等比数列的概念教案

时间:2019-05-14 18:38:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等比数列的概念教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等比数列的概念教案》。

第一篇:等比数列的概念教案

《等比数列的概念》教案

无锡市第三高级中学钱燕芳

【教学目标】

知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

【教学重点】

等比数列定义的归纳及运用。

【教学难点】

正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列

【教学手段】

多媒体辅助教学

【教学方法】

启发式和讨论式相结合,类比教学.【课前准备】

制作多媒体课件,准备一张白纸,游标卡尺。

【教学过程】

【导入】

复习回顾:等差数列的定义。

创设问题情境,三个实例激发学生学习兴趣。

1. 利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)

2. 一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数

235列 15 ,15×0.9 ,15×0.9 ,15×0.9 ,…,15×0.9。

3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.05,…,10000×1.05.学生探究三个数列的共同点,引出等比数列的定义。

【新课讲授】

由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。

 等差数列:

一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式:an+1-an=d

 等比数列:

一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式:an1

anq212

知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实

例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。

在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.例题一

判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.

(1)1, 4, 16, 32.

(2)0, 2, 4, 6, 8.(3)1,-10,100,-1000,10000.

(4)81, 27, 9, 3, 1.(5)a, a, a, a, a.讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利

用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。例题二

求出下列等比数列中的未知项:

(1)2, a, 8;

(2)-4, b, c, ½;

 已知数列 2, x, d, y,8.是等比数列

①证明数列2, d, 8.仍是等比数列.

②求未知项d.通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。

练习

判断下列数列是等差数列还是等比数列?

(1)22 , 2 , 1 , 2-1, 2-2.4710(2)3 , 3 , 3, 3.引申:已知数列{an}是等差数列,而bn2an

证明数列{bn}是等比数列.由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数

列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。

【课堂小结】

由学生通过一堂课的学习,做个简单的归纳小结。

 1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断

 2.等比数列公比q≠0,任意一项都不为零. 3.学习等比数列可以对照等差数列类比做研究.【作业】

1.书p48.No.1,2;

2.课课练课时6:7,8,9。.3.预习2.3.2

【板书设计】

第二篇:等比数列的概念(教案)

等比数列的概念 亳州三中

范图江

一、教学目标

1、体会等比数列特性,理解等比数列的概念。

2、能根据定义判断一个数列是等比数列,明确一个数列是等比数列的限定条件。

3、能够运用类比的思想方法得到等比数列的定义,会推导出等比数列的通项公式。

二、教学重点、难点

重点:等比数列定义的归纳及应用,通项公式的推导。

难点:正确理解等比数列的定义,根据定义判断或证明某些数列为等比数列,通项公式的推导。

三、教学过程

1、导入

复习等差数列的相关内容: 定义:an1and,(nN*)

*通项公式:ana1(n1)d,nN

等差数列只是数列的其中一种形式,现在来看这两组数列1、2、4、8……,1、111、、…… 248问:这两组数列中,各组数列的各项之间有什么关系?

2、探究发现,建构概念

问:与等差数列的概念相类比,可以给出这种数列的概念吗?是什么?

<1>定义:如果一个数列从地2项起,每一项与前一项的比值都等于同一个常数,则称此数列为的不过比数列。这个常数就叫做公比,用q表示。

<2>数学表达式:an1q,(nN*)an问:从等比数列的定义及其数学表达式中,可以看出什么?也就是,这个公式在什么条件下成立?

结论

1等比数列各项均不为零,公比q0。

带领学生看P45页的实例,目的是让学生知道等比数列在现实生活中的应用,从而知道其重要性。

3、运用概念

例1 判断下列数列是否为等比数列:(1)1、1、1、1、1;(2)0、1、2、4、8;(3)

1、、、-、.112411816分析(1)数列的首项为1,公比为1,所以是等比数列;(2)等比数列中的各项均不为零,所以不是等比数列;(3)数列的首项为1,公比为注 成等比数列的条件:11,所以是等比数列.2an1q;2an0;3q0.an练习P47

1、判断下列数列是否为等比数列:(1)1、2、1、2、1;

(2)-

2、-

2、-

2、-2;

、、(3)

1、分析(1)11391111、;

(4)2、1、、、0.278124aa112,3,比值不等于同一个常数,所以不是等比数列; a2a221,所以是等比数列; 3(2)首项是-2,公比是1,所以是等比数列;(3)首项是1,公比是(4)数列中的最后一项是零,所以不是等比数列.例2 求出下列等比数列中的未知项:

(1)2,a,8;

(2)-4,b,c,1.2分析 在做这种题的时候,可以根据等比数列的定义,列出一个或多个等式来求解。(1)a8,解得a4或4; 2abc4b2b2b4c(2)1.,化简得,解得2c1b2c2ccb例3等比数列an中,①a3=4,a5=16,求an

②a1=2,第二项与第三项的和为12,求第四项。

随堂练习P23练习题。

思考 由前面的练习5,等比数列an的首项为a1,公比为q,a2a1q,a3a2qa1q2,a4a3qa2q2a1q3,……

以此类推,可以得到an用a1和q表示的数学表达式吗?

归纳猜测得到:ana1qn1

证明 an是等比数列,当n2时,有

aaa2aq,3q,4q,...,nq,用累积法把这n-1个式子相乘,a1a2a3an1得 anqn1,所以ana1qn1 a1<3>通项公式:ana1qn1(nN*)

四、归纳总结

本节课的主要内容是等比数列的定义及其通项公式,要求学生能理解、掌握,并能够会应用。

五、布置作业

练习册上与本节课相关的内容。

六、教学反思

上课刚开始的时候有点紧张,讲的内容不是很连贯流畅,不能和学生形成互动,但是等紧张情绪过后,讲课的语言变得很清晰,能注意观察学生,以便和学生产生交流,调动课堂气氛。在以后的教学中,一定要保持平稳的心态,讲好课。

第三篇:等比数列的概念说课稿(通用)

等比数列的概念说课稿(通用5篇)

在教学工作者开展教学活动前,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。写说课稿需要注意哪些格式呢?下面是小编收集整理的等比数列的概念说课稿(通用5篇),希望能够帮助到大家。

等比数列的概念说课稿1

今天我说的课题是《等比数列及其通项公式》。主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。

下面我就五个方面阐述这节课。

一、教材分析:

本节授课内容为等比数列的定义及其通项公式的推导。

1、教材的地位和作用:

等比数列是数列的重要组成部分,掌握了它及其通项公式,有利于进一步研究等比数列的性质及前n项和的推导以及应用,从而极大提高学生利用数列知识解决实际问题的能力。同时,这节课的内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要的意义。

2、教材的处理:

结合教参与学生的学习能力,我将《等比数列及其通项公式》安排了2节课时。本节课是第一课时。根据目前高一学生的状况以及以往的经验,发现虽然这节课的内容比较简单,但由于老师的讲解过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,实施趣味教学,我利用一个初中自然学科中的“细胞分裂”的问题以及课本第109页的一个典故引出等比数列的定义及其通项公式。之后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列及其通项公式的记忆和理解。由此,我对教材的引入、例题、练习做了适当的补充和修改。

3、教学重点与难点及解决办法:

根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义及通项公式。解决的办法是:归纳类比;叠乘法。

根据学生的实际情况——运用所学的知识分析、解决问题的能力校差,我把这节课的难点定为:等比数列的定义及通项公式的深刻理解。要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现解决问题的方法。

二、教学目标的分析:

根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目的定为如下四个方面:

(一)知识教学目标:

使学生掌握等比数列的定义及通项公式,发现等比数列的性质,并能运用定义及其通项公式解决一些实际问题。

(二)能力训练目标:

培养运用归纳类比的方法去发现并解决问题的能力及运用方程的思想的计算能力。

(三)德育渗透目标:

培养积极动脑,明辨是非的学习作风,掌握取其精华、去其糟粕的能力及互助的精神。

(四)美育渗透目标:

等比、等差的相似美及结构美。

三、教法与学法分析:

现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。全班同学分成十二组,每组4—5人,按异质分组,每组都有上、中、下三种程度不同的学生,进行分组讨论。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用,并培养学生互助合作的精神。这堂课用类比的方法学习等比数列是一种较好的学法。因此,在教学过程中应着重提醒学生重视等比与等差数列的对比。

四、教学手段:

计算机课件辅助教学。

五、教学过程和时间安排:

1、复习提问:(4分钟)

(1)等差数列的定义是什么?

(2)等差数列的通项公式怎样?

(3)简单回答等差数列定义及其通项公式的运用。

目的:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2、导入新课:(9分钟)

在教学过程中,提出两个问题:问1、细胞分裂:一个细胞,每隔一分钟后一分为二,第8分钟后有几个细胞?问2、课本第109页的典故由同学阅读。引导学生通过“观察、分析、归纳”得出等比数列的定义及其通项公式。教师用计算机课件演示其填充过程,并给出等比数列的定义及其通项公式。

目的:由特殊到一般,由具体到抽象,由低级到高级的认识顺序引出定义,这很自然,学生比较容易接受,同时,通过趣味性的问题,来提高学生的学习兴趣,激发学生发现等比数列的定义及其通项公式的强烈欲望。

3、创设问题(27分钟)

第一层次:(6分钟)

(抢答):判断下列数列哪些是等比数列,如果是,求出公比和通项公式,如果不是,请说明为什么?

1)1,-1,1,-1,……

2)0,2,0,2,0,……

3)1,3,5,7,9,……

4)3,3,3,3,3,……

目的:充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。

第二层次:(6分钟)

已知等比数列的首项是-5,公比是-2,问这个数列的第几项的值为80?

目的:使学生进一步理解通项公式中每一个字母所代表的数学含义及它们之间的相互关系,同时培养学生的逆性思维能力,解决学生定性思维顽疾。

第三层次:(15分钟)

一个等比数列的第3项为9,第5项为81,求它的首项和公比?

目的:让学生深刻理解等比数列定义其通项公式,并在应用过程中发现公比的取值情况。

一个等比数列的第2项是10,第3项是20,求它首项和第4项?

目的:总领以上三层次全部知识,并使集体智慧个人化,书本知识灵活化:同时培养学生独立思考的能力。

4、小结:(3分钟)教师引导,学生总结

为了让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结:

1)等比数列定义是什么?怎样判断一个数列是否是等比数列?

2)等比数列通项公式怎样?其中每个字母所代表的含义是什么?

3)等比数列应注意哪些问题?(an≠0、q≠0)

5、布置作业:(2分钟)

思考题:

已知:{an}、{bn}是项数相同的等比数列,求证:{anbn}也是等比数列。

6、板书设计(略)

等比数列的概念说课稿2

一、地位作用

数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

基于此,设计本节的数学思路上:

利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

二、教学目标

知识目标:

1)理解等比数列的概念

2)掌握等比数列的通项公式

3)并能用公式解决一些实际问题

能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

三、教学重点

1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

2)等比数列的通项公式的推导及应用

四、教学难点

“等比”的理解及利用通项公式解决一些问题。

五、教学过程设计

(一)预习自学环节。

(8分钟)

首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

回答下列问题

1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

2)观察以下几个数列,回答下面问题:

1,,……

-1,-2,-4,-8……

1,2,-4,8……

-1,-1,-1,-1,……

1,0,1,0……

①有哪几个是等比数列?若是公比是什么?

②公比q为什么不能等于零?首项能为零吗?

③公比q=1时是什么数列?

④q>0时数列递增吗?q<0时递减吗?

3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

4)等比数列通项公式与函数关系怎样?

(二)归纳主导与总结环节(15分钟)

这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”;

②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

<0为摆动数列,类比等差数列d>

等比数列的概念说课稿3

一、教材分析

《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。

二、学情分析

在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运

用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

三、教学目标分析:

知识与技能目标:

(1)能够推导出等比数列的前n项和公式;

(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求

过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

四、重难点的确立

《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

五、教学方法

为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

六、教学过程

为达到本节课的教学目标,我把教学过程分为如下6个阶段:

1、创设情境:

创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.

2、探究问题,讲授新课:

根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。

3、例题讲解:

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:

1)例1是公式的直接应用,目的是让学生熟悉公式会合理的选用公式

2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.4.形成性练习:

练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

5.课堂小结

本节课的小结从以下几个方面进行:(1)等比数列的前n项和公式

(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。

6.作业布置

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的`目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。

等比数列的概念说课稿4

一、教材分析

1、从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、2、师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题

这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、5、变式训练,深化认识

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意图:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习

必做:P129练习1、2、3、4

选作:

(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

等比数列的概念说课稿5

一、大纲与教材

等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。

第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。

1、数列有着广泛的实际应用。例如产品的规格设计、储蓄、分期付款的有关计算等。

2、数列有着承前启后的作用。数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。

3、数列是培养提高学生思维能力的好题材。学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。

本节课既是本章的重点,同时也是教材的重点。等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。

本节的重点是等比数列前n项和公式及应用,难点是公式的推导。

二、教学目标

1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。

2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。

3、思想目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

三、教学程序设计

1、导言:

本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第 1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?

这样引入课题有以下三点好处:

(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

(2)故事内容紧扣本节课教学内容的主题与重点。

(3)有利于知识的迁移,使学生明确知识的现实应用性。

2、讲授新课:

本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。

等比数列的前n项和公式的推导是本节课的难点。

依据如下:

(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。

(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。

(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。

突破难点方法:

(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和 ……+ 的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。

(2)值得一提的是公式的证明还有两种方法:

方法二:由等比数列的定义得: 运用连比定理,后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。

等比数列前n项和公式及应用是本节课的重点内容。

依据如下:

(1)新大纲中有较高层次的要求。

(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。

(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。

突出重点方法:

(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围: 中可知三求二。

(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时。再有就是有些数列求和的项数易错,例如 的项数是n+1而不是n。

(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。

四、习题训练

本节课设置如下两种类型的习题:

1. 中知三求二的解答题;

2.实际应用题.这样设置主要依据:

(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。

(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。

(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性。

五、策略、方法与手段

根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。

案例为浅层次要求,使学生有概括印象。

公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。

应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。

其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。

在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。

六、个人见解

在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。

第四篇:等比数列教案

等比数列(复习课)学案

一.基本要求: ① 理解等比数列的概念;② 掌握等比数列的通项公式与前n项和公式及应用③ 了解等比数

列与指数函数的关系

发展要求:①掌握等比数列的典型性质及应用。②能用类比观点推导等比数列的性质

二.教学过程

(1)、知识回顾

1基础训练题

*(1)等比数列an的前n项和为Sn(nN),若a3

(2)在等比数列an中,an0,且a1a21,S410,则a4a5=()

A.16B.27C.36D.8

1(3)②设{an}是递增的等比数列,a1an66,a2an1128,前n项和Sn=126,求n和公比q.(4)等比数列中,q=2,S99=77,求a3a6a99;

(5).已知数列{an}满足:a12,an12an1;

(1)求证:数列{an1}是等比数列;(2)求数列{an}的前n项和。

32,S392,求数列的首项与公比.2能力提高题

1(08浙江)已知an是等比数列,a22,a5

4,则a1a2a2a3anan1=()

(A)16(14n)(B)16(12n)(C)

3(14n)(D)

323

(12n)

D.(4n1)

22.数列{an}的前n项和Sn2n1,则a12a2an

()

A.(2n1)2

{a}

B.

(21)

n

C.4n1

3.在等比数列n中,若1 A.100B.80

aa240,a3a460,则a7a8

=()

C.95D.13

54(2007陕西)各项均为正数的等比数列an的前n项和为Sn,若S10=2,S30=14,则

S40等于()

(A)80(B)30(C)26(D)16

5.等比数列{an}中,an0且a5a681,则log3a1log3a2log3a10的值是()

A.20

B.10

C. 5

3116,a3

14,则

1a1

1

D.40

a2

1a3

1a4

1a5

6.在等比数列{an}中,若a1a2a3a4a5

=_________________。

7.在正项等比数列an中,a3、a7是方程2x27x60的两个根,则a40a50a60的值为()A.32B.64C.64D.256 变1: 在等比数列{an}中, 若a3、a7是方程2x27x60的两根,则a5的值为()

A.3B.±3C.3D.±

3变2: 等比数列{an}中,a3,a9是方程2x27x60的两个根,则a6=()A.3B.±3C.D.以上皆非

变3:设{an}为公比q>1的等比数列,若a2004和a2005是方程4x8x30的两根,则

a2006a2007

_____.3.思考题

1.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则2.设f(n)222

2数列an中,a12,a23,且数列 anan1是以3为公比的等比数列,设bna2n1a2n(nN)

a1a3a9a2a4a10

27的值是

4710

2(8

n

13n10

(nN),则f(n)等于()

27(8

n3

(A)

(81)(B)

n

1)(C)1)(D)(8

n

41)

3.(1)求a,a的值

(2)求证bn是等比数列

典型例题精析

题型一等差数列与等比数列的判定 1. 已知数列{an}的前n项和为Sn,a1=1,an+1=

n2n

Sn, 求证:{

Snn

是等比数列.

2.在数列an中,a12,an14an3n1,nN*.(Ⅰ)证明数列ann是等比数列;(Ⅱ)求数列an的前n项和Sn;

(Ⅲ)证明不等式Sn1≤4Sn,对任意nN*皆成立.

(Ⅰ)证明:由题设an14an3n1,得an1(n1)4(ann),n

*

N.

ann是首项为1,且公比为4的等比数列.

n1

(Ⅱ)解:由(Ⅰ)可知ann4,于是数列an的通项公式为a所以数列an的前n项和S41n(n1).

又a111,所以数列

n

n

n

4

n1

n.

(Ⅲ)证明:对任意的nN

*,Sn14Sn

n1

1

(n1)(n2)

4n1n(n1) 4

32



*2

(3nn4)≤0.所以不等式Sn1≤4Sn,对任意nN皆成立.

题型二 等差、等比数列中基本量的计算

3.在等比数列{an}中a1+an=66,a2an-1=128,且前n项和为Sn=126,求n和公比q.

4.设等比数列{an}的前n项和为Sn,S4=1,S8=17,求通项公式.

过关训练

1.已知数列a,a(1-a),a(1-a)2,a(1-a)3,„是等比数列,则实数a的取值范围为

________________________.

*

2.在数列{an}中,a1=2,2an+1+an=0(n∈N),则an=______________.

23.在等比数列{an}中,已知首项a1an=q,则项数n=_______.

34.在等比数列{an}中,(1)a6=6,a9=9,则a3=_________;

(2)a1,a99是方程x2-10x+16=0的两根,则a40·a50·a60=______.

5.①“公差为0的等差数列是等比数列”;②“公比为;③“a,b,c三数成等比数

列的充要条件是b2=ac”;④“a,b,c三数成等差数列的充要条件是2b=a+c”,以上四个命题中,正确的有_____________.

6.已知数列{an}是正项等比数列,a2a4+2 a3a5+a4a6=25,则a3+a5=________. 7.等比数列{an}中,已知a9=-2,则此数列前17项之积为___________. 8.一个三角形的三边成等比数列,则公比q的范围为_________________.

9.设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为

_____________. 10.首项为6的三个数成等比数列,若将它们依次分别减去4,3,2,则成等差数列,则此三个数是_________________.

ac

11.已知a,b,c成等比数列,如果a,x,b和b,y,c=______.

xy

n

12.设数列{an}中,a1=1,an+1=an+2,则它的通项公式是an=_______________.

4710

13.设f(n)=2+2+2+2+…+23n+10,则f(n)=_______________. 14.已知数列{an}的前n项和为Sn=pn2-2n+q.

(1)当q=__________时,数列{an}是等差数列;

(2)在(1)的条件下,若a1与a5的等差中项为18,bn满足an=2log2bn,则数列的{bn}前n项和Tn=______________.

等比数列的前n项和

选择题

1.等比数列an中,S44,S88,则a17a18a19a20的和为()

A.4B. 3

C.16D.2

42已知等比数列的前n项和Sn4a,则a的值等于()

A.-4B.-3 C.0D.

13.在等比数列an中,a14,q5,使Sn10的最小值n是()

7n



A.11B.10 C.12D.9

4.在等比数列an中,Sn表示前n项和,若a32S21,a42S31,则公比q()A.3B.-3 C.-1D.1

5.在等比数列an中a18,q,an,则Sn等于()

C.8D.1

56.等比数列1,2,4,„从第5项到第10项的和是()

A.1024B.127 C.1000D.1008

7.等比数列an的各项都是正数,若a181,a516,则它的前5项的和是()

A.179B.211 C.243D.275 8.等比数列an的前n项和Sn中()

A.任意一项都不为零 B.必有一项为零 C.至多有有限为零

A.31B.



D.可以有无数项为零

9、某工厂总产值月平均增长率为p,则年平均增长率为()

A、pB、12pC、(1p)12D、(1p)12

1填空题

10.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作该数列的公和。已知数列an是等和数列,且a12,公和为5,那么a18的值为,这个数列的前21项和S21的值为。

11、某种产品计划每年降低成本q%,若三年后的成本是a元,则现在的成本是。

12、等比数列{an}中,a5a6a7a548,那么这个数列的前10项和S10=。

解答题

13、在等比数列{an}中,已知S34,S636,求an。

14、在等比数列{an}中,已知a1an66,a2an1128

23n

,an成等差数列(n为正整数)

15、已知f(x)a1xa2xa3xanx,且a1,a2,a3。又f(1)n2,Sn

126求n与q。

(1)求an。(2)比较f()与3的大小。f(1)n。

答案:

1、A2、B3、A4、A5、B

6、D7、B8、D9、D 10、3.52a11、3(1q%)

12、1023

13、Sn

2n

114、n的值为6,q为2或

1215、(1)an2n1(2)f()3

第五篇:等比数列教案

2.4 等比数列

(一)(一)教学目标

1.知识与技能:理解等比数列的概念,掌握等比数列的通项公式,理解这种数列的模型应用。

2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个具体数列的等比关系,归纳出等比数列的定义,通过与等差数列的通项公式的推导类比,探索等比数列的通项公式。

3.情态与价值:培养学生从实际问题中抽象出数列模型的能力。

(二)教学重、难点

重点:等比数列的定义和通项公式

难点:等比数列与指数函数的关系

(三)学法与教学用具

学法:首先由几个具体实例抽象出等比数列的模型,从而归纳出等比数列的定义;与等差数列通项公式的推导类比,推导等比数列通项公式。

教学用具:投影仪

教学过程: [温故知新] 我们已经学习过一种特殊的数列——等差数列,具备怎样特征的数列才是等差数列呢?(学生齐答)

[情景设置] 实例

1、有三种投资方案可供选择,它们的回报情况如下: 方案1:第一天回报10元,以后每天比前一天多回报10元; 方案2:每天回报100元;

方案3:第一天回报0.1元,以后每天的回报金额比前一天翻一番。提问:应该选择哪种方案,才能使收益最大化?

☆处理:设置情景,让学生积极参与其中。通过罗列3种方案回报金额构成的数列,既复习了等差数列,又自然地引入了等比数列。

方案1:10 20 30 40 50 60 „ 方案2:100 100 100 100 100 100 „ 方案3:0.1 0.2 0.4 0.8 1.6 3.2 „

实例

2、观察细胞分裂的过程:

构成数列:1,2,4,8„

实例3《庄子》中有这样的论述:“一尺之棰,日取其半,万世不竭.”

1111,,… 构成数列:1,24816实例

4、计算机病毒传播问题:

构成数列:1,20,202,203,204,„

实例

5、按银行支付利息的复利方式计算本利和,若存入银行1万元钱,年利率是1.98%,每年本利和构成数列:

10000×1.0198,10000×1.0198,10000×1.0198 ,10000×1.0198„

34提问:上述5组数列有什么共同的特点? 答:从第2项起,上述5组数列中每一项与前一项的比分别都等于常数2,2,1/2,20,1.0198。共同特点:从第2项起,每一项与前一项的比都等于同一个常数。☆处理:由学生自己观察发现每个实例中隐藏的数列及其特征,并归纳总结出5组数列的共同特征,从而引出等比数列定义。

[探究新知]

一、等比数列定义:若一个数列从第2项起,每一项与前一项的比都等于同一个常数,则这个数列叫做等比数列。这个常数叫做等比数列的公比,常用字母q表示。

anq(n2)an1☆处理:类比等差数列定义,由学生自己总结等比数列定义,并将定义的文字语言转换为数学符号语言。

例、判断下列几组数列是否为等比数列,若是, 求其公比。

,…(1)1,1,248111(2)-1,-2,-4,-8,„

(3)-1,2,-4,8,„(4)1,x,x,x„

(5)a, a, a, a „

设计思路:趁热打铁,巩固等比数列概念。学生可能认为数列(4)(5)也一定是等比数列,在纠错的同时,自然地引出两个注意事项。(2)(3)中的数列让学生直观地体会公比的正负对等比数列各项符号的影响。注意:

(1)q≠0, an ≠0(n ≥1),q>0时各项同号,q<0时各项正负相间。

(2)各项不为0的常数列既是等差又是等比数列。

二、等比数列通项公式: 设计思路:先复习等差数列通项公式的各种推导方法,让学生围绕定义,仿照等差数列推导等比数列的通项公式。(学生分小组讨论,根据各组讨论情况,选三位同学演板并讲解自己的推导思路。)

方法

一、归纳法 方法

二、累积法 方法

三、迭代法 23a2a1qa3a2qa1q2aa2q,3qa1a2anan1q(an2q)qan2q2(an3q)q2an3q3ana4q,q3aa a4a3qa1q

3n1ana2a3a4qn1a1a2a3an1aaqn1n1ana1qn1a1qn12

通项公式:若等比数列{an}的首项是a1,公比是q,则其通项公式为ana1qn1 设计思路:(1)回顾实例1中的三个数列,求出其通项公式。

(2)复习等差数列与一次函数的关系,通过计算机模拟演示,展示等比数列图像,引导学生分析等比数列图像与指数函数图像的关系。(3)通过图像和具体数据的计算让学生体会指数爆炸现象。关于通项公式的两点注意:

(1)函数思想:等比数列{an}的图像是其对应的指数型函数y上的一些孤立的点。

(2)方程思想:an,a1,q,n这四个量会知三求一。

[典例分析] 例

1、由右边框图,写出所打印数列的前5项,并建立数列递推公式。此数列是等比数列吗? 若是,求其通项公式。分析:本题将算法知识介于其中,既体现了知识间的联系性,又巧妙地引出了一个等比数列,而递推关系也包含在程序框图中。引导学生通过类比等差,体会要证明一个数列是等比数列,只需证明对于任意正整数n,a1xq qan1是an一个常数即可。

2、某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%,这种物质的半衰期为多长(精确到1年)?

分析: 要帮助学生发现实际问题中数列的等比关系,抽象出其数学模型。通项公式反映了数列的本质特征,因此关于等比数列的问题首先应想到它的通项公式an=a1qn-1,对于通项公式中的四个量要求会知三求一。

3、一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。分析:由等比数列的通项公式列出方程组,求出通项公式,再由通项公式求得数列的任一项,这个过程可以帮助学生再次体会通项公式的作用及其与方程之间的联系。

[演练天地]

1、求出引例2—5中等比数列的通项公式。

2、等比数列{an}中,(1)若a1=2,q=-3,求a8与an(2)若a1=2, a9=32,求q(3)若a1=8 ,an=3 ,q=3 ,求项数n 912

[课堂小结]

1、理解与掌握等比数列的定义及数学表达式:

anq(n2)an

12、会推导等比数列的通项公式并掌握其基本应用ana1qn1

3、函数思想:等比数列与指数函数的联系

[课后巩固] 54页 A组 7,8

[新课预知] 类比等差数列推导等比数列的相关性质

[课后反思] 从全面提高学生的素质考虑,本节课把等比数列定义及通项公式的探索、发现、创新等思维过程的暴露、知识形成过程的揭示作为教学重点;将类比、从特殊到一般的归纳等数学思想始终贯穿其中。这样的设计不像将知识和盘托出那么容易,而是要求教师精心设计问题层次,由浅入深,循序渐进,不断地激发学生思维的积极性和创造性,使学生自行发现知识、“创造”知识。这是不仅是对教师,也是对学生更高层次的要求。

下载等比数列的概念教案word格式文档
下载等比数列的概念教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等比数列教案

    等比数列教案(第一课时) 彭水第一中学校贺巧 教材分析: 三维目标:知识与技能:1.理解等比数列的定义;2.掌握等比数列的通项公式,会解决知道an,a1,q,n中的三个,求另一个的问题. 过程与方法......

    《等比数列求和》教案

    等比数列的前n项和(第一课时教案) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和......

    等比数列求和教案

    《等比数列的前n项和》教学设计 教材:人教版必修五§2.5.1 教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题......

    等比数列第一节教案

    课题: §2.4等比数列 授课类型:新授课 (第1课时) ●教学目标 知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导; 过程与方法:通过实例,理解等比数列的概念;探索并掌握等......

    等比数列第一课时教案

    2.4等比数列 学习目标: 1、理解等比数列的定义,会用定义判断等比数列. 2、掌握等比数列的通项公式. 3、掌握等比中项的定义并能解决相应的问题. 教学重点、难点 重点:等比数列......

    山东省等比数列求和教案

    等比数列的前n项和 1.知识与技能目标: 1)掌握等比数列求和公式,并能用之解决简单的问题。 2)通过对公式的推导,对学生渗透分类讨论思想以。 2过程与方法目标: 通过对公式的推......

    等比数列说课教案

    说课题目:等比数列的前n项和(第一课时) 长沙市六中 钟辅君 (选自人教版高中数学第一册(上)第三章第五节) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列......

    等比数列的性质教案

    等比数列的性质(第一课时) 惠来一中方汉娇 一、【教学目标】 1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题; 如:......