《简易方程——实际问题与方程》教学设计

时间:2019-05-12 23:08:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《简易方程——实际问题与方程》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《简易方程——实际问题与方程》教学设计》。

第一篇:《简易方程——实际问题与方程》教学设计

简易方程—实际问题与方程(2)教学内容:教材P4例2及练习十六第5、6、9题。教学目标:

知识与技能:学生能根据等式的基本性质解如ax ±b=c的方程,初步学会列方程解决一些简单的实际问题。

过程与方法:培养学生抽象概括的能力,发展学生思维的灵活性,进一步提高学生的分析能力。

情感、态度与价值观:帮助学生感受数学与现实生活的联系,培养学生的数学应用意识与规范书写和自觉检验的习惯。

教学重点:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。教学难点:找等量关系式列方程。

教学方法:创设情境;自主探索、合作交流。教学准备:多媒体。教学过程

一、忆旧引新 1.看图列方程。

2.先说说下面各题的数量关系,再列方程,不用求解。(1)公鸡x 只,母鸡30只,比公鸡只数少6只。(2)公鸡x 只,母鸡30只,是公鸡只数的2倍。

二、互动新授 1.出示足球。

师:同学们,你们喜欢足球吗?其实,足球里蕴藏着许多的数学知识。请观察老师手中的足球,你发现白皮和黑皮的形状有什么不同吗?

师:除了形状,白皮、黑皮的块数也不相同哦,有几位男生正在探究这个数学问题,让我们一起来瞧瞧。

2.出示教材第74页例2情境图。

观察图,并说说图中你知道了哪些信息?要解决什么问题?

学生回答:知道的信息:足球上黑色的皮都是五边形的,白色的皮都是六边形的。白色皮共有20块,比黑色皮的2倍少4块。解决的问题:共有多少块黑色皮?

追问:你能根据信息和问题列出题中的等量关系式吗? 交流汇报,并根据回答选择板书: 黑色皮的块数×2=白色皮的块数-4 黑色皮的块数×2-4=白色皮的块数 黑色皮的块数×2=白色皮的块数+4 引导学生观察第二个等量关系式,说一说这个等量关系式中的已知条件和未知条件分别是什么? 已知条件:白色皮共20块,比黑色皮的2倍少4块;未知条件:黑色皮有多少块?

3.引导学生利用例1的经验,自主列方程解答: 学生自主解答,教师指导。学生汇报,教师根据汇报板书: 解:设共有x 块黑色皮。2x-4=20 2x-4+4=20+4 2x =24 2x ÷2=24÷2 x =12 4.追问:在解方程时,先把什么看成一个整体?(把2x 看成一个整体。)5.检验。

6.小结:刚才我们通过列方程解决了一个稍复杂的问题,你能说说列方程解决问题主要有哪些步骤吗?其中哪一个步骤是最关键的?

学生汇报: 教师板书: ①弄清题意,设未知量为x。设

②分析题意,找等量关系。找▲(关键)③根据等量关系列出方程。列 ④解方程。解 ⑤检验答案是不是方程的解。验

三、巩固拓展

1.根据方程列出等量关系式。

粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据(),列方程:3x +12=72 根据(),列方程:72-3x =12 2.先说说下列各题的数量关系,再列方程解决问题。

故宫的面积是72万平方千米,比天安门广场面积的2倍少16万平方千米。天安门广场的面积是多少万平方千米?

四、课堂小结

1.这节课你学会了用什么方法来解决实际问题? 2.什么类型的题目适合用今天所学的方法来解答? 3.用这样的方法来解决实际问题时要注意什么? 作业:教材第75~76页第5、6、9题。

第二篇:《简易方程——实际问题与方程》教学设计

简易方程—实际问题与方程(4)教学内容:教材P79例5及练习十七第5、11、13题。教学目标:

知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

教学重点:正确寻找数量间的等量关系式。教学难点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。

教学方法:创设情境、知识迁移、自主探究、合作交流。教学准备:多媒体。教学过程

一、复习导入

1.复习:我们学过有关路程的问题,谁来说一说路程、速度、时间之间的关系?

学生回答:路程=速度×时间。

2.引导:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)

3.揭题:今天我们就利用方程来研究相遇问题。

二、互动新授

1.出示教材第79页例5。

引导学生观察,并思考题中的已知条件和要求的问题是什么?

学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?

2.质疑:求相遇的时间是什么意思? 引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路之和。相遇的时间就是两个人共同行使全程用的时间。

3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。出示线段图,教师讲解线段图: 先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。

追问:从线段图中,你知道了什么?

学生交流,汇报:小林骑的路程+小云骑的路程=总路程。4.质疑:现在能不能求出小林骑的路程和小云的路程呢? 引导学生汇报:都不能求出,因为他们行驶的时间不知道。再思考:他们两个行驶的时间一样吗?为什么? 学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x。

5.让学生根据分析,尝试列方程解答问题。

小组交流,汇报,教师根据学生的汇报板书(见板书设计): 引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。

引导小结:在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程

(甲速+乙速)×相遇时间=路程

三、巩固拓展

出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?

指名学生读题,找出已知所求,引导学生根据复习题的线段图画出线段图,并解答。

解:设甲车平均每小时行x千米。87×7+7x=1463 x=122 答:甲车平均每小时行122千米。

四、课堂小结

师:这节课你学会了什么知识?有哪些收获? 引导总结:

1.通过画线段图可以清楚地分析数量之间的相等关系。2.解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。

3.列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。作业:教材第82页练习十七第5、11、13题。

第三篇:《简易方程——实际问题与方程》教学设计

简易方程—实际问题与方程(1)教学内容:教材P73例1及练习十六第1、3、4题。教学目标:

知识与技能:使学生初步理解和掌握列方程解决一些简单的实际问题的步骤,掌握bx -a等这一类型的简易方程的解法,提高解简易方程的能力。

过程与方法:让学生借助直观图自主探究,分析数量之间的等量关系,并正确地列出方程解决实际问题,培养学生的主体意识、创新意识以及分析、观察和表达能力。

情感、态度与价值观:使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。

教学重点:正确设未知数,找出题目中的等量关系,会列方程,并会解方程。教学难点:根据题意分析数量间的相等关系。教学方法:创设情境;自主探索、合作交流。教学准备:多媒体.教学过程

一、复习导入

1.解下列方程:x +5.7=10 x-3.4=7.61 4x =0.56 x ÷4=2.7 2.分析数量关系:

(1)我们班男生比女生多8人。(2)实际用煤比计划节约5吨。

(3)实际水位超过警戒水位0.64 m。

学习方程的目的是为了利用方程解决生活中的问题,这节课我们就来一起学习如何用方程解决问题。(板书课题:实际问题与方程)

二、探究新知

教师多媒体出示教材第73页例1的情境图。

师:同学们平时经常锻炼身体吗?生:经常锻炼。师:你们平时都喜欢做哪些运动呢?

生1:跑步、打羽毛球。生2:打乒乓球、游泳。生3:跑步、打乒乓球、爬山。

师:看来同学们喜欢的运动还真不少!同学们平时都应该多运动,增强体质。在学校办运动会时,希望同学们也能积极参加。好吗?生:好!

师:下面我们一起来看看教材第73页例1的情境图。请大家认真观察情境图,然后说说从图中获得了哪些信息。

学生观察情境图,然后回答。

生4:小明正在参加学校的跳远比赛,并且破学校的纪录了。师:那小明的成绩是多少呢?

生5:小明的成绩为4.2lm,超过了学校的原纪录0.06m。

师:根据这些信息,你们能告诉我学校的原跳远纪录是多少吗?

生6:用小明的跳远成绩减去小明的成绩比学校原跳远纪录多的成绩,得到的结果就是学校原跳远纪录。

师:怎么列式呢?生6:4.21-0.06=4.15(m),所以学校原跳远纪录是4.15m。师:同学们还有其他方法吗?

生7:也可以用方程来求解。由于原纪录是未知数,可以把它设为x m,再根据题意列出方程。师:你能写出具体解题过程吗?生7:解:设学校原跳远纪隶是x m,原纪录+超出部分=小明的成绩

得x +0.06=4.21 x +0.06-0.06=4.21-0.06 x =4.15 所以学校原跳远纪录是4.15m。答:学校的原跳远纪录是4.15m。

师:很好!但是这位同学忘了检验计算结果是否正确。有同学能说说该如何检验吗?

生:把x =4.15代人方程,得 方程的左边=x +0.06 =4.15+0.06 =4.21 =方程的右边,所以求解结果正确。

师:这位同学检验的过程是正确的。同学们以后在解方程时,一定不要忘了检验结果是否正确!

三、巩固应用

1.完成教材第73页“做一做”的第(1)小题。师:你从题中能知道哪些信息?有哪些等量关系?根据等量关系式列出方程并解答。

用方程解决问题,两人一小组交流方法。评讲后要特别提醒学生别忘了检验。解答过程:今年的身高=去年的身高+长高的部分解:略 2.完成教材第73页“做一做”的第(2)小题。请学生观察题目所给出的条件,你发现了什么?引导学生说出所给条件的单位不统一,要化成统一的单位。

小组讨论怎样找到相等的关系。指名汇报并板书:

每分钟滴的水×30=半小时滴的水

请学生思考应该把哪个条件设为x,怎样列方程。小组讨论后,指名汇报,并板书:解:略

请学生讨论为什么方程30x ÷30=1800÷30的两边同时除以一个30仍然相等呢。你怎样判断x =60就是方程的解呢?

引导学生进行检验,指导检验的格式。

四、课堂小结 师:这节课学习了什么?用方程解决问题应注意哪些问题?(列方程解应用题,关键是要找出题目中的等量关系,根据等量关系式假设未知数为x,然后再列方程解应用题。)

作业:教材第75页第1、3、4题。

第四篇:实际问题与方程教学设计

实际问题与方程教学设计

一、教学内容:人教版五年级上册数学第五单元《实际问题与方程》例4,第78页

二、教学目标:

1、会根据两个未知量的关系,列出含有两个未知数的方程,理解和掌握列方程解这类问题的等量关系和解题方法。

2、学生在观察、分析、抽象,概括和交流的过程中,进一步体会方程的思想。

3、通过不同方法的渗透,培养学生的类推和迁移的思想,激发学生学习数学的兴趣。

三、教学重点:列方程解答含有两个未知数的实际问题。

四、教学难点:准确地找出等量关系,列出方程。

五、教学准备:课件

地球仪

六、教学过程:

(一)导入

1.师:同学们你们知道地球表面积是由什么组成的么?出示地球仪,使学生认识到地球表面积由海洋面积和陆地面积组成。2.根据下面的两个条件,你能提出什么数学问题? 地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍.学生提出问题,回答列式.1.海洋面积约为多少亿平方千米? 1.5×2.4=3.6(亿平方千米)2.海洋面积约比陆地面积多多少? 1.5×2.4-1.5=2.1(亿平方千米)3.地球的表面积是多少亿平方千米? 1.5×2.4+1.5=5.1(亿平方千米)

(二)探究新知

(1)出示例题:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍,地球上的海洋面积和陆地面积分别是多少亿平方千米?

(3)师:请同学们根据讲解的例题,开动自己的小脑筋,想想这道题可以怎么做?做完之后,小组之间进行交流。(师巡视指导)(4)下面哪个小组来和大家交流一下做法呢?

预设1:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x

亿平方千米。

海洋面积+陆地面积=地球表面积

2.4x+x=5.1

(2.4+1)x=5.1

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。预设2:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x

亿平方千米。

地球表面积-陆地面积=海洋面积

5.1-x=2.4x

5.1-x+x=2.4x+x

5.1=(2.4+1)x

5.1=3.4x

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。预设3:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x

亿平方千米。

地球表面积-海洋面积=陆地面积

5.1-2.4x=x

5.1-2.4x+2.4x=x+2.4x

5.1=(1+2.4)x

5.1=3.4x

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。师:同学们都积极的开动了自己的小脑筋,也都做的很棒,下面请大家比较一下这几种方法,你们认为哪种方法最好呢? 预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法

1、设(找出未知数,用字母x表示)

2、找(找出题目中的等量关系)

3、列(根据等量关系列出方程)

4、解(运用等式的性质解方程)

5、验(将解出的结果代入方程检验)

6、答(完整地写好答话)

师:是的,用方程解决实际问题我们常用的就是你这六个步骤,请同学们要牢记哦。接下来,老师考考大家,看看你们掌握的怎么样,你们有没有信心接受我的挑战呢?

三、巩固练习

1、找出下列各题中的等量关系

(1)小红和小军一共存了235元,小红存的钱数是小军的1.5倍,小红和小军分别存了多少元?

(2)植物园里种着松树和柏树,松树的棵树是柏树的2.5倍,柏树比松树少84棵,松树和柏树分别有多少棵? 2列方程解问题

.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。

(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?

(2)白兔比黑兔多138只,白兔和黑兔各有多少只? 请同学们先独立完成第一问,然后我们进行交流。

第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。

四、课堂小结 通过本节课的学习:

实际问题与方程教学设计收获是

实际问题与方程教学设计遇到的困惑是

五、作业布置

第五篇:《实际问题与方程》教学设计

五年级数学上册第五单元《实际问题与方程》

教学内容:教科书第78页的例4 教学目标:

1、解决实际问题中的有关和、差、倍的数量关系。

2、初步学会设计一个未知数,列方程解答含有两个未知数的实际问题。

3、培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。教学过程:

一、复习

1、、学校图书组有女生x人,男生为女生的2.5倍,男生有()人,男女同学共()人。

2、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?

二、探究新知

教学教科书第78页的例4。

1、分析题目的已知条件和问题。

2、分析本题的数量关系。

请学生说出数量关系,教师板书。

陆地面积 + 海洋面积 = 地球表面积

教师:这道题目中有两个未知数,而这两个未知数之间存在着倍数关系。我们在解题时,只要设其中的一个未知数为x,而另一个未知数就可以用这个未知数来表示,为了解方程方便,通常情况下,设一倍数为x。

3、列方程解应用题。

解:设陆地面积为x亿平方千米,海洋面积就为2.4x亿平方千米

x + 2.4x = 5.1(1 + 2.4)x = 5.1

3.4x = 5.1

3.4x÷3.4 = 5.1÷3.4

x=1.5 提问:1.5表示什么?(1.5表示陆地面积是1.5亿平方千米)那海洋面积该怎样求呢?

一种:5.1-1.5=3.6(亿平方千米)另一种:2.4 x=2.4×1.5=3.6(亿平方千米)

答:陆地面积是1.5亿平方千米,海洋面积是3.6亿平方千米。引导学生进行检验。

三、巩固训练

1、果园里种着桃树和杏树,杏树是桃树的3倍。(1)桃树和杏树一共180棵,桃树和杏树各有多少棵?

(2)杏树比桃树多90棵,杏树是桃树的3倍,桃树和杏树各有多少棵?

学生独立完成,教师评讲

2、课本81面6、7、8题

四、课堂总结:今天你学了什么?有什么收获?(小组同学相互交流)

五、布置作业: 练习十七(5 —7题)

下载《简易方程——实际问题与方程》教学设计word格式文档
下载《简易方程——实际问题与方程》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《实际问题与方程》教学设计

    第5单元 简易方程 实际问题与方程(1) 【学情分析】教学对象是五年级的学生,他们的年龄都是十一、二岁,基本都具备以下知识和技能:学生掌握了解方程的方法,能正确分析应用题中的数......

    实际问题与方程教学设计

    《实际问题与方程(一)》教学设计 执教人——杨燕 一.教学内容: 人教版五年级上册第73页例1和第74页例2. 二.教学目标: 知识与目标:能够根据具体问题找出数量关系,列出方程,并正确解......

    实际问题与方程

    课题实际问题与方程课型新授课设计说明返璞归真,努力营造一个简洁、高效、灵动、快乐的数学课堂。1.充分展开教学过程,给予学生思考的时间和空间,关注课堂生成,因势利导,引导......

    实际问题与方程

    课题实际问题与方程课型新授课设计说明1.复习导入,引导学生发现数学问题。通过复习铺垫,使学生深入掌握行程问题中速度、时间和路程三者之间的关系,进一步巩固有关这几个数......

    《简易方程》教学设计

    《简易方程》教学设计 教学内容: 苏教版教材第九册P90例1、“练一练”以及练习十二第1~2题和补充练习。 教学目标: 1、 2、 3、 使学生理解掌握方程ax±bx=c的解法。 培养学生......

    《简易方程》教学设计

    《简易方程》教学设计 ——乐秋乡虎街哨小学教师 李坤艳 (我从教地区的饮用水绝大多数是用扁担担回家的,学生对扁担比较熟悉,我用扁担代替天平来进行方程的有关教学。) 一、结合......

    简易方程教学设计

    简易方程——解方程(二) 教学目标: 1、巩固利用等式的性质解方程的知识,学会解ax ±b=c与a(x ±b)=c类型的方程。 2、进一步掌握解方程的书写格式和写法。 3、在学习过程中,进一......

    简易方程教学设计

    、复习: 1 、计算下列各题并说说各部分的名称以及算式中的数与答案三者之间的关系 2.4+6= 10-0.7= 240÷6= 42×5= (加数,加数,和;被减数,减数,差;被除数,除数商;被乘数,乘数,积。每组算......