全等三角形(省优质课教案)

时间:2019-05-12 23:04:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全等三角形(省优质课教案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全等三角形(省优质课教案)》。

第一篇:全等三角形(省优质课教案)

全等三角形(省优质教案)

教学目标知识与技能目标(1)

掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。(2)

知道全等三角形的有关概念,掌握寻找全等三角形中的对应元素的基本方法。(3)

掌握全等三角形的性质。(4)

通过演译变换两个重合的三角形,呈现出它们之间各种不同的位置关系,从中了解并体会图形的变换思想,逐步培养动态研究几何意识。()

初步会用全等三角形的性质进行一些简单的计算。过程与方法目标(1)

围绕全等三角形的对应元素这一中心,通过观察、操作、想象、交流、等展开教学活动。(2)

设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本的中心问题-----全等三角形的性质,经历理解性质的过程。(3)

运用多媒体演示图形的位置变化,使学生认识到图形具有相对运动能力。(4)

变换两个重合的三角形的位置,使它们呈现各种不同的位置关系,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。情感与态度目标(1)

学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。(2)

给学生以充分的思考时间,有利于不同层次学生的学习。教材分析本节是在了解三角形的有关概念和学习了三角形的基本性质的基础上予以展开的,首先是感受现实生活中,有许多能重合的图形,这些图形的形状、大小相同,进而认识全等三角形,共同探索全等三角形的性质,并用这些结果解决一些实际问题,以提高学生用数学解决实际问题的能力。教学重点、难点教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学构思:通过实物、平面图形认识全等形、全等三角形,从而探究全等三角形的性质,通过演译全等变形,逐步培养学生动态的研究几何图形的意识。教学教程Ⅰ题引入1电脑显示问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。归纳:能够完全重合的两个图形叫做全等形。2学生动手操作⑴在纸板上任意画一个三角形AB,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△AB全等?(学生分组讨论、提出方法、动手操作)3板书题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读着“全等于”如图中的两个三角形全等,记作:△AB≌△DEFⅡ全等三角形中的对应元素1问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2.学生讨论、交流、归纳得出:⑴两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。⑵表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。Ⅲ全等三角形的性质1观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)

全等三角形的性质:

全等三角形的对应边相等.

全等三角形的对应角相等.

2用几何语言表示全等三角形的性质如图:∵∆AB≌∆DEF

∴AB=DE,A=DF,B=EF

(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠=∠F

(全等三角形对应角相等)Ⅳ探求全等三角形对应元素的找法1动画(几何画板)演示(1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.(2)说出每个图中各对全等三角形的对应边、对应角归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.2动画(几何画板)演示图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系并说出其中的对应关系DE⑴⑵⑶3归纳:找对应元素的常用方法有两种:

(1)从运动角度看

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

.平移法:沿某一方向推移使两三角形重合来找对应元素.

(2)根据位置元素来推理

a有公共边的,公共边是对应边;b有公共角的,公共角是对应角;有对顶角的,对顶角是对应角;d两个全等三角形最大的边是对应边,最小的边也是对应边;e两个全等三角形最大的角是对应角,最小的角也是对应角;Ⅴ堂练习练习1△ABD≌△AE,若∠B=2°,BD=6㎝,AD=4㎝,你能得出△AE中哪些角的大小,哪些边的长度吗?为

什么?练习2△AB≌△FED

⑴写出图中相等的线段,相等的角;⑵图中线段除相等外,还有什么关系吗?请与同伴交流并写出来Ⅵ小结1这节你学会了什么?有哪些收获?有什么感受?2通过本节学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节大家要重点掌握的.Ⅶ作业本第92页1、2、3题Ⅷ教学反思

本节教师是否注意在教学中尽量让学生动手一起参与知识的发生(定义)、发展(摆放图形观察性质、总结方法)过程,并在动手操作的同时,渗透图形的全等变换的思想。让动手、动脑、动口相结合,自己发现知识。在总结寻找全等三角形的对应元素的方法时,是否注意启发学生学会观察、寻找规律,并通过几种层次的题目逐步达到发现规律,并巩固、运用规律解决问题的目的。通过活动教学,采用演示实验、学生讨论等多种方法。

第二篇:全等三角形(省优质课的教案)

全等三角形(省优质的教案)

【教材分析】1.本节教材的地位与作用

本节是在学生掌握了三角形有关知识的基础上,重点研究了全等三角形的有关概念、表示方法及对应部分的关系。由于三角形是最基本的几何图形之一,所以理解和掌握全等三角形的有关概念是今后学习全等三角形的判定和应用的预备知识,还是证明角相等,线段相等的主要途径,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用.2.教学重点 全等三角形的有关概念及其性质.3.教学难点 三角形全等的表示方法与对应部分的关系.【教学目标】

1、知识和技能目标:1)、理解全等形、全等三角形的概念及全等三角形表示方法;2)、会寻找全等三角形的对应边、对应角和对应顶点;3)、掌握全等三角形的性质,并能进行简单的推理和计算,能解决一些实际问题.2.过程和方法目标:1)、通过全等三角形的有关概念的学习,提高学生数学概念的辨析能力;2)、通过找出全等三角形的对应元素,培养学生的识图能力.3.情感和价值目标:1)、通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;2)、联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣【教法分析】

主要采用引导探究法,实验法【学法分析】

新改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动、勇于探索的学习方式,因此本节主要采用动手实践、自主探索与合作交流的学习方式,自觉实现知识的建构,促进学生全面发展.【教具准备】三角形模板、剪刀【教学过程】教学环节教

容设

一、创

境,引

提问:我有一块三角形玻璃被摔成了两块。(如图)需要照原样再配一块,是不是一定要把两块碎片都带到玻璃店去?学生可能会有如下的主张:1、主张带两块的2、主张带一块的(但不能确定带哪一块)。教师问:还有没有其他的方法?(不要求作答)教师:回答这个问题要用到全等三角形的知识。下面,先来学习全等三角形的知识引入新:全等三角形

此设问和生活相联系,引起了学生认识需要,激发学生的求知欲,使之在思维情境中进入最佳学习状态。

二、自

索,发

(一)全等形的概念

1、观察下面几组图形,它们具有什么特征?(形状相同、大小相等)

2、你能再举出一些生活中这样的例子吗?

3、观察:利用多媒体演示 把一块样板按在纸板上,画下图形,照图形裁下来的纸板和样板形状、大小完全一样吗?把纸板和裁得的样板放在一起能够完全重合吗?从同一张底片冲冼出来的两张照片上的图形,放在一起也能够完全重合吗?

4、直接给出全等形的定义:能够完全重合的两个图形叫做全等形(ngruentfigures)练习:用三角形模板在黑板上画两个三角形:_A_B__D_E_F从学生熟悉图形和例子引出全等形的概念,可以排除学生对几何的畏难心里,增强他们的信心;在教学过程中要强调“重合”这个概念,使全等形概念的引入显得非常自然.教学环节教

容设

二、自主探索,发现新知提问:a、如果把△DEF放到△AB上,两个三角形可以重合吗?(可以重合)

b、可以重合的三角形是什么形?

(全等形或全等三角形)我们把能够完全重合的两个三角形叫做全等三角形

(二)讲解对应顶点,对应边,对应角的概念:EBF AD1、观察图形思考:当△AB与△DEF重合时①与顶点A重合的点是哪个点?

②与∠A重合的角是哪个角?

③与边AB重合的边是哪条边?把两个全等三角形重合到一起时,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边

2、根据上图完成下面的填空:重合部分名称是否相等,说明理由顶点B与顶点顶点与顶点边A与边边B与边∠与∠∠B与∠

(三)全等三角形的性质:如上图,△AB全等于△DEF,对应边有什么关系?对应角呢?直接得出全等三角形的性质:(1)

全等三角形的对应边相等;(2)

全等三角形的对应角相等

(四)全等的表示方法:看书P91回答下列问题:

1、怎样表示两个三角形全等?(全等用符号“≌”表示,读作“全等于”)

2、表示两个三角形全等时应该注意哪些问题?

(用“≌”表示两个三角形全等时,要把对应顶点的字母写在对应位置上,如上图可表示为△AB≌△DEF)通过此练习及时巩固全等形的概念,同时也为后面的内容提供铺垫,起承上启下的作用。通过学生观察,教师及时给出对应顶点、对应边、对应角的概念,接着又通过提问,完成表格,让学生及时得到巩固,加深对概念的理解。通过学生的自主探究,发现规律,得出全等三角形的性质,从而提高学生的学习能力。强调全等符号的书写。边写边强调对应顶点写在对应位置上

三、巩 固 练习,深 化 提 高思考:P91一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变即平移、翻折、旋转前后的图形全等练习:分别指出下图中全等三角形的对应边,对应角?

《几何画板》演示(1)将重合的两块全等三角形中的一个沿一边所在的直线移动,观察移动过程中两个三角形有哪几种不同的位置说出它们的对应边、对应角(2)将重合的两块全等三角形中的一个以一边所在的直线为轴,翻折180度,观察翻折后两个三角形的位置给出组合图形,说出它们的对应边、对应角(3)将重合的两块全等三角形中的一个以某一个顶点为中心旋转180度,说出它们的对应边、对应角总结常用的寻找全等三角形对应元素的方法:方法(1)有公共边的,公共边一定是对应边方法(2)有对顶角的,对顶角一定是对应角方法(3)全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角方法(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边方法()在两个全等三角形中,一对最长的边(或最大的角)是对应边(或角);一对最短的边(或最小的角)是对应边(或角)DEBA(巩固练习)如图,△ABD≌△EB1、请找出对应边和对应角。

2、如果AB=3,B=,求BE、BD的长变式:如果AB=3,DE=2,求B的长本难点是确认全等三角形的对应元素。所以就运用《几何画板》演示“全等变换”中的平移变换,动态的实现全等三角形中的一个三角形沿一边所在的直线移动。运用翻折变换,将全等的三角形沿一边所在的直线在空间翻折180度;运用旋转变换,将全等的三角形以某个顶点为中心旋转180度,观察在旋转过程中两个三角形的位置关系。通过以上三种变换,一方面明确全等三角形对应边、对应角相等的性质,另一方面能够准确的识别全等三角形的对应边、对应顶点、对应角。及时地归纳小结,帮助学生积累下经验,使学生认知结构得到同化和顺应,经建构而达到一个新的平衡,从而提高学生的数学能力.该练习是一道综合题,可检测学生对前面所学知识的理解情况,及时反馈,从而利于教学的调整教学环节教

容设

四、归

结,思

展师生共同小结:

1、本节主要研究的内容:

全等形的定义:能够完全重合的两个图形叫做全等形。

定义:能够完全重合的两个三角形叫做全等三角形。全等三角形

表示方法:△AB≌△DEF(对应点要写在对应位置上)。

性质:对应边相等,对应角相等。

会运用全等三角形的性质解决简单的问题。

2、注意:两个全等三角形中,对应角所对的边是对应边,对应边所对的角是对应角。思维拓展:

1、说一说:三角形玻璃是不是一定要把两块碎片都带到玻璃店去?

2、猜一猜:如图,下面两三角形是否全等?

3、想一想:如何判断两个三角形全等呢?从教学目标的三个方面进行简练的小结,帮助学生将新知识顺利地纳入已有的知识体系,对学生堂积极表现的评价,让学生体验到成功.通过学生动手实践,自主探索与合作交流,自觉实现知识的建构,促进学生全面发展。

五、完成目标,布置作业堂作业:

1、看书P90-91。

2、做P92,习题131的1、2、3、4题。

3、预习:三角形全等的条

第三篇:全等三角形优质课课件

一、教材背景及学情分析:

本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1 全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的性质,探索发现全等三角形的性质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。

二、教学目标分析:

1、知识技能

了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。

2、数学思考

在图形的变换以及实际操作的过程中,发展学生的空间观念,培养学生的几何直观能力。

3、过程与方法

在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径

4、情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等形和全等三角形的体验;在探究和运用全等三角形性质的过程中感受数学活动的乐趣。

5、教学重点

⑴全等三角形以及相关概念。

⑵探索全等三角形的性质.

6、教学难点

寻找并掌握全等三角形对应角、对应边的方法。

三、教法分析

《课标》指出:学生是学习的主人,教师是学习的组织者、引导者、合作者,本节课以学生的活动为主线,以突出重点、突破难点、发展学生的数学素养为目的,采用以自学辅导式为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合,注重数学与生活的联系,创设一系列有启发式、挑战性的为题激发学生学习的兴趣,引导学生用数学的眼光思考问题,发现规律,验证猜想,注重师生互动,生生互动,更着眼于学生的实际,充分提现学生的心理需要,从而发展他们的能力和自主学习的意识。

四、课前准备

教具:直尺、三角形纸板、同一底片的两张照片、多媒体课件。

学具:同一底片的照片两张、三角形纸板。

五、教学过程

1、创设情境、激发兴趣,引入新课

问题1:我们每个人手里的数学课本在外形和大小上有什么关系呢?你能发现下面的里两个图形有什么美妙关系吗?(多媒体展示)

通过学生观察、猜想初结论后,教师板书课题(本环节约3分钟)

2、动手实践、师生互动、启发思维

问题2:学生自己动手(同桌互相配合)。

⑴、把同一底片洗出来的两张照片上的图形沿边框剪下来,把剪下来的 图片放在一起,你有什么发现?

⑵、取一张纸,将自己的三角板按在纸上,画下图形,照图形裁下来,纸样与三角形的形状、大小有什么关系?

⑶、问题3:通过刚才的体验,大家谈谈什么样的两个图形是全等形,全等三角形?如何表示两个全等三角形呢?

(本环节约6分钟)

3、动态演示,观察归纳,尝试体验(多媒体演示)

问题4:三角形在平移、翻折、旋转的过程中是否发生了改变?各图中的两个三角形全等吗?(多媒体演示,给学生更直观的启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有变,所以平移、翻折、旋转前后的图形全等,这是利用运动的方法寻找全等的一种策略)。

本环节约5分钟

4、自主学习,深入思考,获取概念。

通过学生自学课本P31内容,理解全等三角形对应元素的概念,培养学生的数学概念辨析能力,并能将三角形经过平移、翻折、旋转前后的对应元素找出来,同时能正确的表示两个全等三角形,强调要将对应的顶点写在对应的位置上。

5、启发猜想,合作实践,验证猜想。

问题5:全等三角形的对应角有什么关系呢?对应边呢?(通过对图形的观察、以及演示,启发学生大胆猜想,并通过动手实践、验证猜想的正确性。)

本环节约5分钟

6、学以致用,分层练习,巩固提高(多媒体展示)

通过对三个练习题的讨论分析、总结得出根据文职元素寻找对应角、对应边的方法,从而配用学生对较复杂图形的识别能力,进一步加深学生对全等三角形的认识。

本环节约10分钟

7、反馈评价,师生小结(多媒体展示)

问题6:本节课你学到了什么?你最大的收获是什么?你还有什么问题呢?

本环节有5分钟

8、回味知识,布置作业

未了加深学生对知识的理解,促进学生对课堂的反思,布置阅读本节课内容后,分层次完成P33页12.1 第1、2题。

六、板书设计

屏幕



一、相关概念



二、三角形全等的性质



三、学生练习



七、教学反思:

本教学设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形实验,加深对“三角形全等”、“对应”含义的理解,即培养学生的画图、识图能力,又提高了逻辑思维能力。在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思想过程,而这样的过程能够促进学生对数学的正真理解和把握,从而不仅获得了数学知识、技能,而且经历了数学活动的过程,体验了数学活动的方法。同时,情感、态度价值观都能得到很好的发展。

第四篇:全等三角形教案

教学目标 :

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等.2、能力目标:

(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点 :在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机

教学方法:自学辅导式

教学过程 :

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图.(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作.(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一.应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书.教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论.(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业

a书面作业 P56#

6、7

b上交作业 P57B组1

思考题:

板书设计 :

第五篇:全等三角形教案

11.1全等三角形

教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质

在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣

重点:探究全等三角形的性质

难点:掌握两个全等三角形的对应边,对应角 教学过程:

观察下列图案,指出这些图案中中形状与大小相同的图形

问题:你还能举出生活中一些实际例子吗?

这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 思考:

一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用表示,读作“全等于”

两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC和DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作ABCDEF

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角

思考:如上图,11-1ABCDEF,对应边有什么关系?对应角呢? 全等三角形性质:

全等三角形的对应边相等; 全等三角形的对应角相等。

思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角

BCAoOADBDCACDBCDAB

(2)将ABC沿直线BC平移,得到DEF,说出你得到的结论,说明理由?

AADDEBECFBC

DC(3)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求A的大小。

小结:

作业:P4—1,2,3

课题:11.2 三角形全等的条件(1)

教学目标

①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点

3

三角形全等条件的探索过程.

一、复习过程,引入新知

多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.

二、创设情境,提出问题

根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢? 组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.

三、建立模型,探索发现

出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗? 让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.

再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.

出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.

四、应用新知,体验成功

实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 鼓励学生举出生活中的实例.

给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.

AB

让学生独立思考后口头表达理由,由教师板演推理过程. 例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下: DC

①以A为圆心画弧,分别交角的两边于点B和点C;

②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D; ③画射线AD.

AD就是∠BAC的平分线.你能说明该画法正确的理由吗? 例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.

ABDC

五、巩固练习

教科书第6页的思考及练习.

六、反思小结

回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.

七、布置作业

1.必做题:教科书第15页习题11.2中的第1、2题. 2.选做题:教科书第16页第9题.

课题:11.2 三角形全等的条件(2)教学目标

①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.

②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点

指导学生分析问题,寻找判定三角形全等的条件. 知识重点

应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动)

一、创设情境,引入课题

多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等.

二、交流对话,探求新知

根据前面的操作,鼓励学生用自己的语言来总结规律:

两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.

三、应用新知,体验成功

出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?

让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:

要想证AB=DE,只需证△ABC≌△DEC △ABC与△DEC全等的条件现有„„还需要„„)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决. 补充例题:

1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE

ABCDE5

求证: △ABD≌△ACE 证明:∵∠BAC=∠DAE(已知)

∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE 在△ABD与△ACE AB=AC(已知)

∠BAD= ∠CAE(已证)AD=AE(已知)

∴△ABD≌△ACE(SAS)思考: 求证:1.BD=CE 2.∠B= ∠C 3.∠ADB= ∠AEC 变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证: ⑴ △DAC≌△EAB 1.BE=DC 2.∠B= ∠ C 3.∠ D= ∠ E 4.BE⊥CD

四、再次探究,释解疑惑

出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.

教师演示:方法(一)教科书98页图13.2-7.

方法(二)通过画图,让学生更直观地获得结论.

五、巩固练习

教科书第9页,练习(1)(2).

六、小结提高

1.判定三角形全等的方法;

2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.

七、布置作业

1.必做题:教科书第15页,习题13.2第3、4题. 2.选做题:教科书第16页第10题. 3.备选题:

(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.

B

AMDFCE

课题: 11.2 三角形全等的条件(3)

教学目标

①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.

②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.

③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难. 教学重点

理解,掌握三角形全等的条件:“ASA”“AAS”. 教学难点

探究出“ASA”“AAS”以及它们的应用. 教学过程(师生活动)创设情境 复习:

师:我们已经知道,三角形全等的判定条件有哪些? 生:“SSS”“SAS”

师:那除了这两个条件,满足另一些条件的两个三角形是否 也可能全等呢?今天我们就来探究三角形全等的另一些条件。探究新知:

一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具?能恢复原来三角形 的原貌吗?

1.师:我们先来探究第一种情况.(课件出示“探究5„„”)(1)探究5 先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 师:怎样画出△A'B'C'?先自己独立思考,动手画一画。

在画的过程中若遇到不能解决的问题.可小组合作交流解决.

生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决„„)„„(2)全班讨论交流

师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步)你是这样画的吗? 师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等. 生:(剪△A'B'C',与△ABC作比较„„)师:全等吗? 生:全等.

师:这个探究结果反映了什么规律?试着说说你的发现. 生1:我发现„„ 生2:„„

生3:两角和它们的夹边对应相等的两个三角形全等. 师:这条件可以简写成“角边角”或“ASA”.至此,我们又增加了—种判别三角形全等的方法.特别应

AA'

EBDC7

注意,“边”必须是“两角的夹边”.

练习:已知:如图,AB=A’C,∠A=∠A’,∠B=∠C 求证:△ABE≌ △A’CD

例1.已知:点D在AB上,点E在AC上,BE和CD

ADOBCE相交于点O,AB=AC,∠B=∠C。求证:BD=CE

2.探究6 师:我们再看看下面的条件:

在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? ABCEDF

师:看已知条什,能否用“角边角”条件证明. 生独立思考,探究„„再小组合作完成. 师:你是怎么证明的?(让小组派代表上台汇报)小组1:„.

小组2:„„投影仪展示学生证明过程(根据学生的不同探究结果,进行不同的引导)师:从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律? 生l:两个角和其中一条边对应相等的两个三角形全等.

生2:在"ASA”中,“边”必须是“两角的夹边”,而这里,“边”可以是“其中一个角的对边”.

师:非常好,这里的“边”是“其中一个角的对边”.那怎样更完整的表述这一规律? 生1:两个角和其中一个角的对边对应相等的两个三角形全等.

师:生1很好,这条件我们可以简写成“角角边”或“AAS”,又增加了判定两个三角形全等的一个条件.

强调“AAS”中的边是“其中一个角的对边”.

多让几个学生描述,进一步培养归纳、表达的能力.

例2.教材11页1题。

师:从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了. 探究7:

(1)三角对应相等的两个三角形全等吗?(课件出示题目)师:想想,怎样来探究这个问题? 生1:„„

生2:„.

引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.

师:这一规律我们可以怎样表达? 生1:„.

生2:三个角对应相等的两个三角形不一定全等.

(2)师:说得非常好.现在我们来小结一下;判定两个三角形全等我们已有了哪些方法?

生:SSS SAS ASA AAS 小结提高

师:这节课通过对两个三角形全等条件的进一步探究,你有什么收获? 巩固练习

教科书第11页,练习2. 布置作业

1。必做题:教科书第13页习题11.2第6、11题

2.如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么? ⑵⑴

课题: 11.2 三角形全等的条件(4)

教学目标

①探索并掌握两个直角三角形全等的条件:HL,并能应用它判别两个直角三角形是否全等.

②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维. ③提高应用数学的意识. 教学重点

理解,掌握三角形全等的条件:HL. 教学过程: 提问:

1、判定两个三角形全等方法有:,。创设情境:

(显示图片),舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?

方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵ 如果他只带了一个卷尺,能完成这个任务吗?

工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 下面让我们一起来验证这个结论。新课:

已知线段a、c(a﹤c)和一个直角α,利用尺规作一个Rt△ABC,使∠C= ∠ α,CB=a,AB=c.想一想,怎样画呢? 按照下面的步骤做一做: ⑴ 作∠MCN=∠α=90°;⑵ 在射线CM上截取线段CB=a ⑶ 以B为圆心,C为半径画弧,交射线CN于点A;⑷ 连接AB.⑴ △ABC就是所求作的三角形吗?

⑵ 剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?

直角三角形全等的条件

斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.想一想

你能够用几种方法说明两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般 三角形判定全等的方法:SAS、ASA、AAS、SSS,还有直角三角形特殊的判定方法——“HL”.练一练:

1.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗 杆底部的距离相等吗?请说明你的理由。

2.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,两个滑梯的倾 斜角∠ABC和∠DFE的大小有什么关系? 解:∠ABC+∠DFE=90°.理由如下: 在Rt△ABC和Rt△DEF中, 则 BC=EF, AC=DF.∴ Rt△ABC≌Rt△DEF(HL).∴∠ABC=∠DEF(全等三角形对应角相等).又 ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°.小结:这节课你有什么收获呢?与你的同伴进行交流 作业:14页7、8。

§11.3.1 角的平分线的性质

(一)教学目标

(一)教学知识点

角平分线的画法.

(二)能力训练要求

1.应用三角形全等的知识,解释角平分线的原理. 2.会用尺规作一个已知角的平分线.

(三)情感与价值观要求

在利用尺规作图的过程中,培养学生动手操作能力与探索精神. 例如图,ACBC,BDAD,ACBD求证:BCAD.10

教学重点

利用尺规作已知角的平分线.

教学难点

角的平分线的作图方法的提炼.

教学方法

讲练结合法.

教具准备

多媒体课件(或投影).

教学过程

Ⅰ.提出问题,创设情境

问题1:三角形中有哪些重要线段.

问题2:你能作出这些线段吗?

[生甲]三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.

过三角形的顶点作这个顶点的对边的垂线,交对边于一点,顶点与垂足的连线就是这个三角形的高.

取三角形一边的中点,此中点与这个边对应顶点的连线就是这条边的中线.

用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.

[生乙]我不同意你对角平分线的描述,三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.

[师]你补充得很好.数学是一门严密性很强的学科,你的这种精神值得我们学习.

如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?

Ⅱ.导入新课

[生]我记得在学直角三角形全等的条件时做过这样一个题:

在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.

求证:∠MOC=∠NOC.

通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.

受这个题的启示,我们能不能这样做:

在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB的平分线了. [师]他这个方案可行吗?

(学生思考、讨论后,统一思想,认为可行)

[师]这位同学不仅给了操作方法,而且还讲明了操作原理.这种学以致用,•联想迁移的学习方法值得大家借鉴.

议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?

教师活动:

播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.

学生活动:

观看多媒体课件,讨论操作原理.

[生1]要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB. [生2]∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形

全等就可以了.

[生3]我们看看条件够不够.

ABAD BCDC

ACAC 所以△ABC≌△ADC(SSS).

所以∠CAD=∠CAB.

即射线AC就是∠DAB的平分线.

[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.

老师再提出问题:

通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)

讨论结果展示:

作已知角的平分线的方法:

已知:∠AOB.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于

12MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).

议一议:

1.在上面作法的第二步中,去掉“大于

12MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)

学生讨论结果总结: 1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于

12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

练一练:

任意画一角∠AOB,作它的平分线.

Ⅲ.随堂练习

课本P16练习.

练后总结:

平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB•也垂直.

Ⅳ.课时小结

本节课中我们利用已学过的三角形全等的知识,•探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种很好的学习方法.

Ⅴ.课后作业

1.课本P18习题11.2─1、2. 2.预习课本P16~18内容.

下载全等三角形(省优质课教案)word格式文档
下载全等三角形(省优质课教案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形教案

    第十一章 全等三角形 11.1全等三角形 教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生......

    全等三角形教案

    15.1 全 等 三 角 形 教材内容分析: 本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学......

    全等三角形 教案

    全等三角形 教案 教学目标 一、知识与技能 1、了解全等形和全等三角形的概念,掌握全等三角形的性质。 2、能正确表示两个全等三角形,能找出全等三角形的对应元素。 二、过......

    全等三角形教案

    《全等三角形》教学设计 五常市牛家中学 王冬梅 《全等三角形》说课 一.教材分析 《全等三角形》是八年级上册数学教材第十一章第一节的教学内容。本节课是“全等三角形......

    《全等三角形》教案

    《全等三角形》导学单 【学习目标】 1.理解全等三角形的概念及表示方法,会寻找全等三角形的对应边、对应角和对应顶点。 2.掌握全等三角形的性质,并能进行简单的推理和计算,能解......

    全等三角形

    复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。 活......

    全等三角形教案(合集5篇)

    篇1:全等三角形教案〖教学目标〗◆1、探索两个直角三角形全等的条件.◆2、掌握两个直角三角形全等的条件(hl).◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线......

    12.1全等三角形 教案

    12.1全等三角形教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质 3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉, 重点:探究全等三......