第一篇:质数和合数的教学设计
质数和合数的教学设计
拖船中心小学
邓轶群
教学内容:人教版五年级下册第二单元质数和合数 教材简析:
本部分知识是对整数认识的一次拓展,是在学生初步认识了自然数以及初步认识因数、倍数、奇数、偶数和2、3、5倍数的特征的基础上进行学习的。为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。在本节课中,要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。学情分析:
由于这部分内容较为抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。教学目标:
1、理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;
2、引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
教学重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。教学难点:能运用一定的方法,从不同的角度判断、感悟质数合数。教学准备:多媒体课件、学号牌、彩笔、答题纸。教学过程:
一、排一排——联系生活,引入新课
1、创设情境:(出示表演方阵图片)学生欣赏,从中明确:“方阵”就是两排或两排以上的正方形或长方形队伍。
2、联系实际:
我们五年级4个班的学生参加表演,哪个班能排成整齐的方阵? 班级 1 2 3 4 人数 47 49 48 41 学生汇报,交流方法:
48=2×24=3×16=4×12=6×8(能排成四种不同的方阵)49=7×7(能排成一种方阵)41=1×41(不能排成方阵)47=1×47(不能排成方阵)
3、思考:能否排成方阵与什么有关? 预设一:与因数的个数有关。
学生交流,明确:41和47的因数只有1和它本身,所以只能排成一列;而48和49除了1和本身还有其它的因数,所以可以排成不同的方阵。预设二:与奇数和偶数有关。
学生交流,并用反例说明:49是奇数,49=7×7可以排成方阵,48是偶数也可以排成不同的方阵,所以能否排成方阵与奇数、偶数无关。
4、揭示课题:这节课我们就来进一步认识“质数和合数”。【设计意图:以“能不能排成方阵”这一问题情境引入新课,借助身边熟悉的生活,常见的队列队形为载体来学习质数和合数,是在现实生活中找到一个重要的数学模型。学生在分析问题的过程中,明确了是否能排成方阵与一个数因数的个数有关,初步感受到质数合数的本质,从而引入新课的学习。】
二、找一找——掌握方法,完善概念 1、1~50以内的质数和合数(学生利用学号牌活动)(1)50以内的质数:
独立思考:学号所代表的数是质数还是合数? 上台展示:请是质数的同学上台(举起学号牌)2、3、5、7、11、13、17、19、23、29、31、37、41、43、47 集体订正:站错的同学,明确用找因数个数的方法来判断是否是质数。小结明确:这些数都有一个共同的特点,就是只有1和它本身两个因数。(2)50以内的合数:
随机采访:请仍留在座位上的学生说一说自己所拿的学号为什么是合数? 交流明确:除2外,2的倍数都是合数; 3的倍数都是合数,但3本身除外; 5的倍数都是合数,但不包括5。„„
小结方法:判断一个数是否是合数,可以用能被2、3、5整除的数的特征去判断,有时还可以用7、11„„去判断。(3)特殊数“1”:
提出疑问:学号为“1”的同学,你为什么不站起来? 交流明确:1既不是质数,也不是合数。
【设计意图:此环节的设计突出了两个对比:一是质数合数和特殊数1的对比,通过活动让学号是质数的学生站在前台,合数的学生随环节的进行起立站在座位上,学号是1的同学始终静止不动,这样的对比,让学生切实感受到“1”既不是质数也不是合数;二是站在前台的质数2、3、5、7和合数中有因数2、3、5、7的数的对比,如,同样是2的倍数,“2”本身是质数,而“2”的其他的倍数都是合数,“3、5、7”也同样如此。使学生在实践中不断地明确了判断的方法。】 2、50~100的质数(分组找数,提炼方法)
分组找质数:五个组分别研究51~60的数、61~70的数、71~80的数、81~90的数、91~100的数。
板演找到的质数:
53、59;61、67;71、73、79;83、89;97。集体订正:有不同意见的学生用色粉笔勾划指正,形成25个质数。小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。【设计意图:“找一找”这个环节,分为两部分:找1~50数的质数合数和51~100数的质数,目的是形成100以内的质数表。主要依托活动,以活动的形式,既活跃了课堂气氛,使枯燥的教学富有朝气,又扩展了学生的参与面。每个学生经过思考后站到相应的位置,然后报出学号,其他学生进行评判,不仅形成了学生与本的互动,还促进了师生和生生之间的互动,从辨别纠错中,从对比中,不断地提炼出方法,帮助学生构建完整的知识体系,培养学生良好的数感。】
三、辨一辨——运用方法,形成能力
1、自然数分类。学生交流后,明确:
自然数按因数的个数分为:质数、因数和1; 自然数按是否是2的倍数分为:奇数和偶数。
2、结合所学的这些知识介绍自己的学号。随机抽取学生介绍,并适时拓展。
3、辨解质数、合数和奇数、偶数之间的关系。(1)辨析:“所有的质数都是奇数”。学生举反例反驳。
引导:你是怎样很快的找到这个数的,能说说方法吗? 交流,明确:先写出所有的质数,再找其中不是奇数的。板书找的过程,并标注特殊数。引申:这句话怎样改就对了?
交流,明确:除2外,所有的质数都是奇数。(2)辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。学生分组辨析,每两大组辨析其中的一句话。小组合作,用刚才列举的方法找到特殊数。小组代表上台板演辨析的过程。(3)对比,明确:
除2外,所有的质数都是奇数,所有的偶数都是合数;
因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。
4、小结:运用正确的逻辑思维的方法,列举验证。【设计意图:“辨一辨”环节分为三个层次:一是从自然数的两种不同的分类中,感受质数和奇数,合数和偶数存在某种必然的联系;二是结合这些数的特点介绍自己的学号是什么样的数,如9是奇数又是合数等,答案是丰富的,全面认识了一些自然数的特性,从中一些夹在两者间的特殊数就显现出来了,为下面的辨析做准备;三是辨析有关联的两数之间的关系,上升到理论的高度,从具体到抽象,再从方法的指引中将抽象的问题形象化,让学生举一反三,由此及彼,逐步学会运用逻辑思维的方法,形成一定的辨别的能力。】
四、猜一猜——激发兴趣,提升认识
1、抢答:所猜的两个数一个质数,一个合数。(1)我们两个的和是6,积是8;(2)我们是连续自然数,和是11。
2、男女竞赛:所猜的两个数都是质数。(1)我俩的和是15,积是26;(2)我俩的和是28,积是115。
(3)两个质数的和是49,这两个质数分别是()和()。(4)两个质数的和是99,这两个质数分别是()和()。
3、独立解答:有趣的质数。
一个质数是两位数,个位、十位上的数字都是质数,并且个位和十位交换后还是质数,这个两位数是()或()。
学生出现79和97时,注意提示个位和十位都必须是质数。
【设计意图:运用不同的形式,选取不同层次类型的题目,加深认识,达到对知识的熟练和灵活运用。】
五、手机号码解密。
第一位:既不是质数,也不是合数;(1)第二位:比最小的合数多1;(5)第三位:连续两个质数的积;(6)第四位:10以最小的质数,又是奇数;(3)第五位:是5的倍数,又是5的因数;(5)第六位:因数只有1和3;(3)第七位:是偶数,又是质数;(2)第八位:最小合数与最小质数的积;(8)第九位:2的最小倍数;(2)第十位:6的最大因数;(6)
第十一位:10以内最大的偶数,又是合数。(8)明确:正确的手机号码(***)
六、课堂总结,畅谈收获。
师:通过这节课的学习,你们有什么收获?
第二篇:质数和合数教学设计
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类: 所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类 13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
二)动手实践,制作100以内的质数表。1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
四、课堂小结,激发学生的学习热情。
同学们善于观察、肯于动脑、敢于提问,真是太好了。关于质数与合数的学问还多着呢!你们听说过数学皇冠上的明珠—哥德巴赫猜想吗?请看大屏幕:
五完成分层测试卡
六、全课总结 你有什么收获?
第三篇:质数和合数教学设计
教学目标:
(1)经历“求因数—找规律—探究归纳—应用”等数学活动,发现并掌握质数和合数的特征,并能运用其特征判别质数和合数。
(2)在参与探索的过程中,培养观察、比较、分析、概括、推理能力,初步渗透分类归纳的数学方法和数学思想。
(3)体验数学“再创造”的乐趣,培养学生的数学意识和数学品质。
教学重点:掌握质数和合数的特征。
学法指导:帮助学生在观察,思考中发现和体会。
教学准备:电子白板? 多媒体课件 教具
课前预习准备:课前布置学生阅读课本,熟悉学习内容。
教学过程:
活动一:复习因数与倍数相关知识
提问:什么是因数和倍数?怎么找出一个数的所有因数?
交流自己的方法
【设计意图】引导学生回忆因数和倍数的意义,同时为学习质数与合数进行有效铺垫。
活动二:理解质数与合数的概念。
全班分组探讨并写出1~20各数的因数。
1.观察各数因数的个数的特点。
2.根据因数个数可以把这些数字分成几类?
3.师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。
4. 1既不是质数也不是合数
先小组交流,再请小组合作到讲台上给大家讲解分类方法及依据。
【设计意图】引导学生通过实际操作寻找1~20每个数字因数个数的不同,理解了质数与合数概念的不同。明白1既不是质数也不是合数。
活动三:寻找100以内所有质数。
1小组探究100以内的质数。
2汇报100以内的质数,说说不同的方法。
汇报时让学生充分说说划掉数的方法。
[设计意图]学生通过所学概念,选择自己喜欢的方法找出100以内的质数,学生逐步体会到了数学知识形成的过程,也获得了积极的情感体验。
活动四:自然数的分类
1。想一想
2。说一说。
注意两种分类方法的依据不同,所以分类不一样。
【设计意图】学生已经学习了奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数、合数和偶数混同起来,因此通过此项活动帮助学生辨析这些概念。
相关练习:P16页 1,2
2? 练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
3? 思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。课堂小结。
这节课你学会了什么?
板书设计
第四篇:质数和合数教学设计
《质数和合数》
教学内容:人教版九年义务教育六年制小学数学第十册第59-60页的例
1、例2及相应的练习。
教材简析: 《质数与合数》是在学生已学会“因数与倍数”以及“2、5、3的倍数的特征”的基础上进行教学的。这部分教材的教学要使学生掌握质数、合数的概念,能够正确判断一个数是质数还是合数。这一节内容中抽象概念较多,有些概念容易混淆,如质数与奇数、合数与偶数等,这是教学的难点。在教学中,还要对学生进行分类、抽象、概括等思维训练。教学目标:
1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
3.培养学生自主探索、独立思考、合作交流的能力。
教学重点:理解质数和合数的概念,能正确判断一个数是质数还是合数.教学难点:正确判断一个数是质数还是合数。教学过程:
一、创设情境,诱疑引探
1.师:前几天大家提起“歌德巴赫猜想”,老师也很感兴趣,而且一直在搜集这方面材料,(出示课件)很巧前一段北京日报第九版有这样的报道:两年前, 英美两家出版社悬赏100万美元,限期两年求证“歌德巴赫猜想之解”,截稿日期就在今天。也就是说“哥德巴赫猜想”对于全世界来说仍是一个不解之谜.小时候就听说有人把“歌德巴赫猜想”比作数学王冠上的明珠,今天竞有人悬赏100万美元求证“歌德巴赫猜想之解” ,歌德巴赫猜想到底是什么呀?有兴趣看看吗?(课件出示:大于4的偶数总能写成两个奇素数之和。)
2.师: 谁来读一下著名的哥德巴赫猜想,生读。
3.师:就这样一句话呀。你读懂了吗?你读懂什么啦?(生发表自己的见解)
4.师:哦你们是这样理解的.看来质数与约数有直接关系。你从哪知道的?
二、观察启思,主动建构
1.认识质数师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。
生:8=3+5 3、5是奇数吗?是质数吗?
10=11+3 3、11是奇数吗?是质数吗?
14=7+7 同意吗?为什么?
师:都有兴趣举例,拿出本子来,看谁举的多。(生独立完成)
(师巡视,并板书)
师:还有补充吗?
师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?
师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点?
生:除了1和它本身不再有其他约数的数叫质数。
师:能举出一个质数吗?5 是质数,为什么?17是质数,为什么?
师:都想再举例,拿出本子,看谁举得多?四人交流一下。
生汇报。
师:这些数都是质数,到底什么是质数。(生归纳,师板书:质数)2.认识合数。
师:9这个数为什么不是质数?我们把这样的数叫什么数。(合数)
师:谁能再举一个合数。什么是合数?(板书:合数).3、师:今天我们学习了质数和合数。(板书课题:质数 合数)还有问题吗?
4、判断数字卡片是质数还是合数?出示:
5、9 为什么?抢答:3、19、49、63、47、39、121、2、1、31、5730„„
师:2为什么是质数?1为什么不是质数也不是合数?
三、巩固强化,应用延伸
1.你还想研究质数合数的那些知识?(学生提出很多)如(:1)找最大质数.(2)如何判断一个数是质数还是合数.(3)自然数中是不是除了质数就是合数„„
2.请各小组选一个你们喜欢研究的问题,开始研究吧
.3.汇报研究成果
.4.师:我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?(点击课件出示:大于4的偶数总能写成两个奇素数之和。)
师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?请同学们课后自己去尝试、验证。
板书设计:
质数与合数
质数:只有1和它本身两个因数的数。
合数:除了1和它本身还有其它因数的数。
1:
既不是质数也不是合数。
第五篇:《质数和合数》教学设计
《质数和合数》教学设计
主讲人:李振东
牛家牌镇青南中心小学
《质数和合数》教学设计
牛家牌镇青南中心小学 李振东 教学内容:人民教育出版社五年级数学下册《质数和合数》 教学目标:
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习——合作、交流经验——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力。
3、情感态度价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。教学重点:
理解质数和合数的意义。教学难点:
判断一个数是质数还是合数的方法。教学准备:
作业纸、多媒体课件等。教学过程:
一、复习引入
什么叫因数?什么叫倍数?(出示课件2)
(通过复习,了解学生的知识储备,为下面的学习奠定基础。)
二、创设情境,激发兴趣
1、下面请同学们帮助老师一下,找出1—20各数的因数。(出示课件3)
2、请同学们拿出作业纸,写出1—20各数的因数。
3、班上交流。
4、请同学们仔细观察1—20各数的因数,看看它们的因数的个数有什么规律。(出示课件4)
如:1只有因数1。
有的数只有两个因数,如5的因数是1和5。
有的数因数不止两个,比如9的因数是1,3和9。
5、请同学们仔细观察一下,它们的因数的个数有什么规律。(出示课件5)
6、提出要求:按这些因数个数的多少,可以分为三种情况,分别有那些数?(出示课件6)
7、班上交流,归纳总结规律,指名回答。
8、观察思考,归纳总结定义。什么是质数?(出示课件7)什么是合数?(出示课件8)
1既不是质数,也不是合数。(出示课件9)
9、将自然数分类。(出示课件10)
提问:我们以前学过自然数,那么什么是自然数呢?指名回答。自然数按因数个数可以分为: 自然数按是否是2的倍数可以分为:(设计意图:在本环节学中老师把探求知识过程让学生自己发现,让学生在合作交流中找到了按因数个数多少可以把自然数分为质数和合数。同时使学生了解自然数有不同的分类方法,学生很容易掌握了本节所学知识轻松愉快的突破了教学难点,在实践和操作的过程中向学生渗透分类的思想。)
三、巩固应用,内化提高。
1、下面老师考一考你们对质数和合数理解掌握能力。(出示课件11)
2、老师考一考你们的判断能力。(出示课件12)
四、动手操作,掌握新知
1、例
1、找出100以内的质数,做一个质数表。(出示课件13)
2、小组合作探究,请同学们拿出作业纸,按要求制作质数表(出示课件14)
要求:以二人为一小组合作学习。建议:①划去2的倍数(但2除外)
②划去5的倍数(但5除外)
③划去3的倍数(但3除外)
④划去7的倍数(但7除外)
3、集体操作交流,制作质数表。(出示课件15、16、17、18)
4、总结汇总,完成质数表。(出示课件19)
100以内的质数表 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97(通过动手操作,让学生在操作中了解事物的特征,学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。)
5、学习《质数歌》(出示课件20)• 二三五七一十一,一的后面三九七; • 二三二九三十一,还加一个三十七;
• 四的后面一三七,五三五九六十一; • 后面有个六十七,七的后面九三一; • 八三八九九十七。
五、知识拓展。
1、什么叫分解质因数?
每个合数都可以写成几个质数相乘的形式。叫分解质因数。
2、分解质因数的几种方法。(出示课件21)
3、巩固训练,完成填空。分解质因数练习(出示课件22)
六、运用知识,解决问题。(出示课件23、24、25、26)
(一)自学检测
判断下面各数,哪些是质数,哪些是合数。22 29 35 37 87 93 96
(二)填空。
1.质数有()个因数,合数至少有()个因数。
2.最小的质数是(),最小的合数是()。3.()既不是质数,也不是合数。
(三)判断下面各题,并说明理由。1.所有的奇数都是质数。()2.所有的偶数都是合数。()
3.1既不是质数,也不是合数。()
(四)试一试
1.在自然数中最小的奇数是? 2.最小的偶数是? 3.最小的质数是? 4.最小的合数是?
5.即是偶数又是质数的数只有?
(设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习,培养了学生根据问题寻找条件的分析问题能力,加深了对用质数合数的理解。培养了学生运用所学知识解决实际问题的能力。)
七、课堂总结
1、通过这节课的学习,你学会了什么(出示课件27)? 学生交流
2、教师总结(出示课件28).理解掌握质数、合数的概念。
.初步学会准确判断一个数是质数还是合数。.掌握了100以内的质数。.掌握了分解质因数的方法。
课堂作业纸
写出1—20各数的因数
1的因数:
2的因数:
3的因数:
4的因数:
5的因数:
6的因数:
7的因数:
8的因数:
9的因数:
10的因数:
11的因数:2的因数:
13的因数:
14的因数:
15的因数:
16的因数:
17的因数:
18的因数:
19的因数:
20的因数:
找出100以内的质数。利用刚才找质数的方法,找出100以内的质数。1 2 3 5 7 9 46810 1214161811 13 15 17 1922242621 23 25 27 ***1 33 35 37 39 384041 43 45 47 49 424446485051 53 55 57 59 52545658 60626466687061 63 65 67 69 727476788071 73 75 77 79 82 84868881 83 85 87 8991 93 95 97 9992 949698划去2的倍数(2除外)
90100