第一篇:平行线的性质(二)教案及教学设计与说明
课题平行线的性质
(二)教材上海市实验学校校本教材P104~P109.
授课教师 上海市实验学校王海生
[教学目标]
1.经历探索平行线性质定理3的过程,掌握平行线的性质定理3,并能应用该定理解决有关问题.
2.能够灵活地应用平行线的性质定理和判定定理解决一些较为复杂的问题.
3.通过共同探究问题的过程,进一步体验“观察——猜想——证明”这种发现问题,解决问题的方法,初步体验“从特殊到一般”的数学思想.
[教学重点]
1.掌握平行线的性质定理3.
2.能够应用平行线的性质定理和判定定理解决一些比较复杂的问题.
[教学难点]
平行线的性质定理和判定定理的准确及熟练应用.
[教学过程]
一、复习旧知,引入新知:
1、复习近平行线的判定定理和已经学习过的平行线的性质定理.平行线的判定定理:
同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.已经学习过的平行线的性质定理:
两直线平行,同位角相等.两直线平行,内错角相等.2、探究平行线的性质定理(3)的证明过程:
已知:如图,直线AB和CD被直线EF所截,AB//CD,求证:AGHGHC180°.证明:AB//CD(已知),∴AGHGHD(两直线平行,内错B 角相等).CD是一直线(已知),C D∴CHGGHD180°(平角的定
义).∴AGHGHC180°(等量代换).平行线的性质定理3:两条平行线被第三条直线所截,同旁内角互补..二、应用新知,小试牛刀:
例题1:填空并说明理由:
(1)如图,AD//BC,如果A(5x10)°,—1—
B 第(1)(2)题图 C
B(4x10)°,那么A__,B___.解答:A110°,B70°.(2)如图,AD//BC,如果AD,那么B_____C.(填,,)
解答:BC.(3)如图,已知12,CBA57°,则BAD=__________.解答:BAD123°.A(4)如图,已知1230°,且BD是ABC的平分线,则BAD=__________.解答:BAD120°.三、阶段小结,巩固新知: 第(3)(4)题图 通过学习我们知道平行线的性质定理的条件是判定定理的结论,而性质定理的结论是判定定理的条件,因此我们综合使用这两组定理解决问题的时候一定要看清楚该用判定定理,还是性质定理.四、拓展应用,能力提高:
例题2已知:如图,AB//CD,求:AA1A2A100C的度数.如何思考呢? AA 问题1已知: 如图,AB//CD,如果AB和
CD之间一个点也没有,那么AC的度数是多少
呢?
解答:AB//CD(已知),∴AC180°(两直线平行,同旁内角互补).C
问题2已知:如图,AB//CD,如果AB和CD有一个点M,那么AAMCMCD的度数是多少呢? 解答:过点M作MN//AB.∵MN//AB(已作),∴A
AMN180M N ∵AB//CD(已知),∴MN//CD(同平行一条直线的两条直线平行).∴CCMN180°(两直线平行,同旁内角互补).∴AAMCMCD360°(等量加等量,和相等).说明:在上面的解答过程中,我们在原来的图形中添画了平行于AB的线MN,这种为了解题或证题的需要,在原来的图形上添画的线叫做辅助线,辅助线一般画
成虚线.问题3已知:如图,AB//CD,如果在AB和CD间有两个点E,F,那么请同学们想一想A,C,E,F之间会有什么关系呢?
猜想:AEFC540°.证明:过点E作EG//AB,过点F作A FH//AB.E ∵EG//AB(已作),∴AAEG180°(两直线平行,同旁
内角互补).∵EG//AB,FH//AB(已作).F∴EG//FH(同平行一条直线的两条直线平
行).∴GEFEFH180°(两直线平行,同旁内角互补).∵AB//CD(已知),FH//AB(已作),∴FH//CD(同平行一条直线的两条直线平行).∴HFCFCD180°(两直线平行,同旁内角互补).∴AEFC540°(等量加等量,和相等).B GH
问题4已知:如图,AB//CD,如果在AB和CD间有五个点E,F,G,H,K,那么A,C,E,F,G,H,K,的和又是多少度呢?
E结论:ACEFGHK1080°.F
G
K A C D现在我们再回过去看例题2,请问:AA1A2A100C的度数是多少?
解答:AA1A2A100C(1001)180°=18180°.问题5已知:如图,AB//CD,那么A,C,AMC这
三个角有怎样的数量关系呢?
证明:过点M作MN//AB.∵MN//AB(已作),∴AAMN(两直线平行,内错角相等).∵AB//CD(已知),C
∴MN//CD(同平行一条直线的两条直线平行).∴NMCC(两直线平行,内错角相等).∴ACAMC(等量加等量,和相等).问题6已知:如图,AB//CD,那么A,C,E,F这四个角有怎样的数量关系呢?
解答:∠E+∠F=∠A+∠C+180°.
五、师生小结,梳理新知: A B
今天我们通过共同的学习研究,你有什么收
获?还有什么问题?
六、布置作业,融会贯通: F C D 必做题:习题册P38§2.4填空、选择做在书上,解答题做在本子上.思考题:从小结中给出的几种尚未研究的图形中任选一题进行解答.教学设计与说明
上海市实验学校王海生
一、教材分析
本节课的内容选自上海市实验学校教材《平面几何》第一册(上)第二章第四节.
上海市实验学校的数学教材是自编校本教材,是实验学校的老师根据学生的实际情况进行编写的,包括代数五册、几何三册以及补充教材一册.
本节课的内容是在已经完成平行线的判定定理和两个平行线的性质定理的前提下进行的,因此这节课的主要任务是探究平行线的第三个性质定理,同时掌握这个定理的应用.另外平行线的判定与性质是今后学习其他知识的重要基础,平行线的判定和性质的应用也涉及一些演绎推理,对培养学生的逻辑推理能力和表达能力至关重要.
二、学情分析
我所教的学生虽然是初中一年级,但是上海市实验学校的学制(十年一贯制,小学四年,初中三年,高中三年)决定了他们的年龄比普通学校的初一学生小一至二岁.而且他们进入初中尚不满一年,接触平面几何知识也是从本学期开始的,所以他们的逻辑推理能力还不够强,语言的表达也不十分规范,这都是我在本节课的教学设计中所要强调的.
另外,我校的学生在进入初中时经过一定的选拔,大部分学生的数学基础较好,兴趣较浓,因此在教学设计中加强了对他们思维能力的训练和培养.
三、教学过程分析
1、复习旧知,引入新知
在这个阶段,主要是通过复习旧知,让学生观察已知的平行线的性质定理1、2与平行线的判定定理1、2,找到它们之间的内在联系.通过类比,得到猜想“两条平行线被第三条直线所截,同旁内角互补.”然后通过师生共同画图,书写已
知、求证,再加以证明,说明猜想是真命题,由此得到平行线的性质定理3.通过这一阶段,学生体验了 “观察——猜想——证明”的过程,了解了发现问题、研究问题的数学基本探究方法.
2、应用新知,小试牛刀
本环节的4道题目改编自课本的第104页例题3和例题4,以及第108页练习中的第2题(2)(3).
其中第(1)题与第(2)题是让学生熟悉刚刚掌握的平行线性质定理(3)直接、简单应用,达到巩固教学内容的目的.而第(3)题与第(4)题则要求学生把平行线的判定定理和性质定理综合应用,培养灵活思维.
通过4个题目解答,巩固刚刚学习的知识,初步地综合应用性质定理和判定定理.其中第(1)题由老师给出不完整的解答的过程,让学生填空,为后面3小题的学生口答打下基础.
由于学生学习几何的时间不长,因此他们在口答这三道题目的时候会出现表述不规范,逻辑不严密等现象,因此教师在教学过程中应该重视这一问题,在肯定学生回答的基础上,加强引导,及时纠正,以加深学生的印象.
3、阶段小结,巩固新知
通过小结,再次巩固所学到的新知识,同时也让学生再一次感受平行线的性质定理与平行线的判定定理的关系.
4、拓展应用,能力提高
本环节只有一道例题,它是改编自教材P105的例题5,这道例题学生粗略地一看会感觉比较的困难,而困难的关键在于图中的点比较多,也就是角比较多.所以我就作了一些铺垫,引导学生从简单的问题入手,把复杂的问题简单化,从最简单的“两条平行线之间没有点”开始,然后慢慢地增加点的个数,最后回到例题2,利用前面探索得到的解答思路顺利地完成例题2的解答.这一过程让学生经历了一次由简单到复杂,由特殊到一般的过程,这种从特殊到一般的思考方法也是他们将来解决问题时经常采用的一种方法,希望他们能够通过学习实践,慢慢地掌握.
通过例题2的共同研究,还让学生掌握了一种常见的添加辅助线的方法——添加平行线,并且在教学过程中教师着重强调了这种辅助线添加的书写规范,为学生的后继学习打下了一定的基础.
解决完例题2后,我再次把题目变形,更改点的位置,提出新的问题,以此让学生感受到一题多变的思想,同时也让学生知道学习数学还要灵活思维,学会举一反三,对于自己遇到过的、已经解决的问题,不要轻易的放过,看看还有没有值得深入研究的价值.
5、师生小结,梳理新知
这节课的小结从两个方面进行.
首先是小结今天课堂共同学习研究的收获.这一步骤学生可以从基本知识进行小结,而对于课堂中渗透的一些数学思想与方法(类比的思想、由特殊到一般的思想等)如若学生难以一时得出,可由老师给出.
其次是尝试提出一些值得继续探究的问题.这一步骤主要是由于本节课的例题2还有很多的变换形式,教师指明可供探究的方向,提出留给学生回去思考的问题,也让学生意识到虽然两条平行线看似非常简单,但是当深入地去思考、去探索时,发现它那么的“深不可测”、学无止境,所以学习数学必须要养成自觉探究的习惯,只有这样,才能在浩瀚的数学知识海洋中畅游.
6、布置作业,融会贯通
课后作业分两种类型,一部分为必做题,要求学生完成教材配套的练习题;还有一道思考题,要求学生从前面小结中老师给出的六幅图形中任选一幅进行深入研究,寻找图形中存在的角与角之间的关系,借此拓宽学生的知识面,培养学生自主研究的良好学习习惯.
第二篇:平行线的性质(二)教学设计
第二章 相交线与平行线平行线的性质(第2课时)
本节课的教学目标是:
1、知识与技能目标:(1)熟练应用平行线的性质和判别直线平行的条件解决问题。(2)逐渐理解几何推理的要领,分清推理中“因为”、“ 所以”表达的意义,从而初步学会简单的几何推理。
2、过程与方法目标:经历观察、讨论,推理、归纳等活动, 进一步发展空间观念,培养推理能力和有条理表达的能力。
第一环节:复习回顾,夯实基础
问题1:平行线的性质有哪几条?
问题2:判别直线平行的条件有哪几个?你现在一共有几个判定直线平行的方法? 问题3:在应用二者时应注意什么问题?
第二环节:层层递进,推理论证
活动内容:
问题1:如图2.3—1,直线a,b被直线c所截,2.3-1(1)当∠1=∠2时,你能结合图形用推理的方式来说明a∥b吗?(2)若∠2+∠3=180°呢? 问题2: 如图2.3—2 :
(1)若 ∠1 = ∠2,可以判定哪两条直线平行?根据是什么?(2)若∠2 = ∠M,可以判定哪两条直线平行?根据是什么?
2.3—2(3)若 ∠2 +∠3 =180°,可以判定哪两条直线平行?根据是 什么?
问题3:如图2.3—3,AB∥CD,如果 ∠1 =∠2,那么 EF 与 AB平行吗?说说 你的理由.
2.3—3
第三环节:独立探究,步骤规范
活动内容:
问题1:如图2.3—4,已知直线 a∥b,直线 c∥d,∠1 = 107°,求 ∠2,∠3 的度数.问题2:如图2.3—5,AE∥CD,若 ∠ 1 = 37°,∠D = 54°,求 ∠2 和∠BAE 的度数.2.3—4
2.3—5 第四环节:及时巩固,深化提高
活动内容:
问题1:如图2.3—6,选择合适的内容填空。(1)因为AB//CD 所以∠1=∠2()(2)因为 ∠3=∠1 所以 // __(同位角相等,两直线平行)(3)因为∠1+ ∠ =180
所以AB// CD()
问题2:如图2.3—7,∠1=∠3,那么,∠1和∠2的大小有何关系?
∠1和∠4的大小有何关系?为什么?由此你得到什么结论?
2.3—6 第五环节:归纳小结,反思提高
一、教学设计反思:
2.3—7
第三篇:平行线性质教案
平行线的性质教案2 教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.学生测量这些角的度数,把结果填入表内.角 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8
度数
3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系? 图中哪些角是同旁内角?它们具有怎样的数量关系? 在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书.平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a∥b, 因为∠2+∠4=180°,所以∠2+∠4=180°, 所以a∥b.6.教师引导学生理清平行线的性质与平行线判定的区别.学生交流后,师生归纳:两者的条件和结论正好相反: 由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗? 结合上图,教师启发分析:考察性质
1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.因为a∥b,所以∠1=∠2(两直线平行,同位角相等);又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.学生仿照以下说理,说出如何根据性质1得到性质3的道理.8.平行线性质应用.例(课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B 与∠C的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.()2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.()3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.()
二、填空题.1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°;若DC∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.(1)(2)(3)
平行线的性质教案2 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: 因为∠ECD=∠E,所以CD∥EF()又AB∥EF,所以CD∥AB().三、选择题.1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()A.∠1=∠2 B.∠1>∠2;C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是()A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.答案:
一、1.× 2.∨ 3.×
二、1.∠1,∠5,∠8,∠4,∠BAD;∠2,∠6,∠3,∠7,∠BCD 2.北偏东56°,两直线平行,内错角相等 3.AB、EF,两条直线都与第三条直线平行,这两条直线也互相平行 4.内错角相等,两直线平行, 两条直线都与第三条直线平行,这两条直线也互相平行
三、1.D 2.A
四、1.70° 2.因为DE∥CB,所以∠1=DCB(两直线平行,内错角相等)又∠1=∠2 所以∠2=∠DCB 即CD平分∠ECB.5.3平行线的性质(第2课时)平行线的性质(二)教学目标
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题.重点、难点 重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.难点:平行线性质和判定灵活运用.教学过程
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么? 学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B ∠F ∠C ∠B与∠F度数之和
图(1)图(2)通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.(1)(2)教师投影题目: 学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗? 以上分析后,学生先推理说明, 师生交流,教师给出说理过程.作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.(2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B1C1,B2C2……B5C5都与两条平行线的横线A1B5和A2C5垂直吗?它们的长度相等吗? ②学生实践操作,得出结论:线段B1C1,B2C2……,B5C5同时垂直于两条平行直线A1B5和A2C5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B1C1的特征:第一点线段B1C1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B1C1同时垂直这两条平行线.教师板书定义:(像线段B1C1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.教师画AB∥CD,在CD上任取一点E,作EF⊥AB,垂足为F.学生思考:EF是否垂直直线CD?垂线段EF的长度d是平行线AB、CD的距离吗? 这两个
问题学生不难回答,教师归纳: 两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断.(2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句.(3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
第③命题中,“两个角是对顶角”是题设,“这两角相等”是结论。
三、巩固练习
1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么? 2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.解答:1.是命题,题设是“等式两边乘同一个数”,结论是“结果仍是等式”.2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设不足于确定命题结正确,如“同位角相等”,这里条件不够;第二类命题是在命题的题设下,结论不正确。
一、填空题.1.用式子表示下列句子:用∠1与∠2互为余角,又∠2与∠3互为余角,根据“同角的余角相等”,所以∠1和∠3相等_________________.2.把命题“直角都相等”改写成“如果……,那么……”形式___________.3.命题“邻补角的平分线互相垂直”的题设是_____________, 结论是____________.4.两条平行线被第三条直线所截,同旁内角的度数的比为2:7, 则这两个角分别是____________度.二、选择题.1.设a、b、c为同一平面内的三条直线,下列判断不正确的是()A.设a⊥c,b⊥c,则a⊥b B.若a∥c,b∥c,则a∥b
C.若a∥b,b⊥c,则a⊥c D.若a⊥b,b⊥c,则a⊥c
2.若两条平行线被第三条直线所截,则互补的角但非邻补角的对数有()A.6对 B.8对 C.10对 D.12对
3.如图,已知AB∥DE,∠A=135°,∠C=105°,则∠D的度数为()A.60° B.80° C.100° D.120°
4.两条直线被第三条直线所截,则一组同位角的平分线的位置关系是()A.互相平行 B.互相垂直;C.相交但不垂直 D.平行或相交
三、解答题.1.已知,如图1,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.2.如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D.(1)∠ABD与∠C相等吗?为什么.(2)∠A与∠F相等吗?请说明理由.3.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.4.如(图4),DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.答案:
一、1.因为∠2+∠1=90° 又∠2+∠3=90°,所以∠1=∠3(同角的余角相等)
2.如果两个角是直角,那么这两个角相等
3.两个角是邻补角,这两个角的平分线互相垂直 4.40°,140°
二、1.D 2.B 3.D 4.D
三、1.平行
因为O′C∥BD
所以∠2=∠3(两直线平行,内错角相等)
又∠1=∠2,∠3=∠4
所以∠1=∠4
所以AC∥O′D(内错角相等,两直线平行)
2.(1)相等.因为∠1=∠2,所以BD∥CE(内错角相等,两直线平行)
所以∠ABD=∠C(两直线平行,同位角相等)
(2)相等 因为∠ABD= ∠C 又∠D=∠C
所以∠D=∠ABD
所以DF∥AC(内错角相等,两直线平行)
所以∠A=∠F(两直线平行,内错角相等)
3.∠B=∠C 因为AD∥BC
所以∠B=∠EAD(两直线平行, 同位角相等), ∠C=∠CAD(两直线平行,内错角相等)
又∠EAD=∠CAD(角平分线定义)所以∠B=∠
第四篇:教学设计 平行线的性质
教学设计
《平行线的性质》
单
位
:阿城区杨树民主学校 姓
名
:杨凤杰
教学目标: 1.使学生能够深入理解平行线的性质和判定的不同之处,能够灵活应用.
2.使学生能够牢固掌握平行线的三个性质,并能运用它们进行简单的逻辑推理.
教学重点:理解平行线的性质.
教学难点:平行线的三个性质的应用,能结合图形用符号语言表示平行线的三条性质.
教学过程 :
一、复习提问: 1.怎样利用同位角和内错角以及同旁内角来判定两条直线是否平行?
2.叙述对顶角的性质?
二、探索新知:
1动手操作并观察发现平行线第一个性质
出示教材图5.3-1请学生进行实验观察.其中a∥b,c和它们相交,动手度量∠1 和∠2的大小。
师:从中你能发现什么关系?
学生:交流后得出平行线性质1:两直线平行,同位角相等.
2类比推理探索出平行线的另两条性质
(1)已知:两条直线AB和CD被第三条直线EF所截,AB∥CD.求证:∠1= ∠2.
(2)已知:两条直线AB和CD被第三条直线EF所截,AB∥CD.求证:∠1+∠2=180°.
在探索实践合作交流后得出:平行线的性质2 和平行线的性质3 .
3平行线判定与性质的区别与联系:把判定和性质分别用多媒体显示出来.
(1)性质:是根据两条直线平行,去证明两个角相等或互补.
(2)判定:是根据两角相等或互补,去证明两条直线平行.
两者的联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是完全不相同的.
三、例题 :
例1:动手画出AB∥CD,AC∥BD.并且找出图中相等的角与互补的角.
用意是向学生强调:哪两条直线被哪一条直线所截.
答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.
相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)例2:多媒体给出图和已知:AD∥BC,∠AEF=∠B,求证:AD∥EF.
剖析:从图直观分析,要证AD∥EF,只需∠A+∠AEF=180°即可。因为AD∥BC,所以∠A+∠B=180°,又知∠B=∠AEF,所以∠A+∠AEF=180°成立.故此得证.
证明:因为 AD∥BC,(已知)
所以 ∠A+∠B=180°.(两直线平行,同旁内角互补)
又因为 ∠AEF=∠B,(已知)
所以 ∠A+∠AEF=180°,(等量代换)
所以 AD∥EF.(同旁内角互补,两条直线平行)
四、巩固练习:
1.多媒体给出图和已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.
证明:因为 AB∥CD,所以 ∠BAC+∠ACD=180°,又因为 AE平分∠BAC,CE平分∠ACD,所以 ————————————
故——————————————(让学生分析尝试后补充)
即 ∠1+∠2=90°.(理由略)
2.多媒体给出图和已知:∠1=∠2,求证:∠3+∠4=180°.
仔细剖析:鼓励学生先自己分析再合作完成证明:(找学生板书过程)略。
小结: 我们是如何得到平行线的性质定理?先通过度量,运用从特殊到一般的思维方式发现性质1,然后通过演绎证明得到后两个性质定理,从因果关系和所起的作用来看性质定理和判定定理区别和联系.
五、作业:
1.给出图,AB∥CD,∠1=102°,求∠
2、∠
3、∠
4、∠5的度数,并说明根据?
2.给出图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠
1、∠
3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.给出图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
第五篇:平行线的性质教学设计
《平行线的性质》教学设计(人教版)学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.经历探究直线平行的条件的过程,掌握直线平行的条件,领悟归纳和转化的数学思想 学习重、难点:探索并掌握直线平行的条件是本课的重点也是难点.学习过程
一、复习引入
1.填空:经过直线外一点,________与这条直线平行.2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.3.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用?
既然两个角相等与两条直线平行能联系起来, 那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?
二、探索直线平行的条件
1.画出课本图5.2-5的简化图形,分析∠
1、∠2的位置关系.(1)你能描述∠
1、∠2的方位吗?.(2)识别图中其他的同位角,并标记出它们。(要求:正确而又不遗漏.)
(3)强调:同位角是具有特殊位置关系的两个角, 它不同于对顶角和邻补角.同位角都有一条边在截线EF上.2.归纳利用同位角判定两条直线平行的方法.(1)根据同位角的意义以及平推三角尺画出平行线活动中叙述判定两条直线平行的方法.平行线的判定方法1: 简单记为:(2)结合图形用符号语言表达两直线平行的判定方法1:
强调:判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可.(3)简单应用.①表演木工用角尺画平行线过程,说出用角尺画平行线的道理(结合P14图5.2-7).规范说理过程:(因为∠DCB与∠FEB是直线CD、EF被AB所截而成的同位角,而且 ∠DCB=∠FEB,即同位角相等,根据直线平行判定方法,从而CD∥EF.)3.探索两条直线平行的其它方法
(1)演示学具,如果内错角相等时,两条直线平行吗?(2)思考:为什么内错角相等时,两条直线平行?你能用学过的两直线平行的判定方法1来说明吗?(提示:通过内错角和同位角之间的关系把条件∠2=∠3转化为∠1=∠2.)规范说理过程:(3)归纳判定两条直线平行的方法2: 简单记为: 结合图形用符号语言表达方法2:(4)讨论:同旁内角数量上满足什么关系时,两直线平行? ①猜想:
②利用平行判定方法1或方法2来说明猜想正确.方法一 因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1, 即同位角相等,从而a∥b.方法二 因为∠4+∠2=180°,而∠4+∠3=180°,根据同角的补角相等,所以有∠3=∠2, 即内错角相等,从而a∥b.③归纳两条直线平行的判定方法3: 简单记为: 综合图形,用符号语言表达:
三、巩固练习
课本P17练习.反馈练习
一、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.()2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.()
二、填空
1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________;如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.(1)(2)(3)(2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是()A.AB∥EF,CD∥EF B.∠5=∠A;C.∠ABC+∠BCD=180° D.∠2=∠3 2.右图,由图和已知条件,下列判断中正确的是()A.由∠1=∠6,得AB∥FG;B.由∠1+∠2=∠6+∠7,得CE∥EI C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由