《数形结合法在函数零点问题中的应用》教学设计

时间:2019-05-12 22:17:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《数形结合法在函数零点问题中的应用》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《数形结合法在函数零点问题中的应用》教学设计》。

第一篇:《数形结合法在函数零点问题中的应用》教学设计

《数形结合法在函数零点问题中的应用》教学设计

李志刚 山东省安丘市第一中学

【教学目标】 函数的零点一直是近年来全国各地高考卷上的热点,因其综合性强,让很多同学感到困难.本文通过对高考试卷中有关零点问题的研究,来说明如何将数形结合思想运用于函数零点 的问题中,使零点问题变得直观形象,从而有效地将问题解决.【教学思想、方法】 数形结合 分类讨论 转化与化归 函数与方程【教学过程】

函数的零点是新课标中增加的内容,一直是近年来全国各地高考考查的热点.含有零点问题的试题常在函数、方程、图象等方面进行知识交汇,可以很好地考查高中的四大数学思想.所以零点问题常常以选择题、填空题、解答题等形式出现,是同学们最常见的失分点之一,这让很多同学感到学习上有障碍.另一方面,数形结合主要是指数与形建立的一一对应关系,将抽象的数学语言与直观的图形 结合起来,通过对图形的处理,化难为易,化抽象为直观.由于零点问题蕴含着丰富的数形结合思想,所以在高考试卷中一直备受青睐.通过对高考试卷上有关函数零点问题的研究,总结出如何将数形结合思想在零点问题中进 行恰当地应用.题目中常有已知函数的零点个数,求参数的范围问题.零点的个数可以转化为方程的根的个数,再利用数形结合思想转化为两个函数图象的交点个数,这种方法可以使问题直观地得以解决.多媒体展示: 1.针对题型:

(1)确定零点的大致范围,多出现在选择题中;(2)确定零点的个数问题,多出现在选择题中;

(3)利用已知零点的个数求参数的范围,多出现在选择题、填空题、解答题中均有可能出现。

2.解决方案:

(1)直接画出函数图像,观察图像得出结论。

(2)不能直接画出函数图像的,可以等价地转化为两个函数图像的交点,通过判断交点的个数得出函数零点的个数或要求的参数范围。

例题讲解:

kx2,x0已知函数f(x)kR,若函数y=|f(x)|+k有三个零点,则

lnx,x0实数k的取值范围是()A.k2B.1k0C.2k1D.k2

[解析] :对于零点问题,先让函数等于零。然后移向构造两个函数,在同一坐标系中作出函数y=|f(x)|的图像和y=-k 的图像,问题转化为两个函数图像有三个不同的交点.

解:令|f(x)|+k =0,则|f(x)|=-k,在同一坐标系中作出函数y=|f(x)|的图像和y=-k的图像,问题转化为两个函数图像有三个不同的交点.由于|f(x)|≥0,故必须-k≥0,即k≤0.显然,k=0 时两个函数图像只有一个公共点,所以 k< 0,此时两个函数图像有三个公共点,如图所示,只要-k≥2,即k≤-2.

【注】结合FLASH课件展示动态图像,体现数形结合的重要性。

归纳小结:

1.解决此类问题的关键是数形结合; 2.还应把握两类知识:(1)灵活构造函数;

(2)图像的各类变换:平移、伸缩、对称、周期性变换等。

【教学反思】 在某个区间内若存在零点,可以考虑零点定理.但作为压轴题的最后一问,直接运用零点定理肯定会有难度,通过观察,发现出题者给出的第一问对第二问有提示作用,这样就可以创造条件来运用零点定理.这种现象在高考试卷最后的一两道解答题中经常会出现,另外,函数问题通常都要使用数形结合的思想,这样才可以使很多问题迎刃而解,且解法简捷.以高考题为例,对利用数形结合思想在函数零点问题中的应用做了初步研 究.数形结合思想是高中数学四大常用思想方法之一,可以使某些抽象的数学问题直观化、形象化,变抽象思维为形象思维,有利于把握数学问题的本质.零点问题是高中数学的热点、难点,运 用数形结合的思想,可以使零点问题不再让学生 感到困难.我国著名数学家华罗庚曾说过:“数缺 形时少直观,形少数时难人微;数形结合百般好,隔离分家万事休”,可见数和形是数学中两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.作为中学数学教师,在函数零点问题教学时渗透数形结合的思想,并在平时的训练中不断领悟和总结,可以促使学生在解决零点问题的能力上得到改善和提高!

第二篇:数形结合法在不等式证明中的应用

数形结合在不等式证明中的应用

数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学不等式的证明中,主要以“形”助“数”。

以“形”助“数” :

由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题。我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构。这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系。因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。

中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义。

不等式的证明在中学阶段甚至是大学阶段都是很重要的知识模块,其证明的方法也不计其数,但是利用数形结合的方法证明却是其中巧妙便捷的方法之一。下面就以实际例子加以阐述。

C

111111119

9,当且仅当abc1时,13abcabcabc

abc3

结构取联想更多的关于此问题的特征表达,不单独的考虑不等式问题,而是将所有已经学习的知识都联系在一起来思考,这样就会找到更多捷径.

第三篇:导数在研究函数问题中的应用

龙源期刊网 http://.cn

导数在研究函数问题中的应用

作者:朱季生

来源:《中学教学参考·理科版》2013年第04期

函数是高中数学的重要内容和主干知识,而导数知识在研究函数图象、函数零点、不等式证明以及不等式恒成立等诸多问题中亦有着广泛的应用.本文以2012年福建省高考中的函数试题举例阐述.一、函数的凹凸性与拐点的有关性质

第四篇:函数零点教学设计

一、【教案背景】

1、课题:函数的零点

2、教材版本:苏教版数学必修

(一)第二章2.5.1函数的零点

3、课时:1课时

二、【教学分析】 教材内容分析:

本节课的主要内容有函数零点的概念、函数零点存在性判定。

函数的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。教学目标:

1、知识与技能

(1)能利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数。

(2)了解函数零点与相应方程的根的联系,掌握零点存在的判定条件。

2、过程与方法

(1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。

(2)渗透算法思想,运用算法解决问题,为后面系统学习算法做准备。

3、情感、态度与价值观

在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神。教学重点: 零点的概念及零点存在性判定。

教学难点: 探究判断函数的零点个数和所在区间的方法。教学方法:

问题是课堂教学的灵魂,以问题为主线贯穿始终;以学生为主体,以教师为主导,以能力发展为目标,精心设计引导性问题,从学生的认识规律出发进行启发式教学,利用课件,动画等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。

三、【教学过程】

(一)、问题情境

(1)画出二次函数的图象,并写出图象与x轴交点的横坐标。

说明:通过学生熟悉的二次函数图象入手,让学生体会二次函数图象与x轴交点的数值与方程根的对应关系,方程的实数根就是的函数值为0时自变量x的值,建立初步的数形结合数学思想。(课件展示函数图象)

(2)画出二次函数、与的图象,并写出图象与x轴交点的横坐标。

说明:通过两小题让学生认识到当二次函数的图象在x轴上方时,与之对应的方程无解,当二次函数的图象恰好与x轴相交时,与之对应的方程有相等的实数根,建立初步的函数与方程数学思想。

提出二次函数零点的概念(我们把使二次函数的值为0的实数x称为二次函数的零点)。

(二)、合作探究

探究二次函数的零点、二次函数的图象与一元二次方程的实数根之间的关系?

Δ>0 Δ=0 Δ<0

方程根的的图象的零点

说明:小组合作探究,由学生回答,教师对答案给予鼓励性的评价。通过完成以上问题,让学生体会从具体到一般函数图象与x轴交点与相应方程根的关系。如果学生有困难,教师可作一下点拨,结合二次函数的图象,推广到一般函数零点的定义。板书课题:函数的零点

(三)、意义建构

函数的零点概念:我们把使函数的值为0的实数称为函数的零点(zeropoint)。

注:(1)零点不是点。

等价关系

函数y=f(x)的零点

方程f(x)=0实数根(数)

函数y=f(x)的图象与x轴交点的横坐标(形)

有了上述的关系,就可用函数的观点看待方程,方程的根即函数的零点,可以把解方程的问题互化为思考函数图象与x轴的交点问题。这正是函数与方程思想的基础。

说明:通过对概念的陈述,让学生了解函数零点的概念及性质,对函数零点的概念有了完整的认识,达到质的飞跃。

(四)、数学运用

例1:求下列函数的零点,并画出下列函数的简图。①

② ③ ④

(师用展示台展示学生的作图,指出优缺点)

说明:求函数零点,体现函数与方程互相转化的思想。本题的五个小题都简单,主要考察学生零点概念的掌握情况,题目包含了我们从初中到目前已经学过的常见函数,目的让学生通过及时练习加强对函数零点的的认识。

通过画简图,了解图象的变化形式,要注意体现零点性质的应用。为下面学习根的存在条件奠定基础。

例2 求证:二次函数有两个不同的零点。

说明:可让学生充分讨论例2的解法,发展学生的发散性思维,第一,从数的角度,将函数问题转化方程问题,体现“函数与方程”思想.第二,从形的角度,图象与x轴有两个不同的交点。几何画板演示画图象过程,引导学生观察当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示刺函数图象,多次播放抛物线穿过x轴的画面。板书证明过程

证明:设,则 f(1)=-2<0。

因为它的图象是一条开口向上的抛物线(不间断),这表明此图象一定穿过x轴,所以函数的图象与x轴有两个不同的交点。因此,二次函数有两个不同的零点。

从上面的解答知道,此函数有两个零点是。

问题(1)你能说明此函数在哪个区间[a,b]上存在零点()吗? 问题(2)如何判断一个函数在区间(a,b)上是否存在零点?

让学生自己思考、发言得到的结论,教师整理后得到函数零点的存在性判定。

如果函数在区间上的图象是一条不间断的曲线,且,则函数在区间内有零点。

教师给出这个结论,组织学生对下面问题进行讨论。通过讨论认识问题的本质,升华对零点存在性判定的理解。

(1)若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?

(2)若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点么?

(3)若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点么?

(4)在什么条件下,函数y=f(x)在区间(a,b)上可存在唯一零点?

(5)如果是二次函数y=f(x)的零点,且,那么f(a)·f(b)<0一定成立吗?

为了帮助大家更好体会该结论,我们把它设计成流程图。

说明:设置成流程图,既直观、清晰,又为学生将来学习算法奠定基础。算法的特殊表示符号,学生不知道,师生共同完成即可。

例3.求证:函数在区间(-2,-1)上存在零点.

说明: 学生完成过程中,教师巡视,展台展示优秀作品及步骤有问题者,达到纠正错误及解题规范化。

(五)、归纳总结

说明:这个环节,学生主动总结本节课学到的知识,将本节课所讲的知识点系统整理,为后面的函数零点的应用奠定基础。

(六)、反馈练习

(1)函数f(x)=2x2-5x+2的零点是

(2)二次函数y=2x2+px+15的一个零点是-3,则另一个零点是

;(3)若函数f(x)=x2-2ax+a没有零点,则实数a的取值范围;

(4)已知函数f(x)的图象是不间断的,有如下的x,f(x)对应值表:

那么函数在区间[1,6]上的零点至少有

个;(5)在二次函数中,ac<0,则其零点的个数为

说明:本环节用时5分钟,考完后小组互换,立即批改.发现问题立即纠正,再通过课后作业加以巩固.对做的好的及时给予表扬。

(七)、作业布置

1、完成苏教版必修1第76页练习1、2。

2、①有2个零点;②3个零点;③4个零点.四、【板书设计】

屏幕

函数的零点

一、函数零点的定义:我们把使函数的值为0的实数称为函数的零点(零点不是点).二、方程的根与函数零点之间的等价关系

函数y=f(x)有零点

方程f(x)=0有实数根(数)

函数y=f(x)的图象与x轴有交点(形)零点存在性判定

例1

例2

五、【教学反思】

前苏联数学家斯托利亚说过:“积极的教学应是数学活动(思维活动)的教学,而不是数学活动的结束—数学知识的教学。”反思“函数的零点”的课堂教学,本人觉得类似这样的数学概念、原理的教学,教学设计应特别重视“过程性”,教学过程应特别强调“参与性”,要让学生“参与”到教学过程中去.唯有学生的过程参与,才能较好地激发其主动性,确立其主体地位.吸引学生“参与”,关键招数之一是对教材进行“问题化”处理,用问题去引领学生探究。学生“参与”到教学过程中来,就是要参与知识建构、参与思维训练、参与方法提炼。

本课中,围绕教学目标知识生成的过程,设计了若干问题,以问题为中心,以学生为主体,让他们亲身经历,体验函数的零点知识的建构过程,函数零点存在性结论的探求,体现了本节课设计的基本理念:过程性、问题性和主体性。

第五篇:初中数学教学中的数形结合法

初中数学教学中的数形结合法

覃斗中学徐慧贤

数学课程标准总体目标明确提出:“让学生获得未来社会生活和进一步发展所必须的重要数学知识,以及基本的数学思想方法和必要的应用技能”。数学知识本身那固然重要,但是对于学生的后续的学习,生活和工作长期起作用,并使其终身受益的是数学思想方法。初中数学常用的数学思想思想方法有:化归思想方法,分类思想方法,数形结合的思想方法,函数思想方法,方程思想方法,模型思想方法,统计思想方法,用字母代替数学的思想方法,运动变换思想方法等。

初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究”形“的。但是研究代数要借助于“形”,研究几何要借助于“数”,几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法。数学家华罗庚说的好“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”。

数学史中的数形结合:“中国的儒家传统文化和教育统一贯重“一”或整体的价值”,这种注重“一以贯之”的整体性和直觉性的思维模式,是“数形结合”思想产生的本源。《九章算术》中所给出的各种筹算运演规则,如开方术、方程术、割圆术、阳马术、盈不足术等,从命名上就可以发现这些“程序”性法则(类似于算法)的直观性。现代数学各分支“交叉渗透,学科整合”,无不体现着数形结合长盛不衰的魅力。早在数学萌芽时期,人们在度量长度、面积和体积的过程中,就把数和形联系起来了。我国宋元时期,系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形之间的几何关系表达成代数式之间的代数关系。17世纪上半叶,法国数学家笛卡儿以坐标为桥梁,在点与数对之间、曲线与方程之间建立起来对应关系,用代数方法研究几何问题,从而创立了解析几何学。后来,几何学中许多长期不能解决的问题,例如立方倍积、三等分任意角、化圆为方等问题,最终也借助于代数方法得到了完满的解决。即使在近代和现代数学的研究中,几何问题的代数化也是一条重要的方法原则,有着广泛的应用。沟通数与形的内在联系,不仅使几何学获得了代数化的有力工具,也使许多代数学和数学分析的课题具有了明显的直观性,在数学解题中,运用数形结合思想,就是根据问题的具体情形,或者把图形性质问题转化成数量关系来研究,后者把数量关系问题转化成图形性质来研究,以便以数助形或以形助数,使问题简单化、抽象问题具体化。

数形结合的具体应用:

函数数形结合的应用

1、图形信息的获取,建立适当的代数模型。不少函数问题以图形的形式出现,图形中包含丰富的代数知识,仔细观察图形、图像、把握图形的特点、找出图形中的信息是解决问题的关键所在。

例1:某校部分住校生,放学后到学校锅炉房打水,每人接水 2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头。假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图像如图。

请结合图像,回答下列问题:

(1)根据图中信息,请你写出一个结论;

(2)问前15位同学接水结束共需要几分钟?

(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟。”你说可能吗?请说明理由。

分析:此类题型为图像信息问题,所有的信息由图像反映,图形是折线,分为两段,代数模型为:两个不同的一次函数。根据图形可得到点的坐标(0,96),(2,80),(4,72)。代表的意义为:到2分钟,锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等。利用待定系数法的代数方法求出函数解析式,利用代数的精确性说理解题。

解:(1)略

(2)当0≤x≤2时,y=-8x+96(0≤x≤2),当x>2时,y=-4x+88(x>2)

∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5

答:前15位同学接完水需5.5分钟。

(3)若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符。

若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t分钟开始接水,当0<t≤2则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t)+[3-(2-t)]=3(分),符合。

当t>2时,则8×2÷4=4(分)

即8位同学接完水,需7分钟,与接水时间恰好3分钟不符。

所以小敏说法是可能的,即从1分钟开始8位同学连续接完水恰好用了3分钟。

作为一名中学数学教师,我们要有渗透数学思想方法的意识和自觉性,用心挖掘,在教学中,深入浅出的、潜移默化的、可行的让学生领悟数学思想方法。由此可见加强“数形结合”思想教育,培养学生运用“数形结合”的意识就显得尤为重要。总之,数学知识与数学思想方法是相辅相成的。教师在数学教学过程中,必然涉及很多的概念,数学概念是数学思维的细胞,它是在感觉、知觉、思维形成表象的基础上,经过分析、综合、比较、抽象、概括等思维的逻辑加工而逐步形成的理性认识结果,它蕴涵着丰富的思想内涵。如果能充分揭示“数”与“形”的关系,实现“数”与“形”的转化,一定能使枯燥的数学增加几分趣味性,也能帮助学生拓展知识,强化思维。

下载《数形结合法在函数零点问题中的应用》教学设计word格式文档
下载《数形结合法在函数零点问题中的应用》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分析法在立体几何问题中应用[本站推荐]

    分析法在立体几何问题中应用立体几何在高中是一个难点,特别是添辅助线,让很多同学无从下手.虽然证明题的思路是非常明确的,比如要证明线面平行,只要在平面中找到一条直线与已知......

    浅谈导数在求解与函数单调性有关问题中的应用

    浅谈导数在求解与函数单调性有关问题中的应用 函数单调性是高中阶段函数的一个最基本的性质,导数为我们提供了一套新的理论和方法,只通过简单的求导和解相关的不等式就可以判......

    数形结合在中学数学教学中的应用

    安 阳 师 范 学 院 数形结合在中学数学教学中的应用 甘世军 (安阳师范学院数学与统计学院 河南 安阳 455002) 摘 要:数形结合是数学教学中的一种非常重要的思想方法,“数”与......

    数形结合在小学教学中的应用范文

    “数形结合”思想在小学数学教学中的渗透与应用 数学思想有许多,数形结合思想就是其中一种重要的思想。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于......

    函数零点的教学设计(精选多篇)

    函数零点教学设计 教学目标 1、理解函数零点的具体定义 2、深入理解判定函数零点的两个条件 3、能够利用零点判定定理解决简单函数零点问题 教学重难点 重点 1、理解函数零......

    函数和不等式思想在极值点偏移问题中的应用

    函数和不等式思想在极值点偏移问题中的应用一、教材分析1.教材的内容选修1-1第三章,本节属于专题复习课.2.教材所处的地位和作用微积分的创立是数学发展史中的里程碑,它的发展......

    方程的根与函数的零点教学设计

    教师的工作就不是原来的意义的教书,应改变为导书,即指导学生去读书,在指导学生学习的同时要点拨给学生学习的方法,帮助学生解疑析难,指导学生形成知识体系与思想方法,亦即将教法向......

    “方程的根与函数的零点”教学设计

    一.内容和内容解析 本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理. 函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,......