等比数列的性质及应用教案

时间:2019-05-12 17:17:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《等比数列的性质及应用教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《等比数列的性质及应用教案》。

第一篇:等比数列的性质及应用教案

一、教学目标:

1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、概括等逻辑思维能力。

3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

二、重点:等比数列的性质及其应用。

难点:等比数列的性质应用。

三、教学过程。

同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

数列名称 等差数列 等比数列

定义 一个数列,若从第二项起 每一项减去前一项之差都是同一个常数,则这个数列是等差数列。一个数列,若从第二项起 每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

定义表达式 an-an-1=d(n≥2)

(q≠0)

通项公式证明过程及方法

an-an-1=d;an-1-an-2=d,„a2-a1=d

an-an-1+ an-1-an-2+„+a2-a1=(n-1)d

an=a1+(n-1)*d

累加法;„„.an=a1q n-1 累乘法

通项公式 an=a1+(n-1)*d an=a1q n-1

多媒体投影(总结规律)

数列名称 等差数列 等比数列

定 义 等比数列用“比”代替了等差数列中的“差”

定 义

达 式 an-an-1=d(n≥2)

通项公式证明

迭加法 迭乘法

通 项 公 式

加-乘

乘—乘方

通过观察,同学们发现:

? 等差数列中的 减法、加法、乘法,等比数列中升级为 除法、乘法、乘方.四、探究活动。

探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

练习1 在等差数列{an}中,a2=-2,d=2,求a4=_____..(用一个公式计算)解:a4= a2+(n-2)d=-2+(4-2)*2=2

等差数列的性质1: 在等差数列{an}中, a n=am+(n-m)d.猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am*qn-m 性质证明 右边= am*qn-m= a1qm-1qn-m= a1qn-1=an=左边

应用 在等比数列{an}中,a2=-2 ,q=2,求a4=_____.解:a4= a2q4-2=-2*22=-8

探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

练习2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为.解:a3+a4+a5+a6+a7=(a3+ a7)+(a4+ a6)+ a5= 2a5+2a5+a5=5 a5=450 a5=90 a2+a8=2×90=180

等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq

猜想等比数列的性质2 在等比数列{an} 中,若m+n=s+t则am*an=as*at 特别的,当m=n时,an2=ap*aq

性质证明 右边=am*an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as*at=左边 证明的方向:一般来说,由繁到简

应用 在等比数列{an}若an&0,a2a4+2a3a5+a4a6=36,则a3+a5=_____.解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a5)2=36

由于an&0,a3+a5&0,a3+a5=6

探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

练习3 在等差数列{an}中,a30=10,a45=90,a60=_____.解:a60=2* a45-a30=2×90-10=170

等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+k

an即时an-k,an,an+k的等差中项

猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k*an+k> an即时an-k,an,an+k的等比中项

性质证明 右边=an-k*an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1)2t=an2左边 证明的方向:由繁到简

应用 在等比数列 {an}中a30=10,a45=90,a60=_____.解:a60= = =810

应用 等比数列{an}中,a15=10, a45=90,a60=________.解:

a30= = = 30

a60=

探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明。

练习4 设数列{an}、{ bn} 都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_____.解:a5+b5=2(a3+b3)-(a1+b1)=2*21-7=35

等差数列的性质4: 设数列{an}、{ bn} 是公差分别为d1、d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列 两个项数相同的等差数列的和任然是等差数列

猜想等比数列的性质4 设数列{an}、{ bn} 是公比分别为q1、q2的等比数列,则数列{an*bn}是公比为q1q2的等比数列 两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列。

性质证明 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,设cn=an?bn那么数列{an?bn} 的第n项与第n+1项分别为:

应用 设数列{an}、{ bn} 都是等比数列,若a1b1=7,a3b3=21,则a5b5=_____.解:由题意可知{an?bn}是等比数列,a3b3是a1b1;a5b5的等比中项。

由(a3b3)2= a1b1* a5b5 212= 7* a5b5 a5b5=63

(四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动)

五、等比数列具有的单调性

(1)q<0,等比数列为 摆动 数列, 不具有 单调性

(2)q&0(举例探讨并填表)

a1 a1&0 a1<0

q的范围 0 q=1 q&1 0 q=1 q&1

{an}的单调性 单调递减 不具有单调性 单调递增 单调递增 不具有单调性 单调递减

让学生举例说明,并查验有多少学生填对。(真确评价)

六、课堂练习:

1、已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于().a.b.?7  c.?6 d.?

解析:由已知得a32?=5,? a82=10,∴a4a5a6=a53?= = =5 ?.答案:a

2、已知数列1,a1,a2,4是等比数列,则a1a2=.答案:4

3、+1与-1两数的等比中项是().a.1 b.?-1 c.? d.±1?

解析:根据等比中项的定义式去求。答案:选d

4、已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于().a.2 b.? c.? d.?

解析:∵a3a9= =2 ?,∴? =q2=2,∵q&0,∴q= ?.故a1= ?= ?= ?.答案:c

5练习题:三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数。

分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.由类比思想的应用可得,若三个数成等比数列,则设这三个数

为: 根据题意

再由方程组可得:q=2 或

既这三个数为2,4,8或8,4,2。

七、小结

本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。

八、§3.1.2等比数列的性质及应用

性质一:若{an}是公比为q的等比数列,则an=am*qn-m

性质二:在等比数列{sp;c.?6 d.?

解析:由已知得a32?=5,? a82=10,∴a4a5a6=a53?= = =5 ?.答案:a

2、已知数列1,a1,a2,4是等比数列,则a1a2=.答案:4

3、+1与-1两数的等比中项是().a.1 b.?-1 c.? d.±1?

解析:根据等比中项的定义式去求。答案:选d

4、已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于().a.2 b.? c.? d.?

解析:∵a3a9= =2 ?,∴? =q2=2,∵q&0,∴q= ?.故a1= ?= ?= ?.答案:c

5练习题:三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数。

分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.由类比思想的应用可得,若三个数成等比数列,则设这三个数

为: 根据题意

再由方程组可得:q=2 或

既这三个数为2,4,8或8,4,2。

七、小结

本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。

八、§3.1.2等比数列的性质及应用

性质一:若{an}是公比为q的等比数列,则an=am*qn-m

性质二:在等比数列{

第二篇:等比数列性质(本站推荐)

等比数列

1,在等比数列an中,已知a3a636,a4a718,an

12,求n。

2,在1与100之间插入n个正数,使这n个数成等比数列,求插入的n个数的积。3,在等比数列an中,若a22,a6162,求a10。

4,在等比数列an中,a3a4a53,a6a7a824,求a9a10a11。

5,一个项数为偶数的等比数列,它的偶数项和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,求此等比数列的项数。

6,在等比数列an中,a9a10aa0,a19a20b,求a99a100。

7,已知由正数组成的等比数列an中,公比q2,a1a2a3a30245,求

a1a4a7a28

8,在等比数列an中,若a1a2a3168,a2a542,求a5与a7的等比中项。9,在等比数列an中,若a1a2a37,a1a2a38,求an 10,等比数列an的首项为a11024,公比q则当n为何值时,fn有最大值。,12,设fn表示这个数列的前n项的积,

第三篇:等比数列的性质教案

等比数列的性质(第一课时)

惠来一中

方汉娇

一、【教学目标】

1.结合等比数列的性质,引导学生类比猜想等比数列的几个重要性质,并能初步应用等比数列性质解决相关的简单问题;

如:若数列an是等比数列,mnpq,m,n,p,qN*,则

anamapaq;

2、通过实例让学生明确等比数列性质应满足的条件,避免学生应用性质时由于自己的主观意识,导致性质的错用;

3、通过实例变式,提高学生举一反三的能力,渗透转化、类比的思想方法.二、教学重难点

1、【教学重点】理解掌握等比数列的几个重要性质,并能根据具体问题选择合适、有效的性质进行解题;

2、【教学难点】等比数列性质满足的条件及如何选择合适的性质解决具体的实际问题;

四、【教学过程】

1、回顾旧知,创设问题情境,引入新课。

知识回顾: aan11.q 定义nqn2an1an 2.ana1qn1anamqnm 通项公式

3、等比中项:若a,G,b成等比数列,2a与bGGab 则成为的等比中项,且有

2、新课讲解 已知an是一个无穷等比数列,公比为q.如果是,它的首项与公比分别是多少?

 2取出数列an中的所有奇数项,组成一个新的数列,这个新数列是等比数列吗?如果 ,它的首项与公比分别是多少?是 3在数列an中,每隔10项取出一项,组成一个新的数列,这个新数列是等比数列吗?如果 是,它的首项与公比分别是多少?  1将数列an中的前k项去掉,剩余各项组成一个新的数列,这个新数列是等比数列吗? 1

性质1:对一个等比数列an进行等距离抽取,所得项组成一个新的等比数列

1:在等比数列an中,a22,a68,求a10例

若数列anmnpq,m,n,p,qN*,anamapaq问题1:是等比数列,: 是否成立? 证明略

问题2:若数列an是等比数列,a3a1a2,a3a7a1a4a5是否成立?

上述结论成立需要什么条件?

性质2: 若数列an特例:当

是等比数列,时,mnpq,m,n,p,qN*,anamapaq:。

mn2panamap2注意:①左右两边各项的下标之和相等;②左右两边的项数相同;

③可以推广到多项

练习1:⑴ 在等比数列an中,若a1a1025,a415,求a7的值;

⑵ 在等比数列an中,若a915,求a3a15的值;

(3)在等比数列an中,若a2a6a101,求a3a9的值;

练习2:⑴ 在等比数列an中,若an0,a2a42a3a5a4a625,求a3a5的值;

⑵ 在等比数列an中,求a7的值; a3和a9是方程7x18x70的两个根,练习3: 已知等比数列{an}满足an>0,n=1,2,且a5a2n522n(n3), 则当n1时,log2a1log2a3log2a2n1 2A.n2n1B.n1 C.n2D.n1

3、课堂小结:

⑴ 等比数列的性质:

性质1:对一个等比数列an进行等距离抽取,所得项组成一个新的等比数列

性质2: 若数列an特例:当是等比数列,时,mnpq,m,n,p,qN*,anamapaq:。

mn2panamap2注意:①左右两边各项的下标之和相等;②左右两边的项数相同;

③可以推广到多项

⑵ 解题思路总结

4、课后思考试题:

已知正数等比数列{an}中,若a1a2a37,a1a2a38,求数列通项公式.5、布置作业

6、板书设计(略)

第四篇:等差等比数列下标性质及应用

等差等比数列下标性质及应用

戎国华

一. 教学目标:

(一)知识与技能:等比等差数列的下标性质;

比数列的下标性质及其推导教学目标:掌握等差等方法

(二)过程能力与方法学生的猜想能力能力训练:进一步培养教学重点:等差等比数列的下标性质列下标性质的灵活应用与实际应用教学难点:等比等差数

(三)态度情感与价值观:培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差等比数列的研究,从而渗透特殊与一般的辩证唯物主义观点

(四)教学模式:多媒体,师生互动

一.新课引入等差数列an中,a1a5与a2a4的关系?答:a1a5=a2a4等差数列an中,a3a8与a5a6的关系?答:a3a8=a5a6二.等差数列下标性质:1.等差数列an中,有am,an,ap,aqamana1(m1)da1(n1)d2a1(mn2)d证明:amana(m1)da(n1)d2a(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d证明:qaamanpapqaaa1(p1)da1(q1)d2a1(pq2)damanapaq2.(变形)等差数列an中,有am,an,ap ,a3a6与a2a7的关系? 等比数列an中

答:a3a6=a2a7 等比数列an中,a2a10与a5a7的关系?

答:a2a10=a5a7

三.等比数列下标性质: ,有am,an,ap,aq 1.等比数列an中

amana1qm1a1qn1a12qmn2 证明:p1q12pq2aaaqaqa pq111q aaaamnpq,有am,an,ap 2.(变形)等比数列an中

四.例题选讲:

1.设an为等差数列 例(1)若a2a3a10a112006,求a6a7

解:aaaaa6aa 解:aaa2aaaa200620067aS2231011(67)23101167)610例(.a1)等差数列aa,7求n中,4a1518 解:(a1a2aaaa19aa203a)54解:(a((aa18a))(3(aa)543))1a20例2(.1)等差数列a中,aa10,求Sn41518 18(aa))aa20解:(a1a2a20(((aa)3aa)54解:(aaaaaa)(3(aa)541a1813))181920120 S10(aa)S9(aa)90:20***8(aaaa))20(S20910(a1aa)90S18111820(a4解:20)15 22(2)等差数列an中,a57,求S9

2)等差数列an中,a57,求S9(9((aa9)9((22aa55))9a119解:S9963解:Saa 99556322aa...ap,29((aa9)中9,(22a55a9a(a))23.等差数列若11a9n1263310 例解:S99解:Saa995563222 aaa2...aq,求a21a22a23...a30?11121320

解:aaa...aqq21222330

(1)a1a2a3................an(1)a1a2a3................an 思考:等差数列an中,(2)an1an2an3........a2n(2)an1an2an3........a2n 思考:等差数列an中,(3)aaa....a2n12n22n33n(3)a2n1a2n2a2n3....a3nS,SS,SS Snn,S22nnSnn,S33nnS22nn

等差数列a中,a0,d0,若SS,则n为多少时前n项和Sn有n1917 最大值?

解:SSSaaaa11aaaaaa16aa00aaaaaa00解:SSaaaa917101112******17解:Saaaaaa9***516***314151617 4a(aaa)00aa13a0a0是最后一个正数项aa00a0是最后一个正数项是最后一个正数项44())a0a01314131413(aa0a0是最后一个正数项例()一个项数为5.136项的等差数列的前四项和为,末四项和为67,131413141313141413 1314131413例4.一个等差数列S=396,前四项和为21,末四项和为67,21a10a11a12a13a14a15a16a17n0解:S13S9S17a10a11a12a13a14a15a16a170 SS1313n?13求S求项数0a13a14036130是最后一个正数项 a4(a13aa130是最后一个正数项14)0a13a140练习:已知等比数列a解:aaaa21,aaaan2167例()一个项数为5.136项的等差数列的前四项和为21,末四项和为67,解:例()一个项数为5.136项的等差数列的前四项和为21,末四项和为67,n例()一个项数为,末四项和为67,na1a2a3项的等差数列的前四项和为a421,annann1an2an367S13 求n4(a1an)求a3a5的值。例5.求S36S1若a>,等比数列an,n且an00,a2a42a3a5a中625,36(a1na36)4(aa)88aa22S39616 1n1nn224(aa)88aa22S3962解:a11a2aa21,aaaa67解:SSaaaaaa0解:aaaaaaa67a21,aaaa67条件改为SS?解:SSaaaaaaa013613636a解:***34339***4***12***36353433aaa;aaa916 解:9***4***12***a5a2解:a2a43a34;a46536(aa)n(aa)36(aa)111n363627a130a130S12S最大27a0a0SS***31213a88a223964(aa)a22S4(a)88a22S396396***3636n1361n36n1363622aa225aa2aaaaaa3a>0,a100,求lgalglga6.2435463355 例2a222a3a5a4a61a32aa的值。25na2a411002355100 n36aa5050505035lglgaaa...aalg(aa)lg100100解:aa5an>0,a1a100100,求lgaalga的值。lgaaa...aalg(aa)lg1001001100 3****** aa99a98...aaaa1a1002a99a3a98...1a10023

50对50对

50505050 lgaa...aalg(aa)lg100100lgaaaa...aalg(aa)lg******

aa22aa99a3a98...aa...1a10099 1a100398 50对对50

思考:课后总结:

第五篇:(经典整理)等差、等比数列的性质

等差、等比数列的性质

一:考试要求

1、理解数列的概念、2、了解数列通项公式的意义

3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳

(一)主要知识:

有关等差、等比数列的结论 1.等差数列{an}的任意连续m项的和构成的数列Sm,S2mSm,S3mS2m,仍为等差数列.

2.等差数列{an}中,若mnpq,则amanapaq 3.等比数列{an}中,若mnpq,则amanapaq

4.等比数列{an}的任意连续m项的和构成的数列Sm,S2mSm,S3mS2m,仍为等比数列.

5.两个等差数列{an}与{bn}的和差的数列{anbn}仍为等差数列.

an1

6.两个等比数列{an}与{bn}的积、商、倒数的数列{anbn}、、仍为等比数

bnbn

列.

(二)主要方法:

1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于a1和d(q)的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.

2.深刻领会两类数列的性质,弄清通项和前n项和公式的内在联系是解题的关键.

三:例题诠释,举一反三

例题1(2011佛山)在等差数列{an}中,a1+2a8+a15=96,则2a9-a10=()A.24B.22C.20D.-8

变式1:(2011广雅)已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A

3变式2:(2011重庆理11)在等差数列{an}中,a3a737,则a2a4a6a8

________

B3

A3

3A3

例题2 等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为()

A.130B.170C.210D.260

变式1:(2011高考创新)等差数列{an}的通项公式是an=1-2n,其前n项和为Sn,则数列{的前11项和为()

A.-45B.-50C.-55D.-66 变式2:(2011高考创新)等差数列{an}中有两项am和ak满足am=

Snn

}

1k,ak=

1m,则该数列前mk

项之和是.例题3(1)已知等比数列{an},a1+a2+a3=7,a1a2a3=8,则an=________.(2)已知数列{an}是等比数列,且Sm=10,S2m=30,则S3m=________(m∈N*).(3)在等比数列{an}中,公比q=2,前99项的和S99=56,则a3+a6+a9+…+a99=_______.变式1:(2011佛山)在等比数列{an}中,若a3·a5·a7·a9·a11=32,则

a9

a1

1的值为()

A.4B.2C.-2D.-

4变式2(2011湛江)等比数列{an}中,a1+an=66,a2an-1=128,前n项的和Sn=126,求n和公比q.变式3(2011广州调研)等比数列{an}的前n项和为Sn,若S2=6,S4=30,则S6.1

例题4 已知数列{an},an∈N*,Sn=(an+2)2.8(1)求证:{an}是等差数列;

(2)若bn=n-30,求数列{bn}的前n项和的最小值.

变式1已知数列{an}中,a1

3

5,an

2

1an1

(n2,nN

),数列{bn}满足bn

1an1

(nN

)

(1)求证:数列{bn}是等差数列;

(2)求数列{an}中的最大值和最小值,并说明理由

变式2设等差数列an的前n项和为sn,已知a324,s110,求: ①数列an的通项公式②当n为何值时,sn最大,最大值为多少?

变式3(2011·汕头模拟)已知数列{an}中,a1=,数列an=2-,(n≥2,n∈N*),数列an-1{bn}满足bn=

(n∈N*).an-1

(1)求证数列{bn}是等差数列;

(2)求数列{an}中的最大项与最小项,并说明理由.

32a例题5(2008·陕西)(文)已知数列{an}的首项a1=,an+1=n∈N*an+11

(1)求证数列-1}是等比数列;

ann

(2)求数列{前n项的和

an

变式1 在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(1)证明数列{an-n}是等比数列;(2)求数列{an}的前n项和Sn;(3)求证对任意n∈N*都有Sn+1≤4Sn

变式2设{an},{bn}是公比不相等的两个等比数列,且cn=an+bn,证明数列{cn}不是等比数列.

变式3.在数列an中,a11,an12an2(1)设bn

n

an

2n1,证明bn是等差数列;(2)

求数列an的前n项和Sn。

当堂讲练: 1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有项;

(2)已知数列{an}是等比数列,且an>0,nN,a3a52a4a6a5a781,则

a4a6

*

(3)等差数列前m项和是30,前2m项和是100,则它的前3m项和是.

2.若数列{an}成等差数列,且Smn,Snm(mn),求Snm.

3.等差数列{an}中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,a11,求其项数和中间项.4.若数列{an}(nN*)是等差数列,则有数列bn

a1a2an

n

(nN*)也为

等差数列,类比上述性质,相应地:若数列{cn}是等比数列,且cn>0(nN*),则有

d

n

nN*)也是等比数列.

5.设Sn和Tn分别为两个等差数列的前n项和,若对任意nN,都有则第一个数列的第11项与第二个数列的第11项的比是.说明:

anbn

S2n1T2n1

*

SnTn

7n14n27,.

四:课后练习

1基础部分

1已知各项均为正数的等差数列an中,a1a1136,则a6的最小值为()

A、4B、5C、6D、7

2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()

A.3B.4C.5D.23.等差数列{an}中,a13a8a15120,则2a9a10

()

A.24 B.22 C.20 D.-8

4{an}是等差数列,a1>0,a2009+a2010>0,a2009·a2010<0,使前n项和Sn>0成立的最大自然数n是()A.4019B.4018C.4017D.4016

5.在等差数列{an}中,前n项和为Sn,若a75,S721,那么S10等于()

A.55 B.40 C.35 D.70

6.(2009山东卷文)在等差数列{an}中,a37,a5a26,则a6____________.7设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144,则n=__________.S2007

S2005200

52

aSa20088在等差数列n中,1,其前n项的和为n.若2007

S2008_________,则

2提高部分

1、(2010惠州 第三次调研理 4)等差数列{an}的前n项和为Sn,若a2a8a1130,那

么S13值的是()A.130

B.6

5C.70D.以上都不对

2.(2010揭阳市一模 理4)数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则数列{bn}的公比为

A

B.4C.2D.

3、(2009安徽卷文 2)已知{an}为等差数列,于A.-1

12,则

B.1C.3D.7

4.(2009江西卷文)公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项, S832,则S10等于

A.18B.24C.60D.90

5.(2011佛山一检)在等差数列an中,首项a10,公差d0,若

aka1a2a3a7,则k()

A.22 B.23 C.24D.25

6.(2010全国卷1文)(4)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则

aaa=

(A)

7.(2010湖北文)7.已知等比数列{am}中,各项都是正数,且a1,则

a9a10a7

a8

A.1

a3,2a2成等差数列,B.1

C.3

D3

8(2010福建理)3.设等差数列an的前n项和为Sn,若a111,a4a66,则当Sn取最小值时,n等于

A.6

B.7

C.8

D.9

9.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)在等比数列{an}中,若a1a2a32,a2a3a416, 则公比q10.(2010年3月广东省广州市高三一模数学理科试题)在等比数列an中,a11,公比

q2,若an前n项和Sn127,则n的值为.

11.(2010年3月广东省深圳市高三年级第一次调研考试理科)设等差数列{an}的前n项和为Sn,若S981,则a2a5a8.

12.若Sn和Tn分别表示数列{an}和{bn}的前n项和,对任意自然数n,有an

2n32

*,(1)求数列{bn}的通项公式;(2)设集合A{x|x2an,nN},4Tn12Sn13n,B{y|y4bn,nN}.若等差数列{cn}任一项cnAB,c1是AB中的最大数,且

*

265c10125,求{cn}的通项公式.

下载等比数列的性质及应用教案word格式文档
下载等比数列的性质及应用教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差、等比数列性质类比

    等差、等比数列知识点一、等差数列:1.等差数列的证明方法:1. 定义法:2.等差中项:对于数列则{an}为等差数列。 2.等差数列的通项公式:an,若2an1anan2ana1(n1)d------该公式整理后是......

    讲等比数列性质学案doc

    2.4等比数列性质学习目标:1、理解等比数列的主要性质, 能推导证明有关性质; 2、能运用有关性质进行计算和证明. 【温故知新】1.已知数列{an}的前4项为2,6,18,54,则它的一个通项......

    等比数列的性质总结

    等比数列性质1. 等比数列的定义:2. 通项公式: ana1qn1anan1qq0n2,且nN*,q称为公比a1qqABnna1q0,AB0,首项:a1;公比:q推广:anamqnm,从而得qnm3. 等比中项anam或qn(1)如果a,A,b成等比数列,......

    等比数列的性质练习题(推荐阅读)

    考点1等比数列的通项与前n项和题型1已知等比数列的某些项,求某项【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n......

    等差数列与等比数列的性质

    第24课 等差数列与等比数列的性质●考试目标主词填空1.等差数列的性质.①等差数列递增的充要条件是其公差大于0,②在有穷等差数列中,与首末两端距离相等的和相等.即a1+an=a2......

    等比数列性质教学反思(精选5篇)

    等比数列性质的教学反思 一. 对本节课的课堂教学的理解 (1) 知识与技能 对比等差数列建立等比数列模型,加强等比数列概念的理解和认识体验数学中类比的重要思想方法。 (2) 过程与......

    等比数列教案

    等比数列(复习课)学案一.基本要求: ① 理解等比数列的概念;② 掌握等比数列的通项公式与前n项和公式及应用③ 了解等比数列与指数函数的关系发展要求:①掌握等比数列的典型性质及......

    等比数列教案

    2.4 等比数列(一) (一)教学目标 1.知识与技能:理解等比数列的概念,掌握等比数列的通项公式,理解这种数列的模型应用。 2.过程与方法:通过丰富实例抽象出等比数列模型,经历由发现几个......