2.2.1 提公因式法(一) -数学教案

时间:2019-05-15 02:33:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.2.1 提公因式法(一) -数学教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.2.1 提公因式法(一) -数学教案》。

第一篇:2.2.1 提公因式法(一) -数学教案

第二课时

●课 题

§2.2.1 提公因式法

(一)●教学目标

(一)教学知识点

让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求

通过找公因式,培养学生的观察能力.(三)情感与价值观要求

在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点

能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点

让学生识别多项式的公因式.●教学方法

独立思考——合作交流法.●教具准备 投影片两张

第一张(记作§2.2.1 A)第二张(记作§2.2.1 B)●教学过程

Ⅰ.创设问题情境,引入新课

投影片(§2.2.1 A)

一块场地由三个矩形组成,这些矩形的长分别为,,宽都是 ,求这块场地的面积.解法一:S= × + × + × = + + =2 解法二:S= × + × + × =(+ +)= ×4=2 [师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.Ⅱ.新课讲解

1.公因式与提公因式法分解因式的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)

从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.[师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解

[例1]将下列各式分解因式:(1)3x+6;(2)7x-21x;323(3)8ab-12abc+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.[师]请大家互相交流.[生]解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7x(x-3);(3)8a3b2-12ab3c+abc

=8a2b·ab-12b2c·ab+ab·c =ab(8ab-12bc+c)(4)-24x3-12x2+28x =-4x(6x2+3x-7)

3.议一议

[师]通过刚才的练习,下面大家互相交流,http://jiaoan.cnkjz.com/Article/Index.html>总结出找公因式的一般步骤.[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想

[师]大家http://jiaoan.cnkjz.com/Article/Index.html>总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?

[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.Ⅲ.课堂练习

(一)随堂练习

1.写出下列多项式各项的公因式.(1)ma+mb(m)

(2)4kx-8ky(4k)(3)5y3+20y2(5y2)(4)a2b-2ab2+ab(ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m-6m=2m(2m-3)

(4)a2b-5ab+9b=b(a2-5a+9)

(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)

(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)

(二)补充练习322222投影片(§2.2.1 B)

把3x-6xy+x分解因式

[生]解:3x2-6xy+x=x(3x-6y)[师]大家同意他的做法吗? [生]不同意.改正:3x-6xy+x=x(3x-6y+1)

[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?

将x写成x·1,这样可知提出一个因式x后,另一个因式是1.Ⅳ.课时小结

1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤

(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题.Ⅴ.课后作业

习题2.2 1.解:(1)2x2-4x=2x(x-2);(2)8m2n+2mn=2mn(4m+1);222(3)axy-axy=axy(ax-y);(4)3x3-3x2-9x=3x(x2-x-3);(5)-24xy-12xy+28y =-(24x2y+12xy2-28y3)=-4y(6x2+3xy-7y2);(6)-4a3b3+6a2b-2ab =-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1);(7)-2x2-12xy2+8xy3 =-(2x+12xy 222

322

第二篇:提公因式法(一)教案2份

第四章

因式分解

2.提公因式法

(一)教学目标:

1、知识技能:让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解。

2、过程方法:通过与提公因数的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想。

3、情感态度:通过观察能合理地进行分解因式的推导。教学重点:因式分解的概念及提公因式法的应用。教学难点:正确找出多项式中各项的公因式并能分解因式。第一环节

温故知新 活动内容:计算:

55515-92采用什么方法?依据是什么? 888活动目的:旨在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔。第二环节

想一想 活动内容:

多项式 ab+ac中,各项有相同的因式吗?多项式 3x2+x呢?多项式mb2+nb–b呢? 结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.

活动目的:在学生能顺利地寻找数的公因数之后,再引导学生采用类比的方法在多项式中寻找相同的因式. 第三环节

议一议 活动内容:

多项式2x2+6x3中各项的公因式是什么?那多项式2x2y+6x3y2中各项的公因式是什么? 结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;

(2)各项都含有的字母的最低次幂的积是公因式的字母部分;

(3)公因式的系数与公因式字母部分的积是这个多项式的公因式. 活动目的:公因式由简单到复杂,由于第一个多项式提供的比较简单,寻找的公因式不具备归纳的条件,而后面所提供的寻找多项式2x2y+6x3y2中各项的公因式只是多了 含字母y的因式,对比前一个公因式,通过寻找多项式2x2y+6x3y2中各项的公因式,可顺利的归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力 具备了归纳出怎样寻找多项式各项公因式的条件,培养学生的初步归纳能力. 第四环节

试一试 活动内容:

将以下多项式写成几个因式的乘积的形式:

(1)ab+ac

(2)x2+4x

(3)mb2+nb–b

如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. 活动目的:

让学生尝试着使用因式分解的意义以及提公因式法的定义进行几个简单的多项式的分解,为过渡到较为复杂的多项式的分解提供必要的准备. 第五环节

做一做

活动内容:将下列多项式进行分解因式:

(1)3x+x(2)7x3–21x(3)8a3b2–12ab3c+ab

(4)–24x3+12x2-28x 先让学生思考这些问题,然后教师在教学中注意讲清确定公因式的具体步骤,从系数、字母和字母的次数3个方面进行分析;讲完后要分析公因式和另一个因式之间的关系,并思考:如果提出公因式,另一个因式是否还有公因式?从而把提取公因式的“提”的具体含意深刻化。

最后学生归纳:提取公因式的步骤:

(1)找公因式;

(2)提公因式.

易出现的问题:(1)第二题只提出7x作为公因式

(2)第(3)题中的最后一项提出ab后,漏掉了“+1”;

(3)第(4)题提出“–”时,后面的因式不是每一项都变号. 教师提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;

(2)因式分解后括号内的多项式的项数与原多项式的项数是否相同;

(3)如果多项式的首项为“–”时,则先提取“–”号,然后提取其它公因式;

(4)将分解因式后的式子再进行单项式与多项式相乘,其积是否与原式相等. 活动目的:根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积 累经验.

第六环节:想一想:提公因式法因式分解与单项式乘多项式有什么关系?

活动目的:通过学生的回顾与思考,强化学生对确定公因式的方法及提公因式法的步骤的理解,进一步清楚地了解提公因式法与单项式乘多项式的互逆关系,加深对类比的数学思想的理解。第七环节:反馈练习

活动内容:

1、找出下列各多项式的公因式:

(1)4x+8y

(2)am+an

(3)48mn–24m2n

3(4)a2b–2ab2+ab 2.把下列各式因式分解:(随堂练习)

活动目的:通过学生的反馈练习,使教师能全面了解学生对公因式概念的理解是否到位,提取公因式的方法与步骤是否掌握,以便教师能及时地进行查缺补漏.通过查缺补漏强化学生确定公因式的方法及提公因式法的步骤,能熟练地利用提公因式法分解因式。教学反思:

由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程、二次根式化简等中都要用到因式分解的知识。因此应该注重因式分解的概念和方法的教学。

本节运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由提公因数到找公因式,由整式的乘法的逆运算到提取公因式的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解。

第三篇:提公因式法教案

§1.2.2 提公因式法

(二)●教学目标

(一)教学知识点

进一步让学生掌握用提公因式法进行因式分解的方法.(二)能力训练要求

进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求

通过观察能合理地进行因式分解的推导,并能清晰地阐述自己的观点.●教学重点

能观察出公因式是多项式的情况,并能合理地进行因式分解.●教学难点

准确找出公因式,并能正确进行因式分解.●教学方法 类比学习法 ●教学过程

Ⅰ.创设问题情境,引入新课 [师]上节课我们学习了用提公因式法因式分解,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解

请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例题讲解

[例1]下列多项中各项的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)

(ac)(ab)2(ac)(ba)2

6(m-n)3-12(n-m)2.12xy2(xy)18x2y(xy)

分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(ac)(ab)2(ac)(ba)2(4)12xy2(xy)18x2y(xy)

Ⅲ.课堂练习

把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.课时小结

本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题1.2 活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教学后记:

第四篇:提公因式法教案

15.4

15.4.1因式分解提公因式法

教学目标:

1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形。

2、会确定多项式中各项的公因式,会用提取公因式法分解

多项式的因式。

3、会利用因式分解进行简便计算。

4、通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对公因式是多项式时的因式分解的学习,培养换元的意识。

教学重难点

教学重点:因式分解的概念及提取公因式法。

教学难点:多项式中公因式的确定和当公因式是多项式时的因式分解。

教学准备:多媒体课件。

教学设计:

(一)新课引入:

1、问题:把15和18分解质因数。

2、回忆:运用所学知识填空

(3)2ab(a2

反之:(1)x2(2)x2-1=

(3)2a³b+2ab²

观察以下式子的特点:

(1)15=3×5

(2)18=2×3²

(3)X²+X=X(X+1)

(4)X²-1=(X+1)(X-1)

(5)2a³b+2ab²+2ab=2ab(a²+b+1)

由分解质因数类比到分解因式。

(二)新知学习:

1、分解因式的概念,与整式乘法的关系。

巩固概念:判断下列各式从左到右哪些是因式分解?

(1)m(a+b)=ma+mb

(2)2a+4=2(a+2)

(3)4a2-6ab2+2a=2a(2a-3b2+1)

(4)a2-2a+1=a(a-2)+1

(5)yyy10(10)100xxx22、确定公因式。

问题:ma+mb+mc 这个多项式有什么特征? 引入公因式

概念。

例1:找出6x³y5-3x²y4的公因式

归纳找公因式的办法。

课堂练习一:找出下列各多项式中的公因式填在后面括号内。

(1)3mx-6nx2()

(2)x4y3+x3y4()

(3)12x2yz-9x2y2()

(4)5a2-15a3+25a()

3、用提公因式法分解因式。

m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),观察构成乘积的两个因式分别是怎样形成的?

m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式。像这种分解因式的方法叫做提公因式法。

想一想:提公因式法的理论依据是什么?

4、知识运用:

例2:把8a3b2+12ab3c分解因式

解:(略).例3:把-24x³-12x²+28x分解因式。

解:(略)

判断下列各式分解因式是否正确?如果不对,请加以改正。

(1)2a2+4a+2=2(a2+2a)

(2)3x2y3-6xy2z=3xy(xy2-2yz)

课堂练习二:把下列各式分解因式。

(1)x2+x6(2)12xyz-9x2y2

(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-

1例4:把3a(b+c)-3(b+c)分解因式

判断正误:我班一位同学在昨天预习了提公因式法分解因式后做了两道练习题,请你帮他检查一下他的解题过程是否正确。如不正确,应怎样改正。

(1)2x(x+y)2-(x+y)3

解:原式=(x+y)2[2x-(x+y)]

=(x+y)2(2x-x-y)

(2)(y+2)(y+1)-3(y+2)

解:原式=(y+2)(y+1-3)

=(y+2)(y-2)

=y2-4

课堂练习三:将下列各式分解因式。

(1)p(a2+b2)-q(a2+b2)

(2)2a²(y-z)2-4a(z-y)2

例5:先分解因式,再求值。

4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)

5、拓展与提高:

(1)、20112+2011能被2012整除吗?

(2)、已知2x-y=8,xy=2,求多项式2x4y3-x3y4的值。

(3)、利用因式分解进行计算:23.1×24-46.2×7

(4)、将2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。

9796229998

(5)、计算:

课堂小结:

⑴什么叫因式分解?

⑵确定公因式的方法:

⑶提公因式法分解因式的步骤: ⑷提公因式法分解因式的步骤: 课后作业:课本P170习题15.4 : 题

课后反思:

第1题;第4题的(1);第6

第五篇:提公因式法教案

提供因法因式分解

教学流程:

一、导入及板书课题:

复习巩固整式的乘法。板书课题:提公因式法因式分解

二、学习目标:

 1.了解因式分解的概念;

 2.理解公因式的概念,会用提公因式法对多项式进行因式分解。

三、教学过程:

(一)自学指导:

1、自己认真看课本第42页到第43页的内容;

2、时间(5分钟)

3、自学方法:结合课本例题和云图中问题,独立思考,标出看不懂的地方,可以和同桌小声交流试一试的图形意思

 4.你能用吗提公因式法对多项式进行因式分解吗?

(二)自学检测(8分钟)

1、找四名学生书写两数和与两数差的公式

2、挑各组学生进行板演。

3、兵教兵(2分钟)

要求:各小组组长要切实负起责任,组长要落实好组员的学习情况,组长也讲不清的可以问教师。

4、教师点拨(2分钟)

①、公因式的系数是各项系数的最大公因数;

②、字母是各项中相同的字母,指数取各字母指数最低的;

③、要善于发现较隐蔽的公因式,如(X-Y)与(Y-X)是一对相反数,但它们可以变为相同的因式。

课堂作业:活页试题

课后作业: 课本45页练习题第2题

下载2.2.1 提公因式法(一) -数学教案word格式文档
下载2.2.1 提公因式法(一) -数学教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    提公因式法教案

    提公因式法(1) 教学目标: 知识目标: 1、使学生理解什么样的式子是几个多项式的公因式; 2、初步会找出几个多项式的公因式; 3、会用提公因式法分解因式。 情感目标: 让学生养成独立......

    提公因式法教学设计

    提公因式法教学设计 一、教材分析 本节课选自义务教育课程标准实验教科书八年级上册第十五单元第四节因式分解的提公因式法。内容包括因式分解的有关概念,整式乘法与因式分解......

    《因式分解提公因式法》教案

    第一章 因式分解 2.提公因式法 课型:新授课 主备人: 审核人:初三数学组 一、教学目标: 1.知识与技能:把一个多项式化成几个整式的积的形式,•这种变形叫做把这个多项式因式分解,也叫......

    提公因式法 教案2

    新课程网校[WWW.XKCWX.COM] 全力打造一流免费网校! 6.2提取公因式法 〖教学目标〗 ◆1、会用提取公因式法分解因式. ◆2、理解添括号法则. 〖教学重点与难点〗 ◆教学重点:用提......

    《提公因式法》教学反思

    本节课主要内容是运用提公因式法进行因式分解。教学中,我用速算引入,有效的激发了学生的学习探究积极性,让学生体验到了学习的快乐,通过字母表示引入新课,符合从具体到从抽象的认......

    【教案】14.3.1提公因式法

    14.3.1提公因式法(一) 教学目标 1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系. 2.使学生理解提公因式法并能熟练地运用提公因式法分解因式. 3.树立......

    《提公因式法》 教学设计(五篇)

    提公因式法 一、内容与分析 教材所处的地位 这节课是九年制义务教育教科书八年级上册第一章第二节《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对......

    4.2.1提公因式法公教案

    4.2提公因式法(第1课时) 学习目标: 1、经过探索、认识多项式各公因式的过程,并在具体问题中,能确定多项式各项的公因式。 2、会运用提公因式法进行因式分解。 教学重点:会确定多项......