第一篇:2015秋七年级数学上册 3.4 整式的加减教学设计(新版)北师大版
《整式的加减》
教学目标 知识与技能目标
1.在具体情境中感受合并同类项的必要性,理解合并同类项法则所依据的运算律; 2.了解合并同类项的法则,能进行同类项的合并; 过程与方法目标
1、通过具体情境导入同类项以及合并同类项的概念,经历合并同类项的过程,培养学生的观察、归纳等能力。
2、通过大量练习巩固,培养学生计算能力,帮助学生形成解题经验。情感态度与价值观目标
在学习中培养学生分类、化繁为简等数学思想、方法,鼓励学生敢于发表自己的观点,从交流中获益。教学重点
对合并同类项法则的理解,正确进行同类项的合并。教学难点
找出同类项并正确合并 教学过程:
一、创设情境,导入新课
在我们生活中,会遇到很多分类问题,比如说,在水果市场,摊主们总是把同一种类的水果摆放在一起,如果把分类的问题带入数学的学习中,又该如何呢?
在上一节课中,我们认识了整式,把整是分成了单项式和多项式两大类。那么,对于下面的单项式,又能如何分类呢?
二、合作探究
想一个办法按照一定的标准给下面的代数式分类(同伴交流,并派代表发言)。8n,-7ab, 2ab, 3 ,-4n , 6ab ,5n ,-1 ,-3ab 总结:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.注意:所有的常数项都是同类项
三、运用新知 解决问题
1.说出下列各题的两项是不是同类项?为什么?
(1)a与b(2)-4xy与4xy(3)3.5abc与0.5acb(4)-2与4 2.找出下列多项式中的同类项 3a-2b+1+3b-2a-5 归纳: 两 同:所含字母相同;相同字母的指数相同。
两无关:与系数无关;与字母的顺序无关。所有的常数项都是同类项 小游戏:找同类项朋友 游戏规则:
1、现在,老师有10张写有单项式的卡片,发给10名同学;
2、这10名同学观察自己手中的卡片和其他同学卡片上的单项式,认为它们是同 类项的,3
32222请站到一起,并面向全班同学高举自己的卡片;
3、请其他同学做裁判,看看他们有没有找错朋友。
思考:已知:2 x3my3 与 1x6yn+1 是同类项,求 m、n的值
四、探索合并同类项法则3
4.如图:图中长方形由两个小长方形组成,求这个长方形的面积。n 问:这两个代数式相等吗?为什么?
问:根据其它方法也可以得到8n+5n=(8+5)n=13n吗?请同学们互相讨论一下。(根据乘法分配律)归纳:
1、合并同类项的定义
把多项式中的同类项合并成一项,叫做合并同类项。依据是乘法分配律。
2、合并同类项的法则
合并同类项时,把同类项的系数相加,字母和字母的指数不变。方法:(1)系数:各项系数相加作为新的系数
(2)字母以及字母的指数不变。实战演练
下列各题的结果是否正确?请说明理由:(1)3x+3y=6xy(2)8x+4=12x(3)16y2-7y2=9(4)19a2b2-9ab2=10 a
五、讲练结合 巩固新知 例:合并同类项
6xy-10x2-5yx+7x+5x(找)
解:原式=(6xy-5yx)+(-10x2
+7x2)+5x(移)=(6-5)xy+(-10+7)x2
+5x(合)=xy-3x2+5x 讲解并引导学生得出合并同类项的步骤:
第一步:准确地找出同类项 第二步:将同类项移放在一起
第二步:利用法则,把同类项的系数相加,字母和字母的指数不变; 第三步:写出合并后的结果。学生独立完成以下习题,教师巡视、指导
(1)-xy2+3xy2(2)7a+3a
2+2a-a2
+3(3)3a+2b-5a-b(4)-4ab+8-2b2
-9ab-8 通过以上的练习你可以找出合并同类项的要点是什么?
一变两不变:一变就是系数要变(新系数变为原来各系数的代数和)两不变就是字母和字母的指数不变(原来的字母和字母的指数照抄)
思考:
求代数式-3x2y+5x-0.5x2
y+3.5x2
y-2的值,其中x=2,y=1说一说你是怎么算的。解:原式 =(-3x2y-0.5x2
y+3.5x2
y)+5x-2 5 2
=(-3-0.5+3.5)xy+5x-2 =5x-2 当x=2,y=1时,原式=5*2-2=8 教师活动:⑴鼓励学生独立做一做再与同伴交流。⑵指定两位学生(用不同的方法)到黑板演示。⑶组织学生讨论比较,得出先合并同类项,再代入数值计算,比较简便。⑷教师板书示范,培养学生严谨的作风。
六、课后练习基础训练
1.与2xy是同类项的是()A.2xy B.2xy C.0.5yx D.4x2.下列运算中正确的是()(A)2a+3b=5ab(B)2a+3a=5(C)6ab-6ab=0(D)2ab-2ba=0 3.下列计算,正确的是()
A.2x+x=2x B.2x+x=3x C.5a-3a=2 D.2x+3y=5xy 4.合并同类项4ax+a-6ax+8ax+4+5a-3 5.求代数式3a+abc-c-3a+c的值,其中a=-知识延伸
m-12n
n
222
2222
445 4
2,b=2,c=-3.6若2xy2与-xy是同类项,求(-m)的值 拓展提高
李华老师给给学生出了一道题:当x=0.35,y=-0.28时,7a-6ab+3ab+3a+6ab-3ba-10a+3的值.题目出完后,小明说:“老师给的条件a=0.35,b=-0.28是多余的”.小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?
七、课堂小结
通过本节课的学习,你学到了什么知识?有什么体会和感想?(通过学生回答,小结本节课所学知识)
一、判断同类项必备的条件: 第一、所含字母相同。
第二、相同字母的指数分别相同。
二、只有是同类项的才能合并,不是同类项的不能合并。
三、合并同类项,只把系数相加,字母与字母的指数不变。
四、在求代数式的值时,先合并同类项将代数式化简,然后再代入数值计算,这样往往会简化运算过程。
第二篇:七年级上册《整式的加减》教学设计
七年级上册《整式的加减》教学设计
七年级上册《整式的加减》教学设计
【教学目标】
1.理解同类项、合并同类项的概念。
2.掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3.感受其中的“数式通性”和类比的数学思想。
【教学重点】
理解同类项的概念;掌握合并同类项法则。
【教学难点】
正确运用法则及运算律合并同类项。
【教学过程】
一、知识链接
1.运用运算律计算下列各题。
①6×20+3×20= ②6×(-20)+3×(-20)=
2.口答。
8个人+5个人= 8只羊+5只羊=
8个人+5只羊=
[意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]
二、探究新知
探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?
(1)请列式表示:,你能对上式进行化简计算吗?
(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]
探究二:根据以上式子的运算,化简下列式子。
①100t-252t ②3x2+2x2
②3ab2-4ab2 ④2m2n3-5m2n3
(1)上述各多项式的项有什么共同特点?
(2)上述多项式的运算有什么共同特点,有何规律?
[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]
三、例题精炼
例1.合并同类项。
4x2+2x+7+3x-8x2-2
例2.求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。
[意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]
四、课堂小结
这节课你学到了哪些知识?
[意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]
五、课堂检测(略)
[意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]
第三篇:2014年秋期七年级数学整式的加减
2014年秋期七年级数学整式的加减(第五课时)
学习目的:从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤
进行运算。
学习重点和难点:1.重点:整式的加减。
2.难点:总结出整式的加减的一般步骤。
一、自主学习
某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
以上答案能进一步化简吗?如何化简?我们进行了哪些运算?
二、合作探究
1、练一练(1)3xy-4xy-(-2xy)(2)(8a-7b)-2(-4a-5b)
222、求整式x―7x―2与―2x+4x―1的差。
223、一个多项式加上―5x―4x―3得―x―3x,求这个多项式。
三、小结整式加减的步骤
(1)如果括号前有数字因数,先按乘法分配律乘以括号内各项,再去括号。(2)如果有同类项,再合并同类项。
四、达标测试
1、计算:(1)(x+y)—(2x-3y)(2)(8a-7b)-(4a-5b)
32223(3)―2y+(3xy―xy)―2(xy―y)。
33332、化简求值:(2x―xyz)―2(x―y+xyz)+(xyz―2y),其中x=1,y=2,z=―3。
五、作业练习册58页1、2、3、4
第四篇:2015秋七年级数学上册 2.2 整式加减教学设计 (新版)沪科版
2.2 整式加减
第1课时 同类项
教学目标
【知识与技能】
理解同类项的概念,在具体情景中,认识同类项.【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.【情感、态度与价值观】
初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.教学重难点
【重点】理解同类项的概念.【难点】根据同类项的概念在多项式中找同类项.教学过程
一、复习引入
师:同学们,在上新课之前,我们先来做几个题目.1.教师读题,指名回答.(1)5个人+8个人=
;(2)5只羊+8只羊=
.2.师:观察下列各单项式,把你认为相同类型的式子归为一222222类:8xy,-mn,5a,-xy,7mn,9a,-,0,0.4mn,2xy.由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征.请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.二、讲授新课
1.同类项的定义:
222师:在生活中我们常常把具有相同特征的事物归为一类.8xy与-xy可以归为一类,2xy222与-可以归为一类,-mn、7mn与0.4mn可以归为一类,5a与9a可以归为一类,还有、0与也可以22归为一类.8xy与-xy只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都2是1;同样地,2xy与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.三、例题讲解
教师读题,指名回答.【例1】 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.(1)3x与3mx是同类项.()(2)2ab与-5ab是同类项.()22(3)3xy与-yx是同类项.()22(4)5ab与-2abc是同类项.()(5)2与3是同类项.()(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)【例2】 游戏.规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.要求出题同学尽可能使自己的题目与众不同.可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.【例3】 指出下列多项式中的同类项:(1)3x-2y+1+3y-2x-5;2222(2)3xy-2xy+xy-yx.【答案】(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.2222(2)3xy与-yx是同类项,-2xy与xy是同类项.k2【例4】 k取何值时,3xy与-xy是同类项? 【答案】 要使3xy与-xy是同类项,这两项中x的次数必须相等,即k=2.所以当k=2k2时,3xy与-xy是同类项.【例5】 若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.(1)(s+t)-(s-t)-(s+t)+(s-t);22(2)2(s-t)+3(s-t)-5(s-t)-8(s-t)+s-t.(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.四、课堂练习
23请写出2abc的一个同类项.你能写出多少个?它本身是自己的同类项吗?(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)
23【答案】 改变2abc的系数即可,与其本身也是同类项.五、课堂小结
理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.第2课时 合并同类项
教学目标
【知识与技能】
理解合并同类项的概念,掌握合并同类项的法则.【过程与方法】 k
232经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.【情感、态度与价值观】
在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.教学重难点
【重点】正确合并同类项.【难点】找出同类项并正确的合并.教学过程
一、情境引入
师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:(1)他们两次共买了多少本软面抄和多少支水笔?(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元? 学生完成,教师点评.二、讲授新课
合并同类项的定义.学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.三、例题讲解
2222【例1】 找出多项式3xy-4xy-3+5xy+2xy+5中的同类项,并合并同类项.22222222【答案】 原式=3xy+5xy-4xy+2xy+5-3=(3+5)xy+(-4+2)xy+(5-3)=8xy-2xy+2.根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.【例2】 下列各题合并同类项的结果对不对?若不对,请改正.224(1)2x+3x=5x;(2)3x+2y=5xy;(3)7x-3x=4;(4)9ab-9ba=0.(通过这一组题的训练,进一步熟悉法则)
222【例3】 求多项式3x+4x-2x-x+x-3x-1的值,其中x=-3.22222【答案】 3x+4x-2x-x+x-3x-1=(3-2+1)x+(4-1-3)x-1=2x-1,当x=-3时,原式=2×(-3)-1=17.试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)课堂练习.课本P71练习第1~4题.【答案】 略
四、课堂小结 22
2221.要牢记法则,熟练正确的合并同类项,以防止2x+3x=5x的错误.2.从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.第3课时 去括号、添括号
教学目标
【知识与技能】
去括号与添括号法则及其应用.【过程与方法】
在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.【情感、态度与价值观】
让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.教学重难点
【重点】去括号和添括号法则.【难点】当括号前是“-”号时的去括号和添括号.教学过程
一、创设情境,引入新课
还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.1.若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为 4+3(n-1).2.若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为 n+n+(n+1).3.若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为 4n-(n-1).4.若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为 1+3n.搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗? 生:相等.师:那么我们怎样说明它们相等呢? 学生讨论、回答.师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1.活动一 去括号
师:在代数式里,如果遇到括号,那么该如何去括号呢? 我们再看看以前做过的习题.计算:(1)-(8-12)+(-16+20)=-8+12-16+20(2)(1-2)+(3-4)-(-5+6)=1-2+3-4+5-6 它们是相等的吗?若相等,观察两式的变化情况,并说明.学生回答.师:①前一个括号里的数有没有变号?后一个括号里的数有没有变号?②前两个括号里的224数有没有变号,后两个数呢?③变与不变由谁来决定,与什么有关? 学生回答.师:去括号法则:如果括号前是“+”号,那么去掉括号和括号前的“+”,括号内各项不改变符号;如果括号前是“-”号,那么去掉括号及括号前的“-”号,括号内各项都要改变符号.师:去括号的依据又是什么呢?请同学们看下面的解答过程,并回答.+(a+b-c)
-(a+b-c)=1×(a+b-c)=(-1)×(a+b-c)=a+b-c =-a-b+c 生:乘法分配律.二、新课讲授
1.去括号:(1)a-(a+b+c);(2)x-2(y-x).教师找两名学生上黑板演示,其余同学在座位上解答.2.先去括号,再合并同类项:(1)8a+2b+(5a-b);(2)a+(5a-3b)-2(a-2b).教师找两名学生上黑板演示,其余同学在座位上解答.师评:无论括号前是“+”号、“-”号,还是一个数字,都是乘法分配律的运用,运算时既可以使用去括号法则,也可以直接使用乘法分配律,关键是注意“减全变”、“加不变”.活动二 添括号
问题展示:观察以下两等式中括号和各项符号的变化.(1)a+(b+c)=a+b+c;(括号没了,符号不变)(2)a-(b+c)=a-b-c.(括号没了,符号全变了)再观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?(1)a+b+c=a+(b+c);(2)a-b-c=a-(b+c).学生回答.添括号的法则:如果括号前是“+”号,那么括到括号里的各项都不改变符号,如果括号前是“-”号;那么括到括号里的各项都要改变符号.三、例题讲解
【例】 先去括号,再合并同类项:(1)8a+2b+(5a-b);(2)a+(5a-3b)-2(a-2b).【答案】(1)8a+2b+(5a-b)=8a+2b+5a-b =(8a+5a)+(2b-b)=13a+b.(2)a+(5a-3b)-2(a-2b)=a+5a-3b-2a+4b =(a+5a-2a)+(-3b+4b)=4a+b.四、变式训练
1.在下列各式的括号里填入适当的项.2(1)a-a+b=+()=-();(2)x-y=(x-xy)+(-y);2222(3)(x-x)-(y-y)=()-(x-y).2.在括号里填入适当的项.22(1)x-x+1=x-();(2)2x-3x-1=2x+();(3)(a-b)-(c-d)=a-().学生解答: 221.(1)a-a+b-a+a-b(2)xy(3)x-y 2.(1)x-1(2)-3x-1(3)b+c-d 师:第一题中的(2)、(3)可先把等号两边的括号都去掉,再观察等式左边与右边的各项,看是否缺项、多项、符号是否一致,然后进行填空,使等式左右两边相等;其余各题直接运用添括号法则.五、课堂小结
这节课我们学习了哪些新知识,需要注意些什么? 1.去括号法则和添括号法则.2.添括号是添上括号及括号前面的符号,去括号是去掉括号及括号前面的符号.3.添括号和去括号的过程正好相反,它们可以相互检验.第4课时 整式加减
教学目标
【知识与技能】
让学生从实际背景中去体会进行整式加减运算的必要性,并能灵活运用整式的加减运算的步骤进行运算.【过程与方法】
经历整式加减法则的概括过程,发展学生有条理的思考及语言表达能力,培养符号感.【情感、态度与价值观】
认识到数学是解决实际问题和进行交流的重要工具.教学重难点
【重点】整式的加减.【难点】总结出整式加减运算的一般步骤.教学过程
一、问题引入
1.做一做.师:在上新课之前,我们先来看一下这道题.某学生合唱团出场时第一排站了n名,从第二排起每一排都比以前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?(1)学生写出答案:n+(n+1)+(n+2)+(n+3).(2)提问:以上答案能进一步化简吗?如何化简?我们进行了哪些运算? 2.教师板书题目.化简: 2222
22(1)(x+y)-(2x-3y);2222(2)2(a-2b)-3(2a+b).师:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?(从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性,再通过复习、练习,为学生概括出整式的加减的一般步骤做必要的准备)
二、讲授新课
1.整式的加减:教师概括.(引导学生归纳总结出整式的加减运算的步骤)师:我们不难发现,去括号和合并同类项是整式加减的基础.因此,整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.三、例题讲解
22【例1】 求整式x-7x-2与-2x+4x-1的差.22222【答案】(x-7x-2)-(-2x+4x-1)=x-7x-2+2x-4x+1=3x-11x-1.(本例应先列式,列式时注意给两个多项式都加上括号,后进行整式的加减)练习一个多项式加上-5x-4x-3等于-x-3x,求这个多项式.【例2】 先化简,再求值: 22225a-[a-(2a-5a)-2(a-3a)],其中a=4.2222【答案】 原式=5a-(a-2a+5a-2a+6a)22=5a-(4a+4a)22=5a-4a-4a 2=a-4a.22当a=4时,原式=a-4a=a-4×4=0.(本例让学生体会整式的加减运算的实质是去括号、合并同类项这两个知识的综合,有利于将新知识转化为已有的知识,更新学生的知识结构)【例3】 计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).【答案】(1)原式=2x-3y+5x+4y=2x+5x+4y-3y=7x+y.(2)原式=8a-7b-4a+5b=8a-4a-7b+5b=4a-2b.【例4】 一种笔记本的单价是x元,一种圆珠笔的单价是y元,小红买这种笔记本3本,买这种圆珠笔2支;小明买这种笔记本4本,买这种圆珠笔3支,买这些笔记本和圆珠笔,小红和小明一共花费多少钱? 【答案】 小红和小明买笔记本共花费:(3x+4x)元,买圆珠笔共花费(2y+3y)元, 因为,小红和小明一共花费:(3x+4x)+(2y+3y)=(7x+5y)元.3.课堂练习.课本P75练习第1~4题.【答案】 略
四、课堂小结
教师引导学生小结: 1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号;
2(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.
第五篇:七年级数学整式的加减3.4整式的加减教学设计华东师大版(共)
3.4 整式的加减
教学目标:
1.理解与掌握整式加减的一般步骤.2.能熟练地进行整式的加减运算.3.渗透类比及整体的数学思想.教学重点:
能熟练地进行整式的加减运算是本节课的重点.教学难点:
熟练与准确、灵活应用所学知识点是本节课的难点.教具准备:
多媒体.教学过程:
1.情境导入:
首先实际生活问题,激发学习兴趣,分析提出问题,导入新课.2.探究新知:
引导同学们根据提出的问题,在寻求答案时,展示了上节课的习题,提出问题的同时,总结出整式加减的一般步骤,从而训练学生对新知识的大胆探索并用新知识解决导入时提出的问题.3.新知运用:
通过一系列例题及练习问题的解决,使学生能够准确对单项式与单项式进行加减,并能对多项式与多项式进行加减,明确整式的加减的理论基础,加强对学生对已学知识的掌握与巩固.4.知识拓展:
通过拓展练习进行进一步的尝试与探究,发现解决问题的同时,注意对知识的整合,并提出运算中的注意事项,例如运算的结果按某一字母的降幂排列
结合反馈练习,加深同学们对整式的加减的认识,并通过练习进一步复习了单项式、多项式、去括号、添括号的知识,也通过题目的简便算法提出了类比及整体的数学思想,为数学学习打下基础.5.例题学习:
例1:求整式x-7x-2与-2x+4x-1的差.解:原式=(x-7x-2)-(-2x+4x-1)= x-7x-2+2x-4x+1 =3x-11x-1.例2:计算:-2y+(3xy-xy)-2(xy-y).3
322
2解:原式=-2y+3xy-xy-2xy+2y
= xy-xy.例3:化简求值:2xy-3xy+4 xy-5 xy,其中x=1,y=-1.解:原式=(2xy+4 xy)-(3xy+5 xy)
=6 xy-8 xy.当x=1,y=-1时,原式=-14.6.本节小结:
通过对本节课的小结,提高同学们对本节课的认识,特别加深同学们对整式的加减的认识与巩固,归纳总结了整式加减的一般步骤:先去括号,再合并同类项,通过练习加强学生对已学知识的灵活应用,进一步明确了数学学习中的思想与方法.222
22232223 2