第一篇:等比数列第一节教案
课题: §2.4等比数列
授课类型:新授课
(第1课时)
●教学目标
知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导;
过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。●教学重点
等比数列的定义及通项公式 ●教学难点
灵活应用定义式及通项公式解决相关问题 ●教学过程 Ⅰ.课题导入
复习:等差数列的定义: an-an1=d,(n≥2,n∈N)
等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。
课本P41页的4个例子: ①1,2,4,8,16,„ ②1,1111,,„ 2481623③1,20,20,20,20,„
234④100001.0198,100001.0198,100001.0198,100001.0198,4100001.01985,„„
观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。Ⅱ.讲授新课
1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:an=q(q≠0)an11“从第二项起”与“前一项”之比为常数(q){an}成等比数列an1=q(nN,q≠0)an2 隐含:任一项an0且q0
“an≠0”是数列{an}成等比数列的必要非充分条件. 3 q= 1时,{an}为常数。
2.等比数列的通项公式1: ana1qn1(a1q0)由等比数列的定义,有:
a2a1q;
a3a2q(a1q)qa1q2; a4a3q(a1q2)qa1q3;
„ „ „ „ „ „ „
anan1qa1qn1(a1q0)3.等比数列的通项公式2: anamqm1(a1q0)4.既是等差又是等比数列的数列:非零常数列
探究:课本P56页的探究活动——等比数列与指数函数的关系 等比数列与指数函数的关系:
等比数列{an}的通项公式ana1qn1(a1q0),它的图象是分布在曲线y(q>0)上的一些孤立的点。
当a10,q >1时,等比数列{an}是递增数列; 当a10,0q1,等比数列{an}是递增数列; 当a10,0q1时,等比数列{an}是递减数列; 当a10,q >1时,等比数列{an}是递减数列;
当q0时,等比数列{an}是摆动数列;当q1时,等比数列{an}是常数列。[范例讲解] 课本P57例
1、例
2、P58例3 解略。Ⅲ.课堂练习
课本P59练习1、2 [补充练习] 2.(1)一个等比数列的第9项是
a1xqq41,公比是-,求它的第1项(答案:a1=2916)93(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项(答案:a1=
a2=5, qa4=a3q=40)
Ⅳ.课时小结
本节学习内容:等比数列的概念和等比数列的通项公式. Ⅴ.课后作业
课本P60习题A组1、2题 ●板书设计 ●授后记
第二篇:等比数列第一节
课题:等比数列及其前N项和
学习目标:掌握等比数列的定义,通项公式和前n项和的公式,并能利用这些知识解决有关
问题,培养学生的化归能力
重点、难点:
对等比数列的判断,通项公式和前n项和的公式及性质的应用
知识梳理:
1.等比数列的定义
由定义可推导等比数列的单调性为2.等比数列的是通项公式(如何推导?)通项公式的推广:
3.等比中项 问题探究1:b2=ac是a,b,c成等比数列的什么条件? 4.等比数列的常用性质
(1)若{ab12n},{n}(项数相同)是等比数列,则{λan}(λ≠0),an,{an},{an·bn},abn
是否是等比数列.
(2)若{an}为等比数列,且m+n=p+q,则(m,n,p,q∈N*).(3)若{an}是等比数列,公比为q,则ak,ak+m,ak+2m,…(k,m∈N*)是公比为的等比数列.(4)若{an}为等比数列,则数列Sm,S2m-Sm,S3m-S2m,…是否是等比数列 5.等比数列的前n项和公式(如何推导?)
若已知首项a1,公比是q,则Sn=,或首项是a1,末项an,Sn=.6.问题探究2:如何用函数的观点认识等比数列{an}的通项公式an及前n项和Sn?
典型例题: 考向一 等比数列基本量的计算
【例1】设等比数列{an}的前n项和为Sn,已知a2=6,6a1+a3=30.求an和Sn.考向二 等比数列的判定或证明
【例2】已知数列{aaan+an+1n}满足1=1,a2=2,an*
+2=2,n∈N.(1)令bn=an+1-an,证明:{bn}是等比数列;(2)求{an}的通项公式.
考向三等比数列性质的应用
【例3】已知等比数列前n项的和为2,其后2n项的和为12,求再往后3n项的和.达标训练:
1.等比数列{an}满足:a1+a6=11,a3·a32
4=
9,且公比q∈(0,1).
(1)求数列{an}的通项公式;
(2)若该数列前n项和Sn=21,求n的值.
2.在等比数列{a}中,若a1
n1=2a4=-4,则公比q=________;|a1|+|a2|+…+|an|=________.3、已知数列{an}是等比数列,且a*
n>0,nN,a3a52a4a6a5a781,则a4a6.
【收获总结】
第三篇:等比数列教案
等比数列(复习课)学案
一.基本要求: ① 理解等比数列的概念;② 掌握等比数列的通项公式与前n项和公式及应用③ 了解等比数
列与指数函数的关系
发展要求:①掌握等比数列的典型性质及应用。②能用类比观点推导等比数列的性质
二.教学过程
(1)、知识回顾
1基础训练题
*(1)等比数列an的前n项和为Sn(nN),若a3
(2)在等比数列an中,an0,且a1a21,S410,则a4a5=()
A.16B.27C.36D.8
1(3)②设{an}是递增的等比数列,a1an66,a2an1128,前n项和Sn=126,求n和公比q.(4)等比数列中,q=2,S99=77,求a3a6a99;
(5).已知数列{an}满足:a12,an12an1;
(1)求证:数列{an1}是等比数列;(2)求数列{an}的前n项和。
32,S392,求数列的首项与公比.2能力提高题
1(08浙江)已知an是等比数列,a22,a5
4,则a1a2a2a3anan1=()
(A)16(14n)(B)16(12n)(C)
3(14n)(D)
323
(12n)
D.(4n1)
22.数列{an}的前n项和Sn2n1,则a12a2an
()
A.(2n1)2
{a}
B.
(21)
n
C.4n1
3.在等比数列n中,若1 A.100B.80
aa240,a3a460,则a7a8
=()
C.95D.13
54(2007陕西)各项均为正数的等比数列an的前n项和为Sn,若S10=2,S30=14,则
S40等于()
(A)80(B)30(C)26(D)16
5.等比数列{an}中,an0且a5a681,则log3a1log3a2log3a10的值是()
A.20
B.10
C. 5
3116,a3
14,则
1a1
1
D.40
a2
1a3
1a4
1a5
6.在等比数列{an}中,若a1a2a3a4a5
=_________________。
7.在正项等比数列an中,a3、a7是方程2x27x60的两个根,则a40a50a60的值为()A.32B.64C.64D.256 变1: 在等比数列{an}中, 若a3、a7是方程2x27x60的两根,则a5的值为()
A.3B.±3C.3D.±
3变2: 等比数列{an}中,a3,a9是方程2x27x60的两个根,则a6=()A.3B.±3C.D.以上皆非
变3:设{an}为公比q>1的等比数列,若a2004和a2005是方程4x8x30的两根,则
a2006a2007
_____.3.思考题
1.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则2.设f(n)222
2数列an中,a12,a23,且数列 anan1是以3为公比的等比数列,设bna2n1a2n(nN)
a1a3a9a2a4a10
27的值是
4710
2(8
n
13n10
(nN),则f(n)等于()
27(8
n3
(A)
(81)(B)
n
1)(C)1)(D)(8
n
41)
3.(1)求a,a的值
(2)求证bn是等比数列
典型例题精析
题型一等差数列与等比数列的判定 1. 已知数列{an}的前n项和为Sn,a1=1,an+1=
n2n
Sn, 求证:{
Snn
是等比数列.
2.在数列an中,a12,an14an3n1,nN*.(Ⅰ)证明数列ann是等比数列;(Ⅱ)求数列an的前n项和Sn;
(Ⅲ)证明不等式Sn1≤4Sn,对任意nN*皆成立.
(Ⅰ)证明:由题设an14an3n1,得an1(n1)4(ann),n
*
N.
ann是首项为1,且公比为4的等比数列.
n1
(Ⅱ)解:由(Ⅰ)可知ann4,于是数列an的通项公式为a所以数列an的前n项和S41n(n1).
又a111,所以数列
n
n
n
4
n1
n.
(Ⅲ)证明:对任意的nN
*,Sn14Sn
n1
1
(n1)(n2)
4n1n(n1) 4
32
*2
(3nn4)≤0.所以不等式Sn1≤4Sn,对任意nN皆成立.
题型二 等差、等比数列中基本量的计算
3.在等比数列{an}中a1+an=66,a2an-1=128,且前n项和为Sn=126,求n和公比q.
4.设等比数列{an}的前n项和为Sn,S4=1,S8=17,求通项公式.
过关训练
1.已知数列a,a(1-a),a(1-a)2,a(1-a)3,„是等比数列,则实数a的取值范围为
________________________.
*
2.在数列{an}中,a1=2,2an+1+an=0(n∈N),则an=______________.
23.在等比数列{an}中,已知首项a1an=q,则项数n=_______.
34.在等比数列{an}中,(1)a6=6,a9=9,则a3=_________;
(2)a1,a99是方程x2-10x+16=0的两根,则a40·a50·a60=______.
5.①“公差为0的等差数列是等比数列”;②“公比为;③“a,b,c三数成等比数
列的充要条件是b2=ac”;④“a,b,c三数成等差数列的充要条件是2b=a+c”,以上四个命题中,正确的有_____________.
6.已知数列{an}是正项等比数列,a2a4+2 a3a5+a4a6=25,则a3+a5=________. 7.等比数列{an}中,已知a9=-2,则此数列前17项之积为___________. 8.一个三角形的三边成等比数列,则公比q的范围为_________________.
9.设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为
_____________. 10.首项为6的三个数成等比数列,若将它们依次分别减去4,3,2,则成等差数列,则此三个数是_________________.
ac
11.已知a,b,c成等比数列,如果a,x,b和b,y,c=______.
xy
n
12.设数列{an}中,a1=1,an+1=an+2,则它的通项公式是an=_______________.
4710
13.设f(n)=2+2+2+2+…+23n+10,则f(n)=_______________. 14.已知数列{an}的前n项和为Sn=pn2-2n+q.
(1)当q=__________时,数列{an}是等差数列;
(2)在(1)的条件下,若a1与a5的等差中项为18,bn满足an=2log2bn,则数列的{bn}前n项和Tn=______________.
等比数列的前n项和
选择题
1.等比数列an中,S44,S88,则a17a18a19a20的和为()
A.4B. 3
C.16D.2
42已知等比数列的前n项和Sn4a,则a的值等于()
A.-4B.-3 C.0D.
13.在等比数列an中,a14,q5,使Sn10的最小值n是()
7n
A.11B.10 C.12D.9
4.在等比数列an中,Sn表示前n项和,若a32S21,a42S31,则公比q()A.3B.-3 C.-1D.1
5.在等比数列an中a18,q,an,则Sn等于()
C.8D.1
56.等比数列1,2,4,„从第5项到第10项的和是()
A.1024B.127 C.1000D.1008
7.等比数列an的各项都是正数,若a181,a516,则它的前5项的和是()
A.179B.211 C.243D.275 8.等比数列an的前n项和Sn中()
A.任意一项都不为零 B.必有一项为零 C.至多有有限为零
A.31B.
D.可以有无数项为零
9、某工厂总产值月平均增长率为p,则年平均增长率为()
A、pB、12pC、(1p)12D、(1p)12
1填空题
10.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作该数列的公和。已知数列an是等和数列,且a12,公和为5,那么a18的值为,这个数列的前21项和S21的值为。
11、某种产品计划每年降低成本q%,若三年后的成本是a元,则现在的成本是。
12、等比数列{an}中,a5a6a7a548,那么这个数列的前10项和S10=。
解答题
13、在等比数列{an}中,已知S34,S636,求an。
14、在等比数列{an}中,已知a1an66,a2an1128
23n
,an成等差数列(n为正整数)
15、已知f(x)a1xa2xa3xanx,且a1,a2,a3。又f(1)n2,Sn
126求n与q。
(1)求an。(2)比较f()与3的大小。f(1)n。
答案:
1、A2、B3、A4、A5、B
6、D7、B8、D9、D 10、3.52a11、3(1q%)
12、1023
13、Sn
2n
114、n的值为6,q为2或
1215、(1)an2n1(2)f()3
第四篇:等比数列教案
2.4 等比数列
(一)(一)教学目标
1.知识与技能:理解等比数列的概念,掌握等比数列的通项公式,理解这种数列的模型应用。
2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列的等比关系,归纳出等比数列的定义,通过与等差数列的通项公式的推导类比,探索等比数列的通项公式。
3.情态与价值:培养学生从实际问题中抽象出数列模型的能力。
(二)教学重、难点
重点:等比数列的定义和通项公式
难点:等比数列与指数函数的关系
(三)学法与教学用具
学法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式。
教学用具:投影仪
教学过程: [温故知新] 我们已经学习过一种特殊的数列——等差数列,具备怎样特征的数列才是等差数列呢?(学生齐答)
[情景设置] 实例
1、有三种投资方案可供选择,它们的回报情况如下: 方案1:第一天回报10元,以后每天比前一天多回报10元; 方案2:每天回报100元;
方案3:第一天回报0.1元,以后每天的回报金额比前一天翻一番。提问:应该选择哪种方案,才能使收益最大化?
☆处理:设置情景,让学生积极参与其中。通过罗列3种方案回报金额构成的数列,既复习了等差数列,又自然地引入了等比数列。
方案1:10 20 30 40 50 60 „ 方案2:100 100 100 100 100 100 „ 方案3:0.1 0.2 0.4 0.8 1.6 3.2 „
实例
2、观察细胞分裂的过程:
构成数列:1,2,4,8„
实例3《庄子》中有这样的论述:“一尺之棰,日取其半,万世不竭.”
1111,,… 构成数列:1,24816实例
4、计算机病毒传播问题:
构成数列:1,20,202,203,204,„
实例
5、按银行支付利息的复利方式计算本利和,若存入银行1万元钱,年利率是1.98%,每年本利和构成数列:
10000×1.0198,10000×1.0198,10000×1.0198 ,10000×1.0198„
34提问:上述5组数列有什么共同的特点? 答:从第2项起,上述5组数列中每一项与前一项的比分别都等于常数2,2,1/2,20,1.0198。共同特点:从第2项起,每一项与前一项的比都等于同一个常数。☆处理:由学生自己观察发现每个实例中隐藏的数列及其特征,并归纳总结出5组数列的共同特征,从而引出等比数列定义。
[探究新知]
一、等比数列定义:若一个数列从第2项起,每一项与前一项的比都等于同一个常数,则这个数列叫做等比数列。这个常数叫做等比数列的公比,常用字母q表示。
anq(n2)an1☆处理:类比等差数列定义,由学生自己总结等比数列定义,并将定义的文字语言转换为数学符号语言。
例、判断下列几组数列是否为等比数列,若是, 求其公比。
,…(1)1,1,248111(2)-1,-2,-4,-8,„
(3)-1,2,-4,8,„(4)1,x,x,x„
(5)a, a, a, a „
设计思路:趁热打铁,巩固等比数列概念。学生可能认为数列(4)(5)也一定是等比数列,在纠错的同时,自然地引出两个注意事项。(2)(3)中的数列让学生直观地体会公比的正负对等比数列各项符号的影响。注意:
(1)q≠0, an ≠0(n ≥1),q>0时各项同号,q<0时各项正负相间。
(2)各项不为0的常数列既是等差又是等比数列。
二、等比数列通项公式: 设计思路:先复习等差数列通项公式的各种推导方法,让学生围绕定义,仿照等差数列推导等比数列的通项公式。(学生分小组讨论,根据各组讨论情况,选三位同学演板并讲解自己的推导思路。)
方法
一、归纳法 方法
二、累积法 方法
三、迭代法 23a2a1qa3a2qa1q2aa2q,3qa1a2anan1q(an2q)qan2q2(an3q)q2an3q3ana4q,q3aa a4a3qa1q
3n1ana2a3a4qn1a1a2a3an1aaqn1n1ana1qn1a1qn12
通项公式:若等比数列{an}的首项是a1,公比是q,则其通项公式为ana1qn1 设计思路:(1)回顾实例1中的三个数列,求出其通项公式。
(2)复习等差数列与一次函数的关系,通过计算机模拟演示,展示等比数列图像,引导学生分析等比数列图像与指数函数图像的关系。(3)通过图像和具体数据的计算让学生体会指数爆炸现象。关于通项公式的两点注意:
(1)函数思想:等比数列{an}的图像是其对应的指数型函数y上的一些孤立的点。
(2)方程思想:an,a1,q,n这四个量会知三求一。
[典例分析] 例
1、由右边框图,写出所打印数列的前5项,并建立数列递推公式。此数列是等比数列吗? 若是,求其通项公式。分析:本题将算法知识介于其中,既体现了知识间的联系性,又巧妙地引出了一个等比数列,而递推关系也包含在程序框图中。引导学生通过类比等差,体会要证明一个数列是等比数列,只需证明对于任意正整数n,a1xq qan1是an一个常数即可。
例
2、某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%,这种物质的半衰期为多长(精确到1年)?
分析: 要帮助学生发现实际问题中数列的等比关系,抽象出其数学模型。通项公式反映了数列的本质特征,因此关于等比数列的问题首先应想到它的通项公式an=a1qn-1,对于通项公式中的四个量要求会知三求一。
例
3、一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。分析:由等比数列的通项公式列出方程组,求出通项公式,再由通项公式求得数列的任一项,这个过程可以帮助学生再次体会通项公式的作用及其与方程之间的联系。
[演练天地]
1、求出引例2—5中等比数列的通项公式。
2、等比数列{an}中,(1)若a1=2,q=-3,求a8与an(2)若a1=2, a9=32,求q(3)若a1=8 ,an=3 ,q=3 ,求项数n 912
[课堂小结]
1、理解与掌握等比数列的定义及数学表达式:
anq(n2)an
12、会推导等比数列的通项公式并掌握其基本应用ana1qn1
3、函数思想:等比数列与指数函数的联系
[课后巩固] 54页 A组 7,8
[新课预知] 类比等差数列推导等比数列的相关性质
[课后反思] 从全面提高学生的素质考虑,本节课把等比数列定义及通项公式的探索、发现、创新等思维过程的暴露、知识形成过程的揭示作为教学重点;将类比、从特殊到一般的归纳等数学思想始终贯穿其中。这样的设计不像将知识和盘托出那么容易,而是要求教师精心设计问题层次,由浅入深,循序渐进,不断地激发学生思维的积极性和创造性,使学生自行发现知识、“创造”知识。这是不仅是对教师,也是对学生更高层次的要求。
第五篇:等比数列教案
等比数列教案(第一课时)
彭水第一中学校
贺巧
教材分析:
三维目标:知识与技能:1.理解等比数列的定义;2.掌握等比数列的通项公式,会解决知道an,a1,q,n中的三个,求另一个的问题.
过程与方法:通过观察具体数列的规律,从特殊到一般得到等比数列的定义;再由等比数列定义,引导学生推导出等比数列的通项公.情感态度与价值观:培养学生的观察与表达能力,通过等比数列通项的推导,训练学生的逻辑思维能力。
重点:1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用. 难点:等比数列"等比"的理解、把握和应用.
易错点:1.忽略公比q0.2.将通项公式ana1qn1错记为ana1qn.前后衔接:上节中学习了等差数列,用类比的方法研究等比数列.命题倾向与经典题型:命题倾向于填空选择题;主要是“知三求二”的题型,以及用累 乘法求一般数列通项公式.学情分析:
学生知识储备:学生已经比较熟悉数列,会用观察法求数列通项公式;通过等差数列的学习,已有研究特殊数列的一般方法与思路.预习及学法指导:建议学生用研究等差数列的方法与思路去预习看书,比较等差数列与 等比数列的异同点.教学方法:
如何突出重点:归纳类比,累乘法,典例讲解,变式训练.如何突出难点:关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法.如何辨析易错点:1.准确理解等比数列定义.2.掌握等比数列通项公式的推导方法.教学过程:
一.新课引入
观察下列数列,看其有何共同特点?
(1)1,2,4,8,16,32,„;
111***1-,-,(3),„.2481632(2)1,,,„;
数列(1)从第二项起,后一项与前一项的比值都为2;数列(2)从第二项起,后一项与前一项的比值都为11;数列(3)从第二项起,后一项与前一项的比值都为-.32总结:以上数列的共同特点从第二项起,后一项与前一项的比值都为同一个常数.二.新课讲解
1.等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列.这个常数叫等比数列的公比,用字母q表示(q≠0).思考:(1)为什么q≠0?
(2)怎样用数学表达式表示等比数列定义?
答案:(1)由于分母不能为0,再根据等比数列的定义知q不可能为0.(2)an1q(q为常数且q0).an判断下列数列是否为等比数列:(1)2,2,2,2,2,„;(2)0,0,0,0,0,„;(3)2,4,8,0,16,„.由此说明等比数列中任何项都不能为0;非零的常数列既是等比数列(公比为1)也是等差数列(公差为0).2.探究等比数列的通项公式
观察法:由等比数列的定义,有:a2a1q; a3a2q(a1q)qa1q2; a4a3q(a1q2)qa1q3;
„ „
观察序号n与q的次方数的关系,不难发现:ana1qn1(a1,q0)累乘法:有等比数列的定义,有
aa2aaq;3q;4q;„;nq a1a3an1a2
所以a2a3a4anqn1,即ana1qn1(a1,q0)a1a2a3an1因此得到等比数列的通项公式1:ana1qn1(a1,q0)思考:类比等差数列,若已知am,q,则an.ama1qm1,则a1amamn1n1nm.,所以aaqqaqn1mm1m1qqnm由此得到等比数列的通项公式2:anamq(nm)
请学生写出“引入”中,(1),(2),(3)的通项公式.3.例题讲解
例1 一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解:aa18332216q a23128,a128.1222q3q33例2 已知等比数列{an}中,a26,a5162,求a3,an.解:法一 方程组思想a1q6a12n1,,a18,a233n4a1q162q3
法二 应用等比数列通项公式2 a5a2q52,q3,a3a2q18,ana2qn223n1
三.课堂训练
基础题:人教版A版教材P52,练习1;
中档题:在等比数列{an}中,a36,a418,则a1a2.拔高题:在等比数列{an}中,a71求{an}的通项公式.,且a4,a51,a6成等差数列,四.课堂小结
1.等比数列的定义;
2.等比数列的通项公式. 五.作业布置
1.人教版A版课后习题2.4 A组第1题; 2.在数列{an}中,a1六.板书设计
§2.4 等比数列
一.定义 例1 课堂训练1.二.通项公式 例2 2.累乘法 3.七.教学反思
本堂课预设目标与内容顺利完成。从学生的反应来看,大部分学生能够掌握,会计算求等比数列的通项公式。少部分学生在计算上不熟练,因为前面等差数列中都是加减消元求首项和公差,而这节中要采用两式相除求公比。课后还要多加练习才行。
1,an12an0,求a4,an.5