4.2提取公因式法教学设计(钱静静)(精选多篇)

时间:2019-05-12 22:29:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《4.2提取公因式法教学设计(钱静静)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《4.2提取公因式法教学设计(钱静静)》。

第一篇:4.2提取公因式法教学设计(钱静静)

4.2 提取公因式法

浙江师范大学附属秀洲实验学校

钱静静

教学目标:

1.理解因式、公因式等概念的意义.

2.会用提取公因式法进行因式分解. 3.理解添括号法则.

4.感受类比、整体以及迁移等数学思想,提高用数学语言概括与表达的能力. 教学重点、难点:

重点:理解核心概念“公因式”,会用提取公因式法进行因式分解. 难点:添括号法则在提取公因式分解因式中的应用. 教学过程: 回顾引入

__________________简便计算:413284135941313__________ 28a59a13a__________;amanal__________

新知学习

1.公因式概念解读.

2.确定下列多项式各项的公因式

(1)2a4b(公因式:_________)

(2)m2amb(公因式:_________)

(3)2x36x2(公因式:_________)

(4)3pq315p3q(公因式:_________)

(5)4x28ax2x(公因式:_________)

同桌交流:

(1)你们寻找的公因式一致吗?(2)你们是怎么找公因式的?简单说明 3.提取公因式法概念解读 4.将上述多项式因式分解

5.归纳提取公因式法的一般步骤 新知提升

1.把下列多项式因式分解

(1)a(xy)(xy)

(2)a(xy)yx 22

2.添括号法则概念解读

3.例:把2(ab)2ab因式分解

4.试一试:(1)3m(a2)2n(2a)

(2)10a(xy)5b(yx)2 知识梳理

通过本节课的学习,你有了哪些收获?

作业布置

1.必做题:作业本(1)2.挑战题:

(1)请说明对于任意自然数n,232n42n能被5整除

232019(2)已知:xxx10,求1xxxx 的值

第二篇:4.2提取公因式法教案

4.2 提取公因式法 教学设计

教学目标:

一、知识与技能目标:

1.会用提取公因式法分解因式。2.理解添括号法则。

二、过程与方法目标:

1.树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。2.树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思 想能力。

三、情感态度与价值观目标:

在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数 学的探索性。重点:

掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。难点:

正确地找出公因式 教学流程:

一、导入新课

想一想:一幢房子侧面的形状由一个长方形和三角形组成(如图),若把它设计成一个新的长方形,面积保持不变,且底边长仍为a,则高度应为多少?

我们知道,m(a+b)=ma+mb,反过来,就有ma+mb=m(a+b).应用这一事实,怎样把多项式2ab+4abc分解因式?

一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式。

如m是多项式ma+mb各项的公因式,2ab是多项式2ab+4abc各项的公因式.如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解。这种分解因式的方法叫做提取公因式法.同学们,我们下面一起来讨论如何确定应提取的公因式.以多项式3ax2y+6x3yz为例,把各项表示如下: 3ax2y=3·a·x·x·y 6x2yz=2·3·x·x·x·y·z 应提取的公因式为: 3x2y 公因式的确定方法:应提取的多项式各项的公因式应是:各项系数的最大公因数(当系数是整数时)与各项都含有的相同字母的最低次幂的积。

试一试:

所以,公因式是-3 x 分解因式:-9 x 2 + 6 x y=-3x(3x-2y)

二、例题讲解[来源:Z§xx§k.Com]

例(1)多项式 8a3b2 +12ab3c的公因式是(2)多项式3mx – 6nx2 的公因式是

提取公因式法的一般步骤:

(1)确定应提取的公因式;

(2)多项式除以公因式,所得的商作为另一个因式;[来源:学_科_网Z_X_X_K][来源:学科网ZXXK](3)把多项式写成这两个因式的积的形式.例1 把下列各式分解因式:(1)2x3+6x2(2)3pq3+15p3q(3)-4x2+8ax+2x(4)-3ab+6abx-9aby.注意:当首项的系数为负数时,通常应提取负因数,此时剩下的各项都要改变符号.例2 把2(a-b)2-a+b分解因式:

分析:把-a+b变形为-(a-b),原多项式就转化为2(a-b)2-(a-b).若把(a-b)看做整体,原多项式就可以提取公因式(a-b).在求解例2时,我们把-a+b加上括号,变形为-(a-b),而不改变-a+b的值,这种方法叫做添括号.一般地,添括号法则如下:

括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号。

三、习题巩固

1.确定下列多项式的公因式,并分解因式.(1)ax+b

(2)3mx-6nx(3)4ab+10ab-2ab 222 2.添括号(填空):

(1)1-2x=+()(2)-x-2=-()(3)-x2-2x+1=-()3.下面的分解因式对吗?如果不对,应怎样该正?

(1)2x2+3x3+x=x(2x+3x2)

(2)3a2c-6a3c=3a2(c-2ac)(3)-2s3+4s2-6s=-s(2s2+4s-6)(4)-4a2b+6ab2-8a=-2ab(2a-3b)-8a 拓展延伸:

[来源:学&科&网]

2、若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是(D)

(A)-1-3x+4y(B)1+3x-4y(C)-1-3x-4y(D)1-3x-4y

四、小结

1、确定公因式的方法:

(1)、公因式的系数是多项式各项系数的最大公因数。[来源:学科网](2)、字母取多项式各项中都含有的相同的字母。(3)、相同字母的指数取各项中最小的一个,即最低次幂

2、提取公因式法分解因式的一般步骤

(1).确定应提取的公因式;

(2).用公因式去除这个多项式,所得的商作为另一个因式

(3).把多项式写成这两个因式的积的形式。

注意:

(1).当首项系数为负时,通常应提取负因数,在提取“-”号时,余下的各项都变号。(2).提取公因式要彻底;注意易犯的错误: ①提取不尽

②漏项

③疏忽变号

④只提取部分公因式,整个式子未成乘积形式

五、布置作业

教材第104页,1、2、3题

第三篇:提公因式法教学设计

提公因式法教学设计

一、教材分析

本节课选自义务教育课程标准实验教科书八年级上册第十五单元第四节因式分解的提公因式法。内容包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的最基本方法——提公因式法。本节学习的因式分解知识是多项式因式分解中一部分最基本的知识和最基础的方法,受认知水平和思维水平的限制,仍会有较多的学生不适应,掌握不好,教材充分考虑了这一点,内容梯度小,知识点少且浅,利于学生的学习。

二、学生分析

八年级的学生基础差别很大,学生对新知识的接受能力也有很大差别,选取教法充分考虑了学生的实际情况,照顾大多数,精讲多练,多指导。

三、教学目标

1、使学生了解因式分解的概念,以及因式分解与整式乘法的关系。

2、了解公因式概念和提公因式法的方法。

3、会用提公因式法分解因式。

4、在探索提公因式法的过程中学会逆向思维,渗透化归的思想方法。

四、重点难点 重点:会用提公因式法分解因式。

难点:如何确定公因式以及提出公因式后的另外一个公因式。

五、教学过程

1、创设情境,探究新知

设计说明:从寻求简便算法入手的三个题目学生容易接受,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因式分解进行类比,从儿对因式分解的概念和方法有一个整体的认识,也渗透着数学中的类比思想。问题一:请同学们完成下列计算,看谁算得又快又准:(1)20×(-3)2+60×(-3)(2)1012-992

(3)572+2×57×43+432

学生在运算交流中积累解题经验,复习乘法公式。

解:(1)20×(-3)2+60×(-3)=20×9+60×(-3)=180-180=0 或20×(-3)2+60×(-3)=20×(-3)2+20×3×(-3)=20×(-3)(-3+3)=-60×0=0

(2)1012-992=(101+99)(101-99)=200×2=400

(3)572+2×57×43+43 =(57+43)2=1002=10000 在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式式运算变得简单易行,类似地,在试的变形中,有时也需要将多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容——因式分解。问题二:将下列多项式写成整式的乘积的形式。(1)x2+x=﹍﹍;(2)x2-1=﹍﹍;(3)am+bm+cm=﹍﹍.根据整式乘法和逆向思维原理,可以做如下计算:(1)x2+x=x(x+1)(2)x2-1=(x-1)(x+1)

2(3)am+bm+cm=m(a+b+c)待学生回答后,教师归纳整理并板书:

像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

可以看出,因式分解与整式乘法是相反方向的变形,所以需要逆向思维。辨一辨:下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.解:(1)不是因式分解,可以用整式乘法检验其真伪。(2)不是因式分解,不满足因式分解的含义。

(3)不是因式分解,因为因式分解是恒等变形而本式不恒等。(4)不是因式分解,是整式乘法。

问题三:再观察上面问题二中的第一题和第三题,你能和发现什么特点? 学生可能的回答有: 发现(1)中各项都有一个公共的因式x(2)中各项都有一个公共的因式m。

教师讲解,因为am+bm+cm=m(a+b+c),于是就把am+bm+cm分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式是(a+b+c)是am+bm+cm除以m所得的商,像这种因式分解的方法叫提公因式法。显然,由定义可知,提公因式法的关键是如何正确的寻找公因式,让学生观察上面公因式的特点,找出确定公因式的方法:(1)公因数的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取次数最低的。

例:指出下列各多项式中各项的公因式。(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah(2a)(4)x2y+xy2(xy)(5)12xyz-9x2y2(3xy)教学说明:理解清楚因式分解的概念和公因式的概念是教学继续进行的关键,而所诶的因式分解就是把多项式化为积的形式,分清它与整式乘法的关系对因式分解的概念的建立很有必要,而在学生中间开展辨析、讨论时一种有效地方法。

2、例题教学,运用新知

设计说明:此环节要使学生进一步认识到多项式可以有不同形式的表示,例题讲解的重点一是公因式的概念,如何去找公因式,二是公因式提出后,另一个因式是如何来确定的。例:将下列多项式分解因式。

(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)3x2-6xy+x;(4)-4a3+16a2-18a;(5)6(x-a)+x(2-x).让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,教师深入到学生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结。

(1)分析:先找出8a3b2和12ab3c的公因式,再提出公因式,我们看到这两项的系数8与12,它们的最大公约数是4两项的字母部分都含有a和b,其中a的最低次数是1,b的最低次数是2,我们选定4ab为公因式,提出公因式后,另一个因式2a2+3bc就不再有公因式了。解:8a3b2+12ab3c=4ab2c2a2+4ab2·3bc=4ab2·(2a2+3bc)

2点评:提出公因式后,要满足另一个因式不再有公因式才行,可以概括为一句话:括号里面分到“底”,这里的“底”世道不能再分解为止。(2)分析:(b+c)是这两个式子的公因式,可以直接提出,这就是说,公因式可以是单项式也可以是多项式是多项式适应直接考虑直接提出。解:2a(b+c)-3(b+c)=(b+c)(2a-3)(3)解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1)点评:x(3x-6y+1)= 3x2-6xy+x,而x(3x-6y)=3x2-6xy 所以原多项式因式分解为x(3x-6y+1)而不是x(3x-6y),这就是说1作为项的系数通常可以省略,但如果单独成一项是,他在因式分解时不能漏掉,可以概括为:某项提出莫漏1。

(4)解:-4a3+16a2-18a=-(4a3-16a2+18a)=-2a(2a2-8a+9).点评:如果多项式的第一项是负的,一般要提出“-”,是括号内第一项的系数是正的。再提出“-”时,多项式的各项都要变号,可以概括为一句话:首项有负先提负。

(5)分析:先找6(x-a)和的公因式x(2-x),再提取公因式,因为2-x=-(2+x),所以(x-2)即公因式。

解:6(x-a)+x(2-x)= 6(x-a)-x(x-2)=(x-2)(6-x)。点评:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,便可以发现公因式,然后在提取公因式。

教学说明:例题是确定公因式和如何提公因式分解因式方法的具体化,根据学生的心理和发展水平,此处学生自己处理会问题较多,所以教师要细致的讲解,要让学生清楚的知道具体的方法和步骤,讨论清楚各种类型多项式提供因式时处理的方法,是本节课的核心和关键。

3、随堂练习

设计说明:针对本节课的重点,有目的的设计了几组练习,以达到深化理解所学内容,形成因式分解解题技能的目的,同时充分让学生暴露问题,一边查缺补漏。

A、用提公因式法将下列各式因式分解。(1)-x3z+x4y;(2)3x(a-b)+2y(b-a).分析:(1)题直接分解因式即可,(2)题首先要适当的变形,把b-a化成-(a-b),然后再提供因式。B、把下列各式分解因式。

(1)(2a+b)(2a-3b)+(2a+5b)(2a+b);(2)4p(1-q)3+2(q-1)2 C、课本练习第1、2、3题。教学说明:在学生练习之后的交流中,教师要注意倾听学生的发言,出现的问题提出来交由学生评判,最后作出汇总。云用提公因式法分解因式时,可能的问题有:

(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解。

(2)如果出现象1(1)小题需要调整时,首先要调整,这是注意到(a-b)

n =(b-a)n(n为偶数)。

(3)因式分解如果最后有同底数幂,要写成幂的形式。

4、小节反思,布置作业

设计说明:每节课后设计小结环节,目的是使学生养成反思的习惯,为掌握知识、提高能力服务。

问题:用提供因式法分解因式要注意哪些问题呢?

在学生畅所欲言的基础上,教师做出总结,可以用四句顺口溜来表达: 各项有公先提公,首项有负常提负,某项提出莫漏1,括号里面分到底。作业:习题15.4第6题。

六、教学反思

1、本节课是因式分解的第一节课,主要是建立因式分解的概念和用提公因式法进行因式分解。由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,是数学中对式的基本计算内容之一,也由于因式分解的能力在具体应用中会得到不断的提高,所以现在对因式分解题目的难度不宜过高。

2、因式分解的结果和目的类似于数的分解,所以本课开始时从“寻求数式的简便算法”进行引入,从知识的迁移角度来讲比较自然,学生也容易接受,对因式分解概念的建立很有好处,使学生认识到对多项式进行变形会对运算带来简便,从而增加对因式分解重要性的认识。

3、本课在提公因式法因式分解的教学中,要让学生理解好公式的概念,这样有利于公因式的确定,对准确迅速的分解因式很有好处:对公因式的理解要到位要全面,这里渗透整体思想,能把一个大的东西,繁的东西,难的东西,看成一个小的简单的容易的东西,是一种重要的能力和素质,所以在公因式教学中应有这样的概念。

4、对于有关概念的建立和提公因式法的研究,要尽可能的让学生进行讨论和辨析。

第四篇:《提公因式法》 教学设计

提公因式法

一、内容与分析

教材所处的地位

这节课是九年制义务教育教科书八年级上册第一章第二节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用。

二、目标与分析

目标:(1)使学生经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式;

(2)会用提取公因式法进行因式分解.

分析:根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固。因此,本课由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;引导学生由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。

三、本课内容及重点、难点分析:

根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2-25和9x2-y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力

3、教学重点、难点

根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:(1)学生能确定多项式中各项的公因式;

1(2)学生能用提公因式法把多项式分解因式。

难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。

四、教学方法分析

根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。

五、学法分析

教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的探究意识和创新能力。

六、教学过程分析 第一环节 引入

问题1:计算:(1)37×337+63×337 设计意图:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.

师生活动:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数337,在提出公因数337后,很快得出这一题的计算结果是33700。第二环节 想一想

问题2:多项式 ab+ac中,各项有相同的因式吗?多项式 x+4x呢?多项式mb+nb–b呢? 结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.

设计意图:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.

师生活动:教师提出问题后主要由学生总结,由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式,知道公因式的概念。第三环节 议一议

问题3:多项式-8xy+2xy各项的公因式是什么?

结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;

(2)各项都含有的字母的最低次幂的积是公因式的字母部分;

(3)公因式的系数与公因式字母部分的积是这个多项式的公因式。

设计意图:由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节

222中寻找多项式2xy+6xy中各项的公因式,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力,顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力。师生活动:学生知道每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论。在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式。第四环节 试一试

问题4:将以下多项式写成几个因式的乘积的形式:

(1)ab+ac(2)x+4x(3)mb+nb–b

结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.

设计意图:让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.

师生活动:由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解。学生在刚开始可能还是不能够按照正确的步骤去找到一个多项式的公因式,教师应鼓励学生多说明公因式是怎样找到的。第五环节 例题讲解

例1:把27mn+18mn-36mn分解因式。

分析:首先要确定各项的公因式。不难看出这个公因式是一个单项式,因此要从系数与字母两部分来考虑:(1)公因式的系数取各项系数的最大公约数;(2)公因式中的字母取各项相同的字母,并且各字母的指数取次数最低的。所以各项的公因式是9mn,其中(1)9是27与18和36的最大公约数。(2)m是各项相同的字母,其指数最低是1,即为m;n也是各项相同的字母,其指数最低是1,即为n。

解:-24xy-12xy+28y 例2:把3x²-6xy+x分解因式。

解:3x²-6xy+x= x·3x-x·6y+x·1=x(3x-6y+1)注意:不要漏项。这里把x写成x·1,可知提出一个因式x后,另一个因式是1。

因为分解因式与整式乘法相反,所以可以用整式乘法检查因式分解的结果对不对。² 例3:把-24xy-12xy+28y分解因式。22

222

22222323 注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。在提出“-”号时,多项式的各项都要变号。第六环节 做一做

问题5:将下列多项式进行分解因式:

(1)3x+6(2)7x–21x(3)8ab–12abc+ab(4)–24x–12x+28x 设计意图:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验. 师生活动:学生归纳:提取公因式的步骤:(1)找公因式;(2)提公因式.

易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”;

(2)第(4)题提出“–”时,后面的因式不是每一项都变号.

矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等. 第七环节 反馈练习

1、找出下列各多项式的公因式:

(1)4x+8y(2)am+an(3)48mn–24mn(4)ab–2ab+ab

2、将下列多项式进行分解因式:

(1)8x–72(2)ab–5ab(3)4m–8m

(4)ab–2ab+ab

(5)–48mn–24mn(6)–2xy+4xy–2xy

设计意图:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏。从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.

师生活动:从学生掌握的情况出发,看看学生的问题是在寻找公因式方面还是在提公因式方面没有很好的掌握,教师再加以强调公因式的找法和提公因式应该注意的事项。第八环节 课堂小结

从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系? 22

第五篇:提公因式法 教案2

新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

6.2提取公因式法

〖教学目标〗

1、会用提取公因式法分解因式. ◆

2、理解添括号法则. 〖教学重点与难点〗

◆教学重点:用提取公因式法分解因式.

◆教学难点:例2分解因式,需要添括号,还要运用换之的思想,是本节教学的难点. 〖教学过程〗

一、新课引入

计算(1)25×17+25×83

(2)15.67×91+15.67×9 由学生小结:(1)应用分配律,使计算简便

(2)分配律的一般式a(b+c)= ab+ac 在此应用的是

ab+ac= a(b+c)

(*)

从因式分解的角度观察式(*)(1)可以看作是因式分解

(2)做法是把每一项中都含有的相同的因式,提取出来(3)举例把2ab+4abc分解因式

二、揭示课题,新课教学

1.公因式的概念和用提取公因式法分解因式 2.提取公因式法分解因式的步骤

(1)确定提取的公因式

例:3axy+6x3yz 归纳:公因式是各项系数的最大公因数(当系数是整数的)与各项都含有的相同字母 的最低次幂的积

(2)用提取公因式法分解因式:3axy+6x3yz=3xy(a+2xz)归纳:a、提取公因式后,多项式余下的各项不再含有公因式

b、提取的实质是将多项式中的每一项分别除以公因式3xy

(3)练习

分解因式:5abc +15abc 3.例题教学

例1 把下列各式分解因式:

(1)2 x3+6 x

(2)3pq3+15p3q

(3)-4x+8ax+2x(4)-3ab+6abx-9aby 小结:提取公因式法的一般步骤和要求

4.再议公因式(1)公因式还可以包括各项中都含有的多项式如

2(a+b)-(a+b)中a+b 则引导学生进行提取,观察结果是否符合因式分解的要求。

(2)由(1)引入例2 把2(a-b)-a+b分解因式

2222222222北京今日学易科技有限公司

网校客服电话:010-87029231 传真:010-89313603

新课程网校[www.xiexiebang.com] 全力打造一流免费网校!

观察例题,猜想含有公因式a-b或a+b进行探索、分解因式

(3)由(2)把-a+b加上括号变形成-(a-b)而不改变 -a+b的值,这种方法称为添括号。

复习回忆,去括号法则,随之探索添括号法则

练习①添括号

-x-2x+1=-()

1-2x=+()

-x-2=-()

②因式分解

2(a+b)-(a-b)

三、练习P154 1.2.3.4.四、小结:(1)提公因式法分解因式的步骤和分解要求

(2)公因式的确定

(3)添括号法则

五、作业布置

22北京今日学易科技有限公司

网校客服电话:010-87029231 传真:010-89313603

下载4.2提取公因式法教学设计(钱静静)(精选多篇)word格式文档
下载4.2提取公因式法教学设计(钱静静)(精选多篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    闵源《提公因式法》教学设计

    第四章 因式分解 2、提公因式法(1) 赫章县辅处乡初级中学 闵源 一、内容与分析 教材所处的地位 这节课是九年制义务教育教科书八年级上册第一章第二节《提公因式法》第一课......

    《提公因式法》教学反思

    本节课主要内容是运用提公因式法进行因式分解。教学中,我用速算引入,有效的激发了学生的学习探究积极性,让学生体验到了学习的快乐,通过字母表示引入新课,符合从具体到从抽象的认......

    《提公因式法》教学反思 原创

    《提公因式法》教学反思 2014年11月20日,我在学校会议室进行了本学期汇报课的教学,对象为八年级3班,教学内容为第十四章第三节因式分解的第一节课:提公因式法。以下是我对本节课......

    八年级数学下册《提公因式法》教学设计[大全]

    一、教材分析本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的......

    4.2.1《提公因式法》教学设计[5篇范例]

    第四章因式分解 2.提公因式法(1) 教学目标: 1.使学生了解因式分解的意义,了解因式分解和整式的乘法是整式的两种相反方向的变形。 2.让学生会确定多项式中各项的公因式,会用提公因......

    八年级数学教学设计:提公因式法3

    八年级数学教学设计:提公因式法3 教学设计提公因式法(一) 教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系. 2.使学生理解提公因式法......

    提公因式法分解因式的教学设计(推荐五篇)

    提公因式法分解因式的教学设计 教学目标 (一)知识认知要求 进一步让学生掌握用提公因式法分解因式的方法. (二)能力训练要求 进一步培养学生的观察能力和类比推理能力. (三)情感与......

    “钱”教学设计

    (粤教版)《钱》教案 教学时数 一课时 教学思路 1. 走进文本 (1) 从“钱”的角度,梳理本文的“经济学脉络” (2) 通过对文章中重点句子的理解,加深对文本的理解 2. 走出文本 (1) 与文本对......