 一般认为光抑制主要发生在PSⅡ。按其发生的原初部位可分为受体侧光抑制和供体侧光抑制。受体侧光抑制常起始于还原
1型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2→P680 + 1O2)形成单线态氧(O2);供体侧光抑制起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。P680+和1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和D1蛋白,从而使光合器官损伤,光合活性下降。
保护机理 植物有多种保护防御机理,用以避免或减少光抑制的破坏。如:(1)通过叶片运动,叶绿体运动或叶表面覆盖蜡质层、积累盐或着生毛等来减少对光的吸收;(2)通过增加光合电子传递和光合关键酶的含量及活化程度,提高光合能力等来增加对光能的利用;(3)加强非光合的耗能代谢过程,如光呼吸、Mehler反应等;(4)加强热耗散过程,如蒸腾作用;(5)增加活性氧的清除系统,如超氧物歧化酶(SOD)、谷胱甘肽还原酶等的量和活性;(6)加强PSⅡ的修复循环等。
光抑制引起的破坏与自身的修复过程是同时发生的,两个相反过程的相对速率决定光抑制程度和对光抑制的忍耐性。光合机构的修复需要弱光和合适的温度,以及维持适度的光合速率,并涉及到一些物质如D1等蛋白的合成。如果植物连续在强光和高温下生长,那么光抑制对光合器的损伤就难以修复了。
图4-28 不同光波下植物的光合速率
在作物生产上,保证作物生长良好,使叶片的光合速率维持较高的水平,加强对光能的利用,这是减轻光抑制的前提。同时采取各种措施,尽量避免强光下多种胁迫的同时发生,这对减轻或避免光抑制损失也是很重要的。另外,强光下在作物上方用塑料薄膜遮阳网或防虫网等遮光,能有效防止光抑制的发生,这在蔬菜花卉栽培中已普遍应用。
2.光质 在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样(图4-28)。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。
在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低。“大树底下无丰草”就是这个道理。
水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。
3.光照时间 对放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。从照光开始至光合速率达到稳定水平的这段时间,称为“光合滞后期”(lag phase of photosynthesis)或称光合诱导期。一般整体叶片的光合滞后期约30~60min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10min。将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象。在光合的滞后期中光呼吸速率与光合速率会按比例上升(图4-29)。
产生滞后期的原因是光对酶活性的诱导以及光合碳循环中间产物的增生需要一个准备过程,而光诱导气孔开启所需时间则是叶片滞后期延长的主要因素。
由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。
图4-30 叶片光合速率对细胞间隙 CO2浓度响应示意图
曲线上四个点对应浓度分别为CO2补偿点(C),空气浓度下细胞间隙的CO2浓度(n),与空气浓度相同的细胞间隙CO2浓度(350μl·L-1左右)和CO2饱和点(S)。Pm为最大光合速率;CE为比例阶段曲线斜率,代表羧化效率;OA光下叶片向无CO2气体中的释放速率,可代表光呼吸速率。
(二)CO2
1.CO2-光合曲线 CO2-光合曲线(图4-30)与光强光合曲线相似,有比例阶段与饱和阶段。光下CO2浓度为零时叶片只有光、暗呼吸,释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率(实质上是光呼吸、暗呼吸、光合三者的平衡值),通常用它来代表光呼吸速率。在比例阶段,光合速率随CO2浓度增高而增加,当光合速率与呼吸速率相等时,环境中的CO2浓度即为CO2补偿点(CO2 compensation point,图中C点);当达到某一浓度(S)时,光合速率便达最大值(PM),开始达到光合最大速率时的CO2浓度被称为CO2饱和点(CO2 saturation point)。在CO2-光合曲线的比例阶段,CO2浓度是光合作用的限制因素,直线的斜率(CE)受Rubisco活性及活化Rubisco量的限制,因而CE被称为羧化效率(carboxylation efficiency)。从CE的变化可以推测Rubisco的量和活性,CE大,即在较低的CO2浓度时就有较高的光合速率,也就是说Rubisco的羧化效率高。在饱和阶段,CO2已不是光合作用的限制因素,而CO2受体的量,即RuBP的再生速率则成为影响光合的因素。由于RuBP再生受ATP供应的影响,所以饱和阶段光合速率反映了光合电子传递和光合磷酸化活性,因而Pm被称为光合能力。
图4-31 C3植物与C4植物的CO2光合曲线比较
A.光合速率与外界CO2浓度; B.光合速率与细胞间隙CO2浓度(计算值);C4植物为Tidestromia oblogifolia; C3 植物为Larrea divaricata
比较C3植物与C4植物CO2-光合曲线(图4-31),可以看出:(1)C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;(2)C2植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物CO2饱和点低的原因。
在正常生理情况下,植物CO2补偿点相对稳定,例如小麦100个品种的CO2补偿点为52±2μl·L-1,大麦125个品种为55±2μl·L-1,玉米125个品种为1.3±1.2μl·L-1,猪毛菜(CAM植物)CO2补偿点不超过10μl·L-1。有人测定了数千株燕麦和5万株小麦的幼苗,尚未发现一株具有类似C4植物低CO2补偿点的幼苗。在温度上升、光强减弱、水分亏缺、氧浓度增加等条件下,CO2补偿点也随之上升。
2.CO2供给 CO2是光合作用的碳源,陆生植物所需的CO2主要从大气中获得。CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为.CO2浓度差。
图 4-32 不同 CO2浓度下温度对光合速率的影响
a.在饱和CO2浓度下;b.在大气.CO2浓度下(Berty and Bojorkman 1980)
空气中的.CO2浓度较低,约为350μl·L-1(0.035%),分压为3.5×10-5 MPa,而一般C3植物的.CO2饱和点为1 000~1 500μl·L-1 左右,是空气中的3~5倍。在不通风的温室、大棚和光合作用旺盛的作物冠层内的.CO2浓度可降至200μl·L-1左右。由于光合作用 对.CO2的消耗以及存在.CO2扩散阻力,因而叶绿体基质中的.CO2浓度很低,接近.CO2补偿点。因此,加强通风或设法增施.CO2能显著提高作物的光合速率,这对C3植物尤为明显。
(三)温度
光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。在强光、高.CO2浓度时温度对光合速率的影响要比弱光、低.CO2浓度时影响大(图4-32),这是由于在强光和高.CO2条件下,温度能成为光合作用的主要限制因素。
光合作用有一定的温度范围和三基点。光合作用的最低温度(冷限)和最高温度(热限)是指该温度下表观光合速率为零,而能使光合速率达到最高的温度被称为光合最适温度。光合作用的温度三基点因植物种类不同而有很大的差异(表4-6)。如耐低温的莴苣在5℃就能明显地测出光合速率,而喜温的黄瓜则要到20℃时才能测到;耐寒植物的光合作用冷限与细胞结冰温度相近;而起源于热带的植物,如玉米、高粱、橡胶树等在温度降至10~5℃时,光合作用已受到抑制。低温抑制光合的原因主要是低温时膜脂呈凝胶相,叶绿体超微结构受到破坏。此外,低温时酶促反应缓慢,气孔开闭失调,这些也是光合受抑的原因。
从表4-6可知,C4植物的热限较高,可达50~60℃,而C3植物较低,一般在40~50℃。乳熟期小麦遇到持续高温,尽管外表上仍呈绿色,但光合功能已严重受损。产生光合作用热限的原因:一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化;二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降。
昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。
在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍应用于冬春季的蔬菜栽培。
(四)水分
水分对光合作用的影响有直接的也有间接的原因。直接的原因是水为光合作用的原料,没有水不能进行光合作用。但是用于光合作用的水不到蒸腾失水的1%,因此缺水影响光合作用主要是间接的原因。
水分亏缺会使光合速率下降。在水分轻度亏缺时,供水后尚能使光合能力恢复,倘若水分亏缺严重,供水后叶片水势虽可恢复至原来水平,但光合速率却难以恢复至原有程度(图4-33)。因而在水稻烤田,棉花、花生蹲苗时,要控制烤田或蹲苗程度,不能过头。
图4-33 向日葵在严重水分亏缺时以及在复水过程中 叶水势、光合速率、气孔阻力、蒸腾速率变化
水分亏缺降低光合的主要原因有:
(1)气孔导度下降 叶片光合速率与气孔导度呈正相关,当水分亏缺时,叶片中脱落酸量增加,从而引起气孔关闭,导度下降,进入叶片的.CO2减少。开始引起气孔导度和光合速率下降的叶片水势值,因植物种类不同有较大差异:水稻为-0.2~-0.3MPa;玉米为-0.3~-0.4MPa;而大豆和向日葵则在-0.6~-1.2MPa间。
(2)光合产物输出变慢 水分亏缺会使光合产物输出变慢,加之缺水时,叶片中淀粉水解加强,糖类积累,结果会引起光合速率下降。
(3)光合机构受损 缺水时叶绿体的电子传递速率降低且与光合磷酸化解偶联,影响同化力的形成。严重缺水还会使叶绿体变形,片层结构破坏,这些不仅使光合速率下降,而且使光合能力不能恢复。
(4)光合面积扩展受抑 在缺水条件下,生长受抑,叶面积扩展受到限制。有的叶面被盐结晶、被绒毛或蜡质覆盖,这样虽然减少了水分的消耗,减少光抑制,但同时也因对光的吸收减少而使得光合速率降低。
水分过多也会影响光合作用。土壤水分太多,通气不良妨碍根系活动,从而间接影响光合;雨水淋在叶片上,一方面遮挡气孔,影响气体交换,另一方面使叶肉细胞处于低渗状态,这些都会使光合速率降低。
(五)矿质营养
矿质营养在光合作用中的功能极为广泛,归纳起来有以下几方面:
1.叶绿体结构的组成成分 如N、P、S、Mg是叶绿体中构成叶绿素、蛋白质、核酸以及片层膜不可缺少的成分。
2.电子传递体的重要成分 如PC中含Cu,Fe-S中心、Cytb、Cytf和Fd中都含Fe,放氧复合体不可缺少Mn2+ 和Cl-。
3.磷酸基团的重要作用 构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,以及合成蔗糖的前体UDPG,这些化合物中都含有磷酸基团。
4.活化或调节因子 如Rubisco,FBPase等酶的活化需要Mg2+ ;Fe、Cu、Mn、Zn参与叶绿素的合成;K+ 和Ca2+ 调节气孔开闭;K和P促进光合产物的转化与运输等。
肥料三要素中以N对光合影响最为显著。在一定范围内,叶的含N量、叶绿素含量、Rubisco含量分别与光合速率呈正相关。叶片中含N量的80%在叶绿体中,施N既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从N素营养好的叶片中提取出的Rubisco不仅量多,而且活性高。然而也有试验指出当Rubisco含量超过一定值后,酶量就不与光合速率成比例。
重金属铊、镉、镍和铅等都对光合作用有害,它们大都影响气孔功能。另外,镉对PSⅡ活性有抑制作用。
(六)光合速率的日变化
一天中,外界的光强、温度、土壤和大气的水分状况、空气中的.CO2浓度以及植物体的水分与光合中间产物含量、气孔开度等都在不断地变化,这些变化会使光合速率发生日变化,其中光强日变化对光合速率日变化的影响最大。在温暖、水分供应充足的条件下,光合速率变化随光强日变化呈单峰曲线,即日出后光合速率逐渐提高,中午前达到高峰,以后逐渐降低,日落后光合速率趋于负值(呼吸速率)。如果白天云量变化不定,则光合速率会随光强的变化而变化。
图4-34 水稻光合速率的日变化
A.光合速率(P)和气孔导度(C)平行变化; B.由A图数据绘制的光合速率与光强的关系,在相同光强下,上午光合速率要大于下午的光合速率
另外,光合速率也同气孔导度的变化相对应(图4-34A)。在相同光强时,通常下午的光合速率要低于上午的光合速率(图4-34B),这是由于经上午光合后,叶片中的光合产物有积累而发生反馈抑制的缘故。当光照强烈、气温过高时,光合速率日变化呈双峰曲线,大峰在上午,小峰在下午,中午前后,光合速率下降,呈现“午睡”现象(midday depression of photo-synthesis),且这种现象随土壤含水量的降低而加剧(图4-35)。引起光合“午睡”的主要因素是大气干旱和土壤干旱。在干热的中午,叶片蒸腾失水加剧,如此时土壤水分也亏缺,那么植株的失水大于吸水,就会引起萎蔫与气孔导度降低,进而使 CO2吸收减少。另外,中午及午后的强光、高温、低.CO2浓度等条件都会使光呼吸激增,光抑制产生,这些也都会使光合速率在中午或午后降低。
光合“午睡”是植物遇干旱时的普遍发生现象,也是植物对环境缺水的一种适应方式。但是“午睡”造成的损失可达光合生产的30%,甚至更多,所以在生产上应适时灌溉,或选用抗旱品种,增强光合能力,以缓和“午睡”程度。
图 4-35 桑叶光合速率随着土壤水分减少的日变化
A.光合日变化; B.土壤含水量 图中数字为降雨后的天数(Tazaki等,1980)