第一篇:八年级数学教学设计:提公因式法3
八年级数学教学设计:提公因式法3
教学设计
提公因式法(一)
教学目标
1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.教学重点及难点
教学重点:
因式分解的概念及提公因式法.教学难点:
正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.教学过程设计:
一、复习提问
乘法对加法的分配律.二、新课
1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:
请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)
如:m(a+b+c)=ma+mb+mc
2xy(x-2xy+1)=2x2y-4x2y2+2xy
(a+b)(a-b)=a2-b2
(a+b)(m+n)=am+an+bm+bn
(x-5)(2-x)=-x2+7x-10 等等.再请学生观察它们有什么共同的特点?
特点:左边,整式×整式;右边,是多项式.可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.例1 下列各式从左到右哪些是因式分解?(投影)
(1)x2-x=x(x-1)(√)
(2)a(a-b)=a2-ab(×)
(3)(a+3)(a-3)=a2-9(×)
(4)a2-2a+1=a(a-2)+1(×)
(5)x2-4x+4=(x-2)2(√)
下面我们学习几种常见的因式分解方法.3.提公因式法:
我们看多项式:ma+mb+mc
请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得
m(a+b+c)=ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式
ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:
(1)ax+ay+a(a)
(2)3mx-6mx2(3mx)
(3)4a2+10ah(2a)
(4)x2y+xy2(xy)
(5)12xyz-9x2y2(3xy)
例3 把8a3b2-12ab3c分解因式.分析:分两步:第一步,找出公因式;第二步,提公因式.先引导学生按确定公因式的方法找出多项式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).说明:
(1)应特别强调确定公因式的两个条件以免漏取.(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.例4 把3x2-6xy+x 分解因式.分析:先引导学生找出公因式x,强调多项式中x=x·1.解:3x2-6xy+x
=x·3x-x·6y+x·=x(3x-6y+1).说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.课堂练习:(投影)
把下列各式分解因式:
(l)2πR+2πr;
(3)3x3+6x2;
(4)21a2+7a;
(5)15a2+25ab2;
(6)x2y+xy2-xy.例5 把-4m3+16m2-26m分解因式.分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,注意添括号法则.解:-4m3+16m2-26m =-(4m3-16m2+26m)
=-2m(2m2-8m+13).说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.课堂练习:(投影)
把下列各式分解因式:
(1)-15ax-20a;
(2)-25x8+125x16;
(3)-a3b2+a2b3;
(4)-x3y3-x2y2-xy;
(5)-3ma3+6ma2-12ma;
(三)小结
1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.六、作业
教材 P.10中
1、七、板书设计2、3、4.
第二篇:八年级数学下册《提公因式法》教学设计
一、教材分析
本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.
二、学生知识状况分析
学生的技能基础:在上一节课的基础上,学生基本上了解了分解因式与整式的乘法运算之间的互逆关系,能通过观察、类比等手段,寻求因式分解与因数分解之间的关系,这为今天的深入学习提供了必要的基础.
学生活动经验基础:学生有了上一节课的活动基础,由于本节课采用的活动方法与上节课很相似,依然是观察、对比等,学生对于这些活动方法较熟悉,有较好的活动经验.
三、教学目标
知识与技能
1、经历探索多项式各项公因式的过程,并在具体问题中能确定多项式的公因式。
2、会用提公因式法把多项式分解因式。
3、培养学生解决问题的能力。
过程与方法
在探索过程中培养学生解决问题的主动性,加强学生的直觉思维并渗透化归的思想。
情感、态度与价值观
在数学活动中培养学生的合作意识和创新精神,体会数学知识间的整体联系。
教学重点:会用提公因式法分解因式。
教学难点:正确找出多项式中各项的公因式,并注意各项变形的符号问题。
四、教学过程设计
(一)温故知新
活动内容:计算: 采用什么方法?依据是什么?
活动目的:旨在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔。
(二)想一想
活动内容:
多项式 ab+ac中,各项有相同的因式吗?多项式 3x2+x呢?多项式mb2+nb–b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
活动目的:在学生能顺利地寻找数的公因数之后,再引导学生采用类比的方法在多项式中寻找相同的因式.
(三)议一议
活动内容:
多项式2x2+6x3中各项的公因式是什么?那多项式2x2y+6x3y2中各项的公因式是什么?
结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;
(2)各项都含有的字母的最低次幂的积是公因式的字母部分;
(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.
活动目的:公因式由简单到复杂,由于第一个多项式提供的比较简单,寻找的公因式不具备归纳的条件,而后面所提供的寻找多项式2x2y+6x3y2中各项的公因式只是多了含字母y的'因式,对比前一个公因式,通过寻找多项式2x2y+6x3y2中各项的公因式,可顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力
具备了归纳出怎样寻找多项式各项公因式的条件,培养学生的初步归纳能力.
(四)试一试
活动内容:
将以下多项式写成几个因式的乘积的形式:
(1)ab+ac(2)x2+4x(3)mb2+nb–b
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
活动目的:
让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.
(五)做一做
活动内容:将下列多项式进行分解因式:
(1)3x+(2)7x –21(3)8a3b2–12ab3c+ab(4)–24x3+12x2-28x
先让学生思考这些问题,然后教师在教学中注意讲清确定公因式的具体步骤,从系数、字母和字母的次数3个方面进行分析;讲完后要分析公因式和另一个因式之间的关系,并思考:如果提出公因式,另一个因式是否还有公因式?从而把提取公因式的“提”的具体含意深刻化。
最后学生归纳:提取公因式的步骤:
(1)找公因式;(2)提公因式.
易出现的问题:(1)第二题只提出7x作为公因式
(2)第(3)题中的最后一项提出ab后,漏掉了“+1”;
(3)第(4)题提出“–”时,后面的因式不是每一项都变号.
教师提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数是否相同;
(3)如果多项式的首项为“–”时,则先提取“–”号,然后提取其它公因式;
(4)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等.
活动目的:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验.
(六)想一想:提公因式法因式分解与单项式乘多项式有什么关系?
活动目的:通过学生的回顾与思考,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解。
(七)反馈练习
活动内容: 1、找出下列各多项式的公因式:
(1)4x+8y(2)am+an(3)48mn–24m2n3(4)a2b–2ab2+ab
2.把下列各式因式分解:(随堂练习)
活动目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.通过查缺补漏强化学生确定公因式的方法及提公因式法的步骤,能熟练地利用提公因式法分解因式。
五、教学反思
由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程、二次根式化简等中都要用到因式分解的知识。因此应该注重因式分解的概念和方法的教学。
本节运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由提公因数到找公因式,由整式的乘法的逆运算到提取公因式的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解。
【八年级数学下册《提公因式法》教学设计】相关文章:
1.《提公因式法》教学反思
2.八年级数学提公因式法教学设计
3.提公因式法练习题及答案
4.提取公因式法练习题
5.提公因式法教学反思范文
6.《提的写法》教学设计
7.《提取公因式进行因式分解》教学反思
8.减法的教学设计
9.《永字八法》教学设计
第三篇:提公因式法教学设计
提公因式法教学设计
一、教材分析
本节课选自义务教育课程标准实验教科书八年级上册第十五单元第四节因式分解的提公因式法。内容包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的最基本方法——提公因式法。本节学习的因式分解知识是多项式因式分解中一部分最基本的知识和最基础的方法,受认知水平和思维水平的限制,仍会有较多的学生不适应,掌握不好,教材充分考虑了这一点,内容梯度小,知识点少且浅,利于学生的学习。
二、学生分析
八年级的学生基础差别很大,学生对新知识的接受能力也有很大差别,选取教法充分考虑了学生的实际情况,照顾大多数,精讲多练,多指导。
三、教学目标
1、使学生了解因式分解的概念,以及因式分解与整式乘法的关系。
2、了解公因式概念和提公因式法的方法。
3、会用提公因式法分解因式。
4、在探索提公因式法的过程中学会逆向思维,渗透化归的思想方法。
四、重点难点 重点:会用提公因式法分解因式。
难点:如何确定公因式以及提出公因式后的另外一个公因式。
五、教学过程
1、创设情境,探究新知
设计说明:从寻求简便算法入手的三个题目学生容易接受,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因式分解进行类比,从儿对因式分解的概念和方法有一个整体的认识,也渗透着数学中的类比思想。问题一:请同学们完成下列计算,看谁算得又快又准:(1)20×(-3)2+60×(-3)(2)1012-992
(3)572+2×57×43+432
学生在运算交流中积累解题经验,复习乘法公式。
解:(1)20×(-3)2+60×(-3)=20×9+60×(-3)=180-180=0 或20×(-3)2+60×(-3)=20×(-3)2+20×3×(-3)=20×(-3)(-3+3)=-60×0=0
(2)1012-992=(101+99)(101-99)=200×2=400
(3)572+2×57×43+43 =(57+43)2=1002=10000 在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式式运算变得简单易行,类似地,在试的变形中,有时也需要将多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容——因式分解。问题二:将下列多项式写成整式的乘积的形式。(1)x2+x=﹍﹍;(2)x2-1=﹍﹍;(3)am+bm+cm=﹍﹍.根据整式乘法和逆向思维原理,可以做如下计算:(1)x2+x=x(x+1)(2)x2-1=(x-1)(x+1)
2(3)am+bm+cm=m(a+b+c)待学生回答后,教师归纳整理并板书:
像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
可以看出,因式分解与整式乘法是相反方向的变形,所以需要逆向思维。辨一辨:下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.解:(1)不是因式分解,可以用整式乘法检验其真伪。(2)不是因式分解,不满足因式分解的含义。
(3)不是因式分解,因为因式分解是恒等变形而本式不恒等。(4)不是因式分解,是整式乘法。
问题三:再观察上面问题二中的第一题和第三题,你能和发现什么特点? 学生可能的回答有: 发现(1)中各项都有一个公共的因式x(2)中各项都有一个公共的因式m。
教师讲解,因为am+bm+cm=m(a+b+c),于是就把am+bm+cm分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式是(a+b+c)是am+bm+cm除以m所得的商,像这种因式分解的方法叫提公因式法。显然,由定义可知,提公因式法的关键是如何正确的寻找公因式,让学生观察上面公因式的特点,找出确定公因式的方法:(1)公因数的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取次数最低的。
例:指出下列各多项式中各项的公因式。(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah(2a)(4)x2y+xy2(xy)(5)12xyz-9x2y2(3xy)教学说明:理解清楚因式分解的概念和公因式的概念是教学继续进行的关键,而所诶的因式分解就是把多项式化为积的形式,分清它与整式乘法的关系对因式分解的概念的建立很有必要,而在学生中间开展辨析、讨论时一种有效地方法。
2、例题教学,运用新知
设计说明:此环节要使学生进一步认识到多项式可以有不同形式的表示,例题讲解的重点一是公因式的概念,如何去找公因式,二是公因式提出后,另一个因式是如何来确定的。例:将下列多项式分解因式。
(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)3x2-6xy+x;(4)-4a3+16a2-18a;(5)6(x-a)+x(2-x).让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,教师深入到学生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结。
(1)分析:先找出8a3b2和12ab3c的公因式,再提出公因式,我们看到这两项的系数8与12,它们的最大公约数是4两项的字母部分都含有a和b,其中a的最低次数是1,b的最低次数是2,我们选定4ab为公因式,提出公因式后,另一个因式2a2+3bc就不再有公因式了。解:8a3b2+12ab3c=4ab2c2a2+4ab2·3bc=4ab2·(2a2+3bc)
2点评:提出公因式后,要满足另一个因式不再有公因式才行,可以概括为一句话:括号里面分到“底”,这里的“底”世道不能再分解为止。(2)分析:(b+c)是这两个式子的公因式,可以直接提出,这就是说,公因式可以是单项式也可以是多项式是多项式适应直接考虑直接提出。解:2a(b+c)-3(b+c)=(b+c)(2a-3)(3)解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1)点评:x(3x-6y+1)= 3x2-6xy+x,而x(3x-6y)=3x2-6xy 所以原多项式因式分解为x(3x-6y+1)而不是x(3x-6y),这就是说1作为项的系数通常可以省略,但如果单独成一项是,他在因式分解时不能漏掉,可以概括为:某项提出莫漏1。
(4)解:-4a3+16a2-18a=-(4a3-16a2+18a)=-2a(2a2-8a+9).点评:如果多项式的第一项是负的,一般要提出“-”,是括号内第一项的系数是正的。再提出“-”时,多项式的各项都要变号,可以概括为一句话:首项有负先提负。
(5)分析:先找6(x-a)和的公因式x(2-x),再提取公因式,因为2-x=-(2+x),所以(x-2)即公因式。
解:6(x-a)+x(2-x)= 6(x-a)-x(x-2)=(x-2)(6-x)。点评:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,便可以发现公因式,然后在提取公因式。
教学说明:例题是确定公因式和如何提公因式分解因式方法的具体化,根据学生的心理和发展水平,此处学生自己处理会问题较多,所以教师要细致的讲解,要让学生清楚的知道具体的方法和步骤,讨论清楚各种类型多项式提供因式时处理的方法,是本节课的核心和关键。
3、随堂练习
设计说明:针对本节课的重点,有目的的设计了几组练习,以达到深化理解所学内容,形成因式分解解题技能的目的,同时充分让学生暴露问题,一边查缺补漏。
A、用提公因式法将下列各式因式分解。(1)-x3z+x4y;(2)3x(a-b)+2y(b-a).分析:(1)题直接分解因式即可,(2)题首先要适当的变形,把b-a化成-(a-b),然后再提供因式。B、把下列各式分解因式。
(1)(2a+b)(2a-3b)+(2a+5b)(2a+b);(2)4p(1-q)3+2(q-1)2 C、课本练习第1、2、3题。教学说明:在学生练习之后的交流中,教师要注意倾听学生的发言,出现的问题提出来交由学生评判,最后作出汇总。云用提公因式法分解因式时,可能的问题有:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解。
(2)如果出现象1(1)小题需要调整时,首先要调整,这是注意到(a-b)
n =(b-a)n(n为偶数)。
(3)因式分解如果最后有同底数幂,要写成幂的形式。
4、小节反思,布置作业
设计说明:每节课后设计小结环节,目的是使学生养成反思的习惯,为掌握知识、提高能力服务。
问题:用提供因式法分解因式要注意哪些问题呢?
在学生畅所欲言的基础上,教师做出总结,可以用四句顺口溜来表达: 各项有公先提公,首项有负常提负,某项提出莫漏1,括号里面分到底。作业:习题15.4第6题。
六、教学反思
1、本节课是因式分解的第一节课,主要是建立因式分解的概念和用提公因式法进行因式分解。由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,是数学中对式的基本计算内容之一,也由于因式分解的能力在具体应用中会得到不断的提高,所以现在对因式分解题目的难度不宜过高。
2、因式分解的结果和目的类似于数的分解,所以本课开始时从“寻求数式的简便算法”进行引入,从知识的迁移角度来讲比较自然,学生也容易接受,对因式分解概念的建立很有好处,使学生认识到对多项式进行变形会对运算带来简便,从而增加对因式分解重要性的认识。
3、本课在提公因式法因式分解的教学中,要让学生理解好公式的概念,这样有利于公因式的确定,对准确迅速的分解因式很有好处:对公因式的理解要到位要全面,这里渗透整体思想,能把一个大的东西,繁的东西,难的东西,看成一个小的简单的容易的东西,是一种重要的能力和素质,所以在公因式教学中应有这样的概念。
4、对于有关概念的建立和提公因式法的研究,要尽可能的让学生进行讨论和辨析。
第四篇:八年级数学提公因式法(一)教学设计(共)
八年级数学提公因式法(一)教学设计
教材分析
本章教材是紧接整式的乘除之后安排的,主要内容是因式分解的意义和因式分解的方法。因式分解是整式中比较重要的恒等变形。在整式的乘法中是把两个或几个因式根据乘法法则展开为一个多项式,而因式分解则是把一个多项式分解为两个或几个因式的积的形式,所以说因式分解与整式的乘法也是互逆关系。本章内容既可复习、巩固整式乘法知识,同时也为下一章分式中约分、通分作好准备,而因式分解在以后解二次或高次方程、不等式、三角式的变形以及数的计算中都有它的重要地位。本节课是因式分解的第一节课,学好本节课是学好这一章的基础。
整合思路
本课利用多媒体辅助帮助学生直观而形象引出因式分解的定义和公因式的定义,用类比的数学思想引导学生进行探究,借助多媒体增大课堂容量和形象地进行提公因式法的教学。教学设计 教学目标
(一)知识认知要求
让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求
通过找公因式,培养学生的观察能力.(三)情感与价值观要求 在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.教学重点
能观察出多项式的公因式,并根据分配律把公因式提出来.教学难点
让学生识别多项式的公因式.教学过程
一、创设问题情境,引入新课
一块场地由三个矩形组成,这些矩形的长分别为,,宽都是,求这块场地的面积.解法一:S=×+ ×+ ×=++=2 解法二:S=×+ ×+ ×=(++)=×4=2 从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.二、新课讲解
1.公因式与提公因式法分解因式的概念.将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解
[例1]将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7x(x-3);(3)8a3b2-12ab3c+abc =8a2b·ab-12b2c·ab+ab·c =ab(8a2b-12b2c+c)(4)-24x3-12x2+28x =-4x(6x2+3x-7)3.议一议
过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想
从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系? 提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.三、课堂练习
(一)随堂练习
1.写出下列多项式各项的公因式.(1)ma+mb(m)(2)4kx-8ky(4k)(3)5y3+20y2(5y2)(4)a2b-2ab2+ab(ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)
(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=b(a2-5a+9)
(二)补充练习
把3x2-6xy+x分解因式 四.课时小结
1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤
(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题.五.课后作业习题2.2 六.活动与探究
利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.解:(1)32004-32003 =32003×(3-1)=32003×2=2×32003(2)(-2)101+(-2)100 =(-2)100×(-2+1)=(-2)100×(-1)=-(-2)100 =-2100
七、教学反思:
班中有一位男学生数学成绩是倒数的,平时又特别调皮,经常上课不认真听讲。今天他居然举手上黑板板演,而且做对了!我及时表扬了他,看来他对学习有兴趣了,希望他能继续努力。
第五篇:《提公因式法》 教学设计
提公因式法
一、内容与分析
教材所处的地位
这节课是九年制义务教育教科书八年级上册第一章第二节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用。
二、目标与分析
目标:(1)使学生经历探索寻找多项式各项的公因式的过程,能确定多项式各项的公因式;
(2)会用提取公因式法进行因式分解.
分析:根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固。因此,本课由学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;引导学生由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。
三、本课内容及重点、难点分析:
根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2-25和9x2-y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力
3、教学重点、难点
根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:(1)学生能确定多项式中各项的公因式;
1(2)学生能用提公因式法把多项式分解因式。
难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。
四、教学方法分析
根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。
五、学法分析
教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的探究意识和创新能力。
六、教学过程分析 第一环节 引入
问题1:计算:(1)37×337+63×337 设计意图:引入这一步的目的旨在让学生通过乘法分配律的逆运算(因数分解)这一特殊算法,使学生通过类比的思想方法很自然地过渡到正确理解提公因式法的概念上,从而为提公因式法的掌握扫清障碍.
师生活动:学生对于利用乘法的分配律进行逆运算的方法很熟悉,能很快找到这个式子各项有的相同因数337,在提出公因数337后,很快得出这一题的计算结果是33700。第二环节 想一想
问题2:多项式 ab+ac中,各项有相同的因式吗?多项式 x+4x呢?多项式mb+nb–b呢? 结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
设计意图:在学生能顺利地寻找数的简便运算中的公因数之后,再深一步引导学生采用类比的方法由寻找相同的因数过渡到在多项式中寻找相同的因式.
师生活动:教师提出问题后主要由学生总结,由于有了第一环节的铺垫,再从数过渡到式,学生能很快用类比的方法找到这些式子中相同的因式,知道公因式的概念。第三环节 议一议
问题3:多项式-8xy+2xy各项的公因式是什么?
结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;
(2)各项都含有的字母的最低次幂的积是公因式的字母部分;
(3)公因式的系数与公因式字母部分的积是这个多项式的公因式。
设计意图:由于第二环节提供的几个多项式比较简单,不能反映公因式的全部特征,而通过本环节
222中寻找多项式2xy+6xy中各项的公因式,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力,顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力。师生活动:学生知道每一个多项式都由两部分组成:系数部分与字母部分,因此,有必要将系数部分与字母部分分开讨论。在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式。第四环节 试一试
问题4:将以下多项式写成几个因式的乘积的形式:
(1)ab+ac(2)x+4x(3)mb+nb–b
结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
设计意图:让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备.
师生活动:由于有了因数分解的基础以及对提公因式法的正确理解和运用,学生能较快地从数的分解过渡到字母的因式分解。学生在刚开始可能还是不能够按照正确的步骤去找到一个多项式的公因式,教师应鼓励学生多说明公因式是怎样找到的。第五环节 例题讲解
例1:把27mn+18mn-36mn分解因式。
分析:首先要确定各项的公因式。不难看出这个公因式是一个单项式,因此要从系数与字母两部分来考虑:(1)公因式的系数取各项系数的最大公约数;(2)公因式中的字母取各项相同的字母,并且各字母的指数取次数最低的。所以各项的公因式是9mn,其中(1)9是27与18和36的最大公约数。(2)m是各项相同的字母,其指数最低是1,即为m;n也是各项相同的字母,其指数最低是1,即为n。
解:-24xy-12xy+28y 例2:把3x²-6xy+x分解因式。
解:3x²-6xy+x= x·3x-x·6y+x·1=x(3x-6y+1)注意:不要漏项。这里把x写成x·1,可知提出一个因式x后,另一个因式是1。
因为分解因式与整式乘法相反,所以可以用整式乘法检查因式分解的结果对不对。² 例3:把-24xy-12xy+28y分解因式。22
222
22222323 注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。在提出“-”号时,多项式的各项都要变号。第六环节 做一做
问题5:将下列多项式进行分解因式:
(1)3x+6(2)7x–21x(3)8ab–12abc+ab(4)–24x–12x+28x 设计意图:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验. 师生活动:学生归纳:提取公因式的步骤:(1)找公因式;(2)提公因式.
易出现的问题:(1)第(3)题中的最后一项提出ab后,漏掉了“+1”;
(2)第(4)题提出“–”时,后面的因式不是每一项都变号.
矫正对策:(1)因式分解后括号内的多项式的项数与原多项式的项数是否相同;(2)如果多项式的第一项带“–”,则先提取“–”号,然后提取其它公因式;(3)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等. 第七环节 反馈练习
1、找出下列各多项式的公因式:
(1)4x+8y(2)am+an(3)48mn–24mn(4)ab–2ab+ab
2、将下列多项式进行分解因式:
(1)8x–72(2)ab–5ab(3)4m–8m
(4)ab–2ab+ab
(5)–48mn–24mn(6)–2xy+4xy–2xy
设计意图:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏。从学生的反馈情况来看,学生对公因式概念的理解基本到位,提取公因式的方法与步骤基本掌握,但依然有部分同学出现第五环节中的问题,如对首项出现负号时不能正确处理,此时,需要老师进一步引导.
师生活动:从学生掌握的情况出发,看看学生的问题是在寻找公因式方面还是在提公因式方面没有很好的掌握,教师再加以强调公因式的找法和提公因式应该注意的事项。第八环节 课堂小结
从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系? 22