第一篇:《提公因式法》教案设计(人教版八年级上册数学)
14.3.1 提公因式法
一、教材分析:
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级上册《提公因式法》第一课时。学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用
(二)根据课程标准,本课的教学目标是:
A:知识目标:
1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系.2、了解因式分解的意义,会用提公因式法进行因式分解.B:能力目标:
经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法
C:情感目标:
培养学生独立思考的习惯,同时又要培养大家合作交流意识。
二、本课内容及重点、难点分析:
根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2-25和9x2-y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力
/ 5
3、教学重点、难点
根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:
(1)学生能确定多项式中各项的公因式;(2)学生能用提公因式法把多项式分解因式。
难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。
二、学情分析
学情是教师确定教学重点,难点,选择教学方法和手段的依据,本节课学情主要有:
1、学生已经学习了整式乘法及因式分解的意义,有了初步的逆变形思维具备一定的分析、判断和运用法则的意义,对乘法的分配律也得到了进一步的理解。
2、八年级学生好奇心强,对新内容感兴趣,但学习急于求成,同时主动性和目地性不够明确,学习方法还比较欠缺,特别是符号问题,这对学生学习本节课内容带来一定的难度,因此,在教学中教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。三、教学方法分析
根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多媒体辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。
四、学法分析
教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的探究意识和创新能力。
五、教学过程
本节课的教学过程由五个环节组成:
(一)创设情境,导入新课;
/ 5
(二)师生合作,探究新知;
(三)反馈练习,巩固新知;
(四)引导小结,巩固提高;
(五)布置作业,形成技能。教学过程设计:
一、复习提问
乘法对加法的分配律.
二、新课
1.新课引入:用类比的方法引入课题.
在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把12分解成3×4,把6分解成2×3。在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.
2.因式分解的概念:
1.分析讨论,探究新知. 出示投影片
把下列多项式写成整式的乘积的形式
(1)x2+x=_________(2)x2-1=_________(3)am+bm+cm=__________ [生]根据整式乘法和逆向思维原理,可以做如下计算:
(1)x2+x=x(x+1)
(2)x2-1=(x+1)(x-1)
(3)am+bm+cm=m(a+b+c)
[师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维. 再观察上面的第(1)题和第(3)题,你能发现什么特点. [生]我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是可以叫这些公共因式为各自多项式的公因式呢? [师]你分析得合情合理. 因为ma+mb+mc=m(a+b+c).
/ 5
于是就把ma+mb+mc分解成两个因式乘积的形式,•其中一个因式是各项的公因式m,另一个因式a+b+c是ma+mb+mc除以m所得的商,•像这种分解因式的方法叫做提公因式法.
2.例题教学,运用新知.
出示投影片:
[例1]把8a3b2-12ab3c分解因式.
[例2]把2a(b+c)-3(b+c)分解因式.
[例1]分析:先找出8a3b2与12ab3c的公因式,再提出公因式.•我们看这两项的系数8与12,它们的最大公约数是4,两项的字母部分a3b2与ab3c都含有字母a和b.其中a的最低次数是1,b的最低次数是2.我们选定4ab2为要提出的公因式.提出公因式4ab2后,•另一个因式2a2+3bc就不再有公因式了.
解:8a3b2+12ab2c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).
总结:提取公因式后,要满足另一个因式不再有公因式才行.可以概括为一句话:括号里面分到“底”,这里的底是不能再分解为止.
[例2]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出. 解:2a(b+c)-3(b+c)=(b+c)(2a-3).
诊断:(1)小明解的有误吗?把12x2y+18xy2分解因式
解: 原式 =3xy(4x + 6y)正确解:原式=6xy(2x+3y)注意:公因式要提尽。
(2)小亮解的有误吗?把3x2x2+xy-xz分解因式 解:原式=(x2-xy+xz)=-x(x-y+z)注意:首项有负常提负。这类题常常有些学生犯下面的错误,4 / 5
3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.
课堂练习:(投影)
把下列各式分解因式:
(2)12xyz-9x2y
2(1)8 m2n+2mn(3)p(a-b)-q(b-a)(4)-x3y3-x2y2-xy(三)小结
1、什么叫因式分解?
2、确定公因式的方法:(1)定系数(2)定字母(3)定指数
3、提公因式法分解因式步骤(分两步): 第一步,找出公因式;第二步,提取公因式.4、提公因式法分解因式应注意的问题:(1)公因式要提尽;(2)小心漏掉1;(3)提出负号时,要注意变号.5 / 5
第二篇:提公因式法教案
15.4
15.4.1因式分解提公因式法
教学目标:
1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形。
2、会确定多项式中各项的公因式,会用提取公因式法分解
多项式的因式。
3、会利用因式分解进行简便计算。
4、通过与质因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想;通过对公因式是多项式时的因式分解的学习,培养换元的意识。
教学重难点
教学重点:因式分解的概念及提取公因式法。
教学难点:多项式中公因式的确定和当公因式是多项式时的因式分解。
教学准备:多媒体课件。
教学设计:
(一)新课引入:
1、问题:把15和18分解质因数。
2、回忆:运用所学知识填空
(3)2ab(a2
反之:(1)x2(2)x2-1=
(3)2a³b+2ab²
观察以下式子的特点:
(1)15=3×5
(2)18=2×3²
(3)X²+X=X(X+1)
(4)X²-1=(X+1)(X-1)
(5)2a³b+2ab²+2ab=2ab(a²+b+1)
由分解质因数类比到分解因式。
(二)新知学习:
1、分解因式的概念,与整式乘法的关系。
巩固概念:判断下列各式从左到右哪些是因式分解?
(1)m(a+b)=ma+mb
(2)2a+4=2(a+2)
(3)4a2-6ab2+2a=2a(2a-3b2+1)
(4)a2-2a+1=a(a-2)+1
(5)yyy10(10)100xxx22、确定公因式。
问题:ma+mb+mc 这个多项式有什么特征? 引入公因式
概念。
例1:找出6x³y5-3x²y4的公因式
归纳找公因式的办法。
课堂练习一:找出下列各多项式中的公因式填在后面括号内。
(1)3mx-6nx2()
(2)x4y3+x3y4()
(3)12x2yz-9x2y2()
(4)5a2-15a3+25a()
3、用提公因式法分解因式。
m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),观察构成乘积的两个因式分别是怎样形成的?
m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式。像这种分解因式的方法叫做提公因式法。
想一想:提公因式法的理论依据是什么?
4、知识运用:
例2:把8a3b2+12ab3c分解因式
解:(略).例3:把-24x³-12x²+28x分解因式。
解:(略)
判断下列各式分解因式是否正确?如果不对,请加以改正。
(1)2a2+4a+2=2(a2+2a)
(2)3x2y3-6xy2z=3xy(xy2-2yz)
课堂练习二:把下列各式分解因式。
(1)x2+x6(2)12xyz-9x2y2
(3)-6x2-18xy+3x(4)2an+2-4an+1-6an-
1例4:把3a(b+c)-3(b+c)分解因式
判断正误:我班一位同学在昨天预习了提公因式法分解因式后做了两道练习题,请你帮他检查一下他的解题过程是否正确。如不正确,应怎样改正。
(1)2x(x+y)2-(x+y)3
解:原式=(x+y)2[2x-(x+y)]
=(x+y)2(2x-x-y)
(2)(y+2)(y+1)-3(y+2)
解:原式=(y+2)(y+1-3)
=(y+2)(y-2)
=y2-4
课堂练习三:将下列各式分解因式。
(1)p(a2+b2)-q(a2+b2)
(2)2a²(y-z)2-4a(z-y)2
例5:先分解因式,再求值。
4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)
5、拓展与提高:
(1)、20112+2011能被2012整除吗?
(2)、已知2x-y=8,xy=2,求多项式2x4y3-x3y4的值。
(3)、利用因式分解进行计算:23.1×24-46.2×7
(4)、将2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。
9796229998
(5)、计算:
课堂小结:
⑴什么叫因式分解?
⑵确定公因式的方法:
⑶提公因式法分解因式的步骤: ⑷提公因式法分解因式的步骤: 课后作业:课本P170习题15.4 : 题
课后反思:
第1题;第4题的(1);第6
第三篇:提公因式法教案
提供因法因式分解
教学流程:
一、导入及板书课题:
复习巩固整式的乘法。板书课题:提公因式法因式分解
二、学习目标:
1.了解因式分解的概念;
2.理解公因式的概念,会用提公因式法对多项式进行因式分解。
三、教学过程:
(一)自学指导:
1、自己认真看课本第42页到第43页的内容;
2、时间(5分钟)
3、自学方法:结合课本例题和云图中问题,独立思考,标出看不懂的地方,可以和同桌小声交流试一试的图形意思
4.你能用吗提公因式法对多项式进行因式分解吗?
(二)自学检测(8分钟)
1、找四名学生书写两数和与两数差的公式
2、挑各组学生进行板演。
3、兵教兵(2分钟)
要求:各小组组长要切实负起责任,组长要落实好组员的学习情况,组长也讲不清的可以问教师。
4、教师点拨(2分钟)
①、公因式的系数是各项系数的最大公因数;
②、字母是各项中相同的字母,指数取各字母指数最低的;
③、要善于发现较隐蔽的公因式,如(X-Y)与(Y-X)是一对相反数,但它们可以变为相同的因式。
课堂作业:活页试题
课后作业: 课本45页练习题第2题
第四篇:提公因式法教案
§1.2.2 提公因式法
(二)●教学目标
(一)教学知识点
进一步让学生掌握用提公因式法进行因式分解的方法.(二)能力训练要求
进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求
通过观察能合理地进行因式分解的推导,并能清晰地阐述自己的观点.●教学重点
能观察出公因式是多项式的情况,并能合理地进行因式分解.●教学难点
准确找出公因式,并能正确进行因式分解.●教学方法 类比学习法 ●教学过程
Ⅰ.创设问题情境,引入新课 [师]上节课我们学习了用提公因式法因式分解,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解
请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例题讲解
[例1]下列多项中各项的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)
(ac)(ab)2(ac)(ba)2
6(m-n)3-12(n-m)2.12xy2(xy)18x2y(xy)
分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此.[例2]把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [生]不是,是两个多项式的乘积.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(ac)(ab)2(ac)(ba)2(4)12xy2(xy)18x2y(xy)
Ⅲ.课堂练习
把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.课时小结
本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题1.2 活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教学后记:
第五篇:提公因式法教案
提公因式法(1)
教学目标: 知识目标:
1、使学生理解什么样的式子是几个多项式的公因式;
2、初步会找出几个多项式的公因式;
3、会用提公因式法分解因式。情感目标:
让学生养成独立思考的习惯,同时培养学生的合作交流意识 能力目标:
通过找公因式,培养学生的观察能力 重点难点:
能观察出多项式的公因式,会用提公因式法分解因式。引入:
思考:
(1)乘法对加法的分配律用数学式子如何表示? m(x+y+z)=mx+my+mz(2)mx+my+mz = m(x+y+z)
我们把这种变形叫做什么?因式分解。新授:
通过观察,我们发现引入中等式左边的多项式中每一项都含有因式m,我们把几个多项式的公共的因式称为它们的公因式。
观察下列各组多项式中的公因式是什么?(1)5x²-3xy+x;(2)2a²b²c+4a³b4
分析:因为x=x·1,因此x是x的因式,所以(1)中的公因式是x;由于2a²b²c=2 a²b²·c,4a³b4=2 a²b²·2ab²,所以(2)中的公因式是2 a²b²
一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
现在我们试着用提公因式法分解上面两个多项式。
解:5x²-3xy+x=x(5x-3y+1)2a²b²c+4a³b4=2 a²b²(c+2ab²)
归纳:
当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的。相关练习:
把下列多项式因式分解:(1)3xy-5y²+y;(2)30x³y²+48x²yz 思考:
分解因式-4x²+6x 分析:如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号 解:-4x²+6x=-(4x²-6x)=-2x(2x-3)4a³b4 相关练习:
把下列多项式因式分解:(1)-12x²y+18xy-15y;(2)-6m³n²-4m²n³+10m²n² 小结:
确定公因式的一般步骤
(1)如果多项式是第一项系数是负数时,应把公因式的符号“-"提出。(2)取多项式各项系数的最大公约数为公因数的系数。
(3)把多项式各项都含有的相同字母的最低次幂的积作为公因式的因式。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
作业:
P10习题1.2 A组1、2