[初中数学]提公因式法教案4 人教版

时间:2019-05-12 22:29:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《[初中数学]提公因式法教案4 人教版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《[初中数学]提公因式法教案4 人教版》。

第一篇:[初中数学]提公因式法教案4 人教版

15.4.1提公因式法(第2课时)

一、教学目标

1.公因式是二项式,会用提公因式法分解因式.2.培养式的变形能力,发展符号感.二、教学重点和难点

1.重点:用提公因式法分解因式.2.难点:先进行式的变形,再提公因式.三、教学过程

(一)基本训练,巩固旧知 1.填空:

(1)把一个多项式化成几个因式 的形式,叫做因式分解;

(2)用提公因式法分解因式有两步,第一步: 公因式,第二步: 公因式.2.直接写出因式分解的结果:(1)mx+my=(2)3x+6x=(3)7a-21a=(4)15a+25ab=(5)x+x=(6)8a-8a=(7)4x+10x=(8)9ab-6ab=(9)xy+xy-xy=(10)15ab-5ab+10b= 3.下列因式分解,分解完的画“√”,没分解完的画“×”.(1)4m-2m=2(2m-m);()(2)4m-2m=m(4m-2);()(3)4m-2m=2m(2m-1).()

(二)创设情境,导入新课

师:上节课我们学习了用提公因式法分解因式,本节课我们再来看几个利用提公因式法分解因式的例子.***222

32(二)尝试指导,讲授新课

(师出示例题)例 把下列各式分解因式:

(1)2a(b+c)-3(b+c);(2)6(x-2)+x(2-x).师:(板书:解:(1)2a(b+c)-3(b+c))这个式子的公因式是什么?(让生思考一会儿,等到有一部分同学举手,再叫学生)生:„„(多让几名同学发表看法)

师:(指准式子)2a(b+c)中有因式b+c,-3(b+c)中也有因式b+c,所以,b+c是这个式子的公因式,把b+c提出来就可以了(边讲边板书:=(b+c)(2a-3)).师:(指准式子)大家看一看,结果是不是这样的?(稍停片刻)师:下面我们再来看第(2)小题.师:(板书:(2)6(x-2)+x(2-x))这个式子的公因式是什么?(让生思考一会儿,如果没有学生举手,直接教学)生:„„

师:(指准式子)6(x-2)中有因式x-2,x(2-x)中有因式2-x,这两个因式只差一点点,怎么办?

师:(板书:2-x=-(x-2),师可根据班级学生情况,对这个等式作必要解释)因为2-x=-(x-2),所以6(x-2)+x(2-x)=6(x-2)-x(x-2)(边讲边板书: =6(x-2)-x(x-2)).师:(指准式子)大家看一看,是不是这样的?(稍停片刻)师:(指6(x-2)-x(x-2))这个式子的公因式是什么? 生:(齐答)x-2.师:(指准式子)x-2是公因式,把x-2提出来就行了,提出来以后的结果是什么? 生:(x-2)(6-x).(生答师板书:=(x-2)(6-x))

(四)试探练习,回授调节 4.直接写出因式分解的结果:(1)a(x+y)+b(x+y)=(2)6m(p-3)-5n(p-3)=(3)x(a+3)-y(3+a)=(4)m(x-y)+n(x-y)= 2222

(5)(a+b)+c(a+b)= 5.把下列式子分解因式:

(1)m(a-b)+n(b-a)(2)x(a-3)-2(3-a)= = = = 6.判断正误:下列因式分解,对的画“√”,错的画“×”.(1)x(a+b)-y(b+a)=(a+b)(x+y);()(2)x(a-b)+y(b-a)=(a-b)(x+y);()(3)x(a-b)-y(b-a)=(x+y)(a-b);()(4)m(a+b)+m(a+b)=(a+b)(m+m).()

(五)归纳小结,布置作业

师:上节课我们学的是用提公因式法分解因式,这节课我们学的还是提公因式法分解因式,但这两节课的内容并不是一模一样的,不一样的地方在哪儿? 生:„„(多让几名同学发表看法)

师:用提公因式法分解因式,关键是找公因式,上节课我们找的公因式是单项式,(指准例题)而这节课我们找的公因式是像b+c,x-2这样的多项式.这就告诉我们,公因式不一定都是单项式,公因式也可以是多项式.(作业:P167练习1(3)(4),P170习题1(3)(4))

四、板书设计(略)

第二篇:提公因式法教案

15.4

15.4.1因式分解提公因式法

教学目标:

1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形。

2、会确定多项式中各项的公因式,会用提取公因式法分解

多项式的因式。

3、会利用因式分解进行简便计算。

4、通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对公因式是多项式时的因式分解的学习,培养换元的意识。

教学重难点

教学重点:因式分解的概念及提取公因式法。

教学难点:多项式中公因式的确定和当公因式是多项式时的因式分解。

教学准备:多媒体课件。

教学设计:

(一)新课引入:

1、问题:把15和18分解质因数。

2、回忆:运用所学知识填空

(3)2ab(a2

反之:(1)x2(2)x2-1=

(3)2a³b+2ab²

观察以下式子的特点:

(1)15=3×5

(2)18=2×3²

(3)X²+X=X(X+1)

(4)X²-1=(X+1)(X-1)

(5)2a³b+2ab²+2ab=2ab(a²+b+1)

由分解质因数类比到分解因式。

(二)新知学习:

1、分解因式的概念,与整式乘法的关系。

巩固概念:判断下列各式从左到右哪些是因式分解?

(1)m(a+b)=ma+mb

(2)2a+4=2(a+2)

(3)4a2-6ab2+2a=2a(2a-3b2+1)

(4)a2-2a+1=a(a-2)+1

(5)yyy10(10)100xxx22、确定公因式。

问题:ma+mb+mc 这个多项式有什么特征? 引入公因式

概念。

例1:找出6x³y5-3x²y4的公因式

归纳找公因式的办法。

课堂练习一:找出下列各多项式中的公因式填在后面括号内。

(1)3mx-6nx2()

(2)x4y3+x3y4()

(3)12x2yz-9x2y2()

(4)5a2-15a3+25a()

3、用提公因式法分解因式。

m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),观察构成乘积的两个因式分别是怎样形成的?

m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式。像这种分解因式的方法叫做提公因式法。

想一想:提公因式法的理论依据是什么?

4、知识运用:

例2:把8a3b2+12ab3c分解因式

解:(略).例3:把-24x³-12x²+28x分解因式。

解:(略)

判断下列各式分解因式是否正确?如果不对,请加以改正。

(1)2a2+4a+2=2(a2+2a)

(2)3x2y3-6xy2z=3xy(xy2-2yz)

课堂练习二:把下列各式分解因式。

(1)x2+x6(2)12xyz-9x2y2

(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-

1例4:把3a(b+c)-3(b+c)分解因式

判断正误:我班一位同学在昨天预习了提公因式法分解因式后做了两道练习题,请你帮他检查一下他的解题过程是否正确。如不正确,应怎样改正。

(1)2x(x+y)2-(x+y)3

解:原式=(x+y)2[2x-(x+y)]

=(x+y)2(2x-x-y)

(2)(y+2)(y+1)-3(y+2)

解:原式=(y+2)(y+1-3)

=(y+2)(y-2)

=y2-4

课堂练习三:将下列各式分解因式。

(1)p(a2+b2)-q(a2+b2)

(2)2a²(y-z)2-4a(z-y)2

例5:先分解因式,再求值。

4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)

5、拓展与提高:

(1)、20112+2011能被2012整除吗?

(2)、已知2x-y=8,xy=2,求多项式2x4y3-x3y4的值。

(3)、利用因式分解进行计算:23.1×24-46.2×7

(4)、将2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。

9796229998

(5)、计算:

课堂小结:

⑴什么叫因式分解?

⑵确定公因式的方法:

⑶提公因式法分解因式的步骤: ⑷提公因式法分解因式的步骤: 课后作业:课本P170习题15.4 : 题

课后反思:

第1题;第4题的(1);第6

第三篇:提公因式法教案

提供因法因式分解

教学流程:

一、导入及板书课题:

复习巩固整式的乘法。板书课题:提公因式法因式分解

二、学习目标:

 1.了解因式分解的概念;

 2.理解公因式的概念,会用提公因式法对多项式进行因式分解。

三、教学过程:

(一)自学指导:

1、自己认真看课本第42页到第43页的内容;

2、时间(5分钟)

3、自学方法:结合课本例题和云图中问题,独立思考,标出看不懂的地方,可以和同桌小声交流试一试的图形意思

 4.你能用吗提公因式法对多项式进行因式分解吗?

(二)自学检测(8分钟)

1、找四名学生书写两数和与两数差的公式

2、挑各组学生进行板演。

3、兵教兵(2分钟)

要求:各小组组长要切实负起责任,组长要落实好组员的学习情况,组长也讲不清的可以问教师。

4、教师点拨(2分钟)

①、公因式的系数是各项系数的最大公因数;

②、字母是各项中相同的字母,指数取各字母指数最低的;

③、要善于发现较隐蔽的公因式,如(X-Y)与(Y-X)是一对相反数,但它们可以变为相同的因式。

课堂作业:活页试题

课后作业: 课本45页练习题第2题

第四篇:提公因式法教案

§1.2.2 提公因式法

(二)●教学目标

(一)教学知识点

进一步让学生掌握用提公因式法进行因式分解的方法.(二)能力训练要求

进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求

通过观察能合理地进行因式分解的推导,并能清晰地阐述自己的观点.●教学重点

能观察出公因式是多项式的情况,并能合理地进行因式分解.●教学难点

准确找出公因式,并能正确进行因式分解.●教学方法 类比学习法 ●教学过程

Ⅰ.创设问题情境,引入新课 [师]上节课我们学习了用提公因式法因式分解,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解

请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例题讲解

[例1]下列多项中各项的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)

(ac)(ab)2(ac)(ba)2

6(m-n)3-12(n-m)2.12xy2(xy)18x2y(xy)

分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(ac)(ab)2(ac)(ba)2(4)12xy2(xy)18x2y(xy)

Ⅲ.课堂练习

把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.课时小结

本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题1.2 活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教学后记:

第五篇:提公因式法教案

提公因式法(1)

教学目标: 知识目标:

1、使学生理解什么样的式子是几个多项式的公因式;

2、初步会找出几个多项式的公因式;

3、会用提公因式法分解因式。情感目标:

让学生养成独立思考的习惯,同时培养学生的合作交流意识 能力目标:

通过找公因式,培养学生的观察能力 重点难点:

能观察出多项式的公因式,会用提公因式法分解因式。引入:

思考:

(1)乘法对加法的分配律用数学式子如何表示? m(x+y+z)=mx+my+mz(2)mx+my+mz = m(x+y+z)

我们把这种变形叫做什么?因式分解。新授:

通过观察,我们发现引入中等式左边的多项式中每一项都含有因式m,我们把几个多项式的公共的因式称为它们的公因式。

观察下列各组多项式中的公因式是什么?(1)5x²-3xy+x;(2)2a²b²c+4a³b4

分析:因为x=x·1,因此x是x的因式,所以(1)中的公因式是x;由于2a²b²c=2 a²b²·c,4a³b4=2 a²b²·2ab²,所以(2)中的公因式是2 a²b²

一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

现在我们试着用提公因式法分解上面两个多项式。

解:5x²-3xy+x=x(5x-3y+1)2a²b²c+4a³b4=2 a²b²(c+2ab²)

归纳:

当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的。相关练习:

把下列多项式因式分解:(1)3xy-5y²+y;(2)30x³y²+48x²yz 思考:

分解因式-4x²+6x 分析:如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号 解:-4x²+6x=-(4x²-6x)=-2x(2x-3)4a³b4 相关练习:

把下列多项式因式分解:(1)-12x²y+18xy-15y;(2)-6m³n²-4m²n³+10m²n² 小结:

确定公因式的一般步骤

(1)如果多项式是第一项系数是负数时,应把公因式的符号“-"提出。(2)取多项式各项系数的最大公约数为公因数的系数。

(3)把多项式各项都含有的相同字母的最低次幂的积作为公因式的因式。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

作业:

P10习题1.2 A组1、2

下载[初中数学]提公因式法教案4 人教版word格式文档
下载[初中数学]提公因式法教案4 人教版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    【教案】14.3.1提公因式法

    14.3.1提公因式法(一) 教学目标 1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系. 2.使学生理解提公因式法并能熟练地运用提公因式法分解因式. 3.树立......

    提公因式法 教案2

    新课程网校[WWW.XKCWX.COM] 全力打造一流免费网校! 6.2提取公因式法 〖教学目标〗 ◆1、会用提取公因式法分解因式. ◆2、理解添括号法则. 〖教学重点与难点〗 ◆教学重点:用提......

    《因式分解提公因式法》教案

    第一章 因式分解 2.提公因式法 课型:新授课 主备人: 审核人:初三数学组 一、教学目标: 1.知识与技能:把一个多项式化成几个整式的积的形式,•这种变形叫做把这个多项式因式分解,也叫......

    8.1 提公因式法教学案

    第1课8.1 提公因式法教学案 教学目的 1、使学生理解因式分解的意义及其与整式乘法的区别和联系。 2、了解公因式的概念,掌握提公因式的方法。 3、培养学生的观察、分析、......

    4.2.1提公因式法公教案

    4.2提公因式法(第1课时) 学习目标: 1、经过探索、认识多项式各公因式的过程,并在具体问题中,能确定多项式各项的公因式。 2、会运用提公因式法进行因式分解。 教学重点:会确定多项......

    提公因式法(一)教案2份

    第四章因式分解 2.提公因式法(一) 教学目标: 1、知识技能:让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解。 2、过程方法:通过与提公因数的类比,让学生感悟数学中数......

    提公因式教案

    提公因式法教学设计 ——李芸领 教学目标: 1、使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系。 2、使学生理解提公因式法并能熟练地运用提公因式......

    提公因式教案

    因式分解教案 (提公因式二) 执教 许小明 二零一二年三月三日 ●课题 §2.2.2 提公因式法(二) ●教学目标 (一)教学知识点 进一步让学生掌握用提公因式法分解因式的方法. (二)能力......