第一篇:提公因式法观课报告
提公因式法观课报告
本节课是利用提公因式进行因式分解,对于本节课主要有两方面的感触:
一、教学过程方面:
1、低起点。本节课以课本教材中的较容易接受的知识引入作为起点; 以所教学内容的最基本、最本质的东西作为教学的起点。如在“分解因式”教学中,将提公因式法,分成三个步骤进行教学:先回顾小学学习过的乘法分配律是什么?再讨论多项式各项的“公因式”是什么?再对比乘法分配律公式,研究如何提取公因式,从而降低了起点,便于学生理解掌握这一知识。以所教的新内容的特殊基本原型作为教学的起点。从学生已学过所掌握、所了解的知识、例子作为起点,旨在让学生通过乘法分配律的逆运算这一特殊算法,使学生通过类比的思想自然地过渡到理解提公因式法的概念上,从而为提公因式法的掌握埋下伏笔
2、多归纳。考虑到学生的实际情况,本节课给予学生多归纳、总结的机会,使学生掌握一定的条理性和规律性。比如,根据用提公因式法进行因式分解时出现的问题,在教师的启发与指导下,学生自己归纳出提公因式的步骤及怎样预防提取公因式时出现类似问题,为提取公因式积累经验。只有不断的总结,才能有创新和发展。
3、勤练习。教学中将每节课分成若干个阶段,每个阶段都让自学、交流、讲解、提问、练习、学生小结、教师归纳等形式交替出现,这样调节了学生的注意力,使学生大量参与课堂学习活动。课堂活动形式多了,学生中思想开小差、做小动作、讲闲话等现象大大减少了,学生在整个课堂上都有问题可想,都有事情可做,没有让一个学生闲着。
4、快反馈。根据学生的特点,数学学习往往需要多次反复才能掌握知识。对于练习中的问题,采用集体、个别相结合,在教学过程通过老师讲解,展示学生解题过程、学生上台讲解等手段进行反馈、矫正和强化。
二、数学思想方面:
本节是因式分解的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法的分配律的逆运算到提取公因式的过程,让学生体会数学的主要思想——类比思想,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提取公因式法时,由整式的乘法的逆运算到提取公因式的概念,由提取的公因式是单项式到提取的公因式是多项式时的分解方法,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,让学生进一步了解分解因式与整式的乘法运算之间的互逆关
系。
第二篇:提公因式法教案
§1.2.2 提公因式法
(二)●教学目标
(一)教学知识点
进一步让学生掌握用提公因式法进行因式分解的方法.(二)能力训练要求
进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求
通过观察能合理地进行因式分解的推导,并能清晰地阐述自己的观点.●教学重点
能观察出公因式是多项式的情况,并能合理地进行因式分解.●教学难点
准确找出公因式,并能正确进行因式分解.●教学方法 类比学习法 ●教学过程
Ⅰ.创设问题情境,引入新课 [师]上节课我们学习了用提公因式法因式分解,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例题讲解
[例1]下列多项中各项的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)
(ac)(ab)2(ac)(ba)2
6(m-n)3-12(n-m)2.12xy2(xy)18x2y(xy)
分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(ac)(ab)2(ac)(ba)2(4)12xy2(xy)18x2y(xy)
Ⅲ.课堂练习
把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题1.2 活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教学后记:
第三篇:提公因式法教案
15.4
15.4.1因式分解提公因式法
教学目标:
1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形。
2、会确定多项式中各项的公因式,会用提取公因式法分解
多项式的因式。
3、会利用因式分解进行简便计算。
4、通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对公因式是多项式时的因式分解的学习,培养换元的意识。
教学重难点
教学重点:因式分解的概念及提取公因式法。
教学难点:多项式中公因式的确定和当公因式是多项式时的因式分解。
教学准备:多媒体课件。
教学设计:
(一)新课引入:
1、问题:把15和18分解质因数。
2、回忆:运用所学知识填空
(3)2ab(a2
反之:(1)x2(2)x2-1=
(3)2a³b+2ab²
观察以下式子的特点:
(1)15=3×5
(2)18=2×3²
(3)X²+X=X(X+1)
(4)X²-1=(X+1)(X-1)
(5)2a³b+2ab²+2ab=2ab(a²+b+1)
由分解质因数类比到分解因式。
(二)新知学习:
1、分解因式的概念,与整式乘法的关系。
巩固概念:判断下列各式从左到右哪些是因式分解?
(1)m(a+b)=ma+mb
(2)2a+4=2(a+2)
(3)4a2-6ab2+2a=2a(2a-3b2+1)
(4)a2-2a+1=a(a-2)+1
(5)yyy10(10)100xxx22、确定公因式。
问题:ma+mb+mc 这个多项式有什么特征? 引入公因式
概念。
例1:找出6x³y5-3x²y4的公因式
归纳找公因式的办法。
课堂练习一:找出下列各多项式中的公因式填在后面括号内。
(1)3mx-6nx2()
(2)x4y3+x3y4()
(3)12x2yz-9x2y2()
(4)5a2-15a3+25a()
3、用提公因式法分解因式。
m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),观察构成乘积的两个因式分别是怎样形成的?
m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式。像这种分解因式的方法叫做提公因式法。
想一想:提公因式法的理论依据是什么?
4、知识运用:
例2:把8a3b2+12ab3c分解因式
解:(略).例3:把-24x³-12x²+28x分解因式。
解:(略)
判断下列各式分解因式是否正确?如果不对,请加以改正。
(1)2a2+4a+2=2(a2+2a)
(2)3x2y3-6xy2z=3xy(xy2-2yz)
课堂练习二:把下列各式分解因式。
(1)x2+x6(2)12xyz-9x2y2
(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-
1例4:把3a(b+c)-3(b+c)分解因式
判断正误:我班一位同学在昨天预习了提公因式法分解因式后做了两道练习题,请你帮他检查一下他的解题过程是否正确。如不正确,应怎样改正。
(1)2x(x+y)2-(x+y)3
解:原式=(x+y)2[2x-(x+y)]
=(x+y)2(2x-x-y)
(2)(y+2)(y+1)-3(y+2)
解:原式=(y+2)(y+1-3)
=(y+2)(y-2)
=y2-4
课堂练习三:将下列各式分解因式。
(1)p(a2+b2)-q(a2+b2)
(2)2a²(y-z)2-4a(z-y)2
例5:先分解因式,再求值。
4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)
5、拓展与提高:
(1)、20112+2011能被2012整除吗?
(2)、已知2x-y=8,xy=2,求多项式2x4y3-x3y4的值。
(3)、利用因式分解进行计算:23.1×24-46.2×7
(4)、将2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。
9796229998
(5)、计算:
课堂小结:
⑴什么叫因式分解?
⑵确定公因式的方法:
⑶提公因式法分解因式的步骤: ⑷提公因式法分解因式的步骤: 课后作业:课本P170习题15.4 : 题
课后反思:
第1题;第4题的(1);第6
第四篇:提公因式法教案
提供因法因式分解
教学流程:
一、导入及板书课题:
复习巩固整式的乘法。板书课题:提公因式法因式分解
二、学习目标:
1.了解因式分解的概念;
2.理解公因式的概念,会用提公因式法对多项式进行因式分解。
三、教学过程:
(一)自学指导:
1、自己认真看课本第42页到第43页的内容;
2、时间(5分钟)
3、自学方法:结合课本例题和云图中问题,独立思考,标出看不懂的地方,可以和同桌小声交流试一试的图形意思
4.你能用吗提公因式法对多项式进行因式分解吗?
(二)自学检测(8分钟)
1、找四名学生书写两数和与两数差的公式
2、挑各组学生进行板演。
3、兵教兵(2分钟)
要求:各小组组长要切实负起责任,组长要落实好组员的学习情况,组长也讲不清的可以问教师。
4、教师点拨(2分钟)
①、公因式的系数是各项系数的最大公因数;
②、字母是各项中相同的字母,指数取各字母指数最低的;
③、要善于发现较隐蔽的公因式,如(X-Y)与(Y-X)是一对相反数,但它们可以变为相同的因式。
课堂作业:活页试题
课后作业: 课本45页练习题第2题
第五篇:提公因式法教案
提公因式法(1)
教学目标: 知识目标:
1、使学生理解什么样的式子是几个多项式的公因式;
2、初步会找出几个多项式的公因式;
3、会用提公因式法分解因式。情感目标:
让学生养成独立思考的习惯,同时培养学生的合作交流意识 能力目标:
通过找公因式,培养学生的观察能力 重点难点:
能观察出多项式的公因式,会用提公因式法分解因式。引入:
思考:
(1)乘法对加法的分配律用数学式子如何表示? m(x+y+z)=mx+my+mz(2)mx+my+mz = m(x+y+z)
我们把这种变形叫做什么?因式分解。新授:
通过观察,我们发现引入中等式左边的多项式中每一项都含有因式m,我们把几个多项式的公共的因式称为它们的公因式。
观察下列各组多项式中的公因式是什么?(1)5x²-3xy+x;(2)2a²b²c+4a³b4
分析:因为x=x·1,因此x是x的因式,所以(1)中的公因式是x;由于2a²b²c=2 a²b²·c,4a³b4=2 a²b²·2ab²,所以(2)中的公因式是2 a²b²
一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
现在我们试着用提公因式法分解上面两个多项式。
解:5x²-3xy+x=x(5x-3y+1)2a²b²c+4a³b4=2 a²b²(c+2ab²)
归纳:
当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的。相关练习:
把下列多项式因式分解:(1)3xy-5y²+y;(2)30x³y²+48x²yz 思考:
分解因式-4x²+6x 分析:如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号 解:-4x²+6x=-(4x²-6x)=-2x(2x-3)4a³b4 相关练习:
把下列多项式因式分解:(1)-12x²y+18xy-15y;(2)-6m³n²-4m²n³+10m²n² 小结:
确定公因式的一般步骤
(1)如果多项式是第一项系数是负数时,应把公因式的符号“-"提出。(2)取多项式各项系数的最大公约数为公因数的系数。
(3)把多项式各项都含有的相同字母的最低次幂的积作为公因式的因式。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
作业:
P10习题1.2 A组1、2