质数和合数 教学设计

时间:2019-05-12 23:30:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《质数和合数 教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《质数和合数 教学设计》。

第一篇:质数和合数 教学设计

《质数和合数》教学设计

案例背景:

“质数和合数”是人教版小学数学第十册第二单元第三节的内容。要求使学生理解质数、合数的意义,初步掌握判断一个数是质数还是合数的方法。它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公因数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。教学中,我着眼于学生自主探究获取概念,揭示出质数与合数的内涵,培养学生的思维能力和探究精神,选择了探究性的学习方式。通过体验与探究的活动,让学生亲历概念的自我建构过程,培养学生勇于探索的科学精神。

一、谜语激趣,提出问题。

师:这节课老师给大家带来了几条谜语,想猜猜吗?(出示:各打一数学名词:说出银行密码、一笔数目不清的帐)学生对这两条谜语很感兴趣,表现踊跃,揭示谜底:倍数、因数。

师:你由这些内容能想到哪些数学知识?

生A:;我想到倍数和因数的知识:倍数和因数是相互依存的,应该说出谁是谁的倍数,谁是谁的因数,12是6的倍数,6就是12的因数。

生B:我想到了怎样找一个数的因数:把这个数分成两个数的积就可以找出它的因数。一个数的因数的个数是有限的,最大的因数是它本身,最小的因数是1。

生C:我想到了奇数、偶数的知识:2、4、6、8、10、„„是偶数,它们都是2的倍数。3、6、9、„„是奇数,它们不是2的倍数。

师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(出示课题)

师:看到课题,你认为今天我们要解决哪些问题?

生A:什么是质数,什么是合数?

生B:质数、合数与一个数的因数的个数有什么关系?

生C:质数、合数是按什么分类的?它与以前讲了奇数、偶数有什么关系?

二、共同探究,分析问题

师:一个数是质数还是合数,与它所含的因数的个数有关,根据你前面研究数的经验,你准备怎样研究今天的问题?

生:我想写几个数,找出这些数的因数,看看这些数的因数有什么特点。师:你的办法准不错,大家准备研究哪些数? 生A:我想研究一些小数,小数的因数好找。

生B:老师,我们还要找一些大数,看看这些数是否也有这样的特点。师:下面我们用这种办法来研究2~20这几个数的因数。学生分组合作,展开讨论。

生A:我发现2、3、5、7、11这五个数的因数有两个。生B:我知道这五个数的因数是1和它本身这两个因数。

生C:我发现4、9的因数有三个,6、8、10的因数有四个,12的因数有六个。

生D:我看出来了!这些数的因数个数不固定,有多有少,但不管有几个因数,都有1和它本身。

师:这些数如果按照因数的个数来分,哪些数可以归为一类? 学生分组合作,展开讨论。

生A:我把这些数分成四类:一类有两个因数;一类有三个因数;一类有四个因数;一类有六个因数。

生B:我不同意。如果按这种分法,那可以把数分成无数类。如果把有相同因数个数的分成一类,那数是无限的,它的因数个数也是无限的,数也自然可以分成无数类了。

师:看来这种按一个数的因数个数来分确实不科学。大家想一想,这些数的因数有什么共同点呢?

生:老师,我知道了!我们可以把这些数分成两类。因为不管它们的因数有多少个,都离不开1和它本身。可以把只有1和它本身两个因数的分为一类;把其余的分成一类。师:像这样,(指2、3、5、7„„)一个数如果只有1和它本身两个因数,这样的数叫质数也叫素数。(出示定义)剩下的这一类数叫合数,你能说一说一个怎样的数叫做合数吗? 学生小组交流,共同归纳。

师:我们再来看几个数,如果你认为是合数,你就站起来;如果你认为是质数,你就坐端正。(教师依次出示:15、21、29、37、1)生A:我认为1是质数。

生B:我不同意,因为1的因数只有1个,而其它的质数的因数有两个。生A:质数的因数有1和它本身,1的本身也是1,我认为1还是质数。

生C:我认为1不是质数,因为质数只有1和它本身两个因数。也就是说一个质数要有两个因数;而1的因数只有1个。

师:1比较特殊,它既不是质数也不是合数,而大于1的数不是质数就是合数。

三、活学活用,解决问题 师:全班同学起立。“请学号数是2的倍数的同学坐下,但2不坐下。学号数是3的倍数的同学请坐下,3不坐下;学号数是5的倍数的同学请坐下,5不坐下;学号数是7的倍数的同学请坐下,7不坐下;”

学生根据自己的学号进行游戏。

师:现在站着的同学,你们的学号数是什么数? 生齐:是质数。

师:在1~100这些自然数中,把2、3、5、7的倍数划去,剩下的都是质数。不过这里有两个条件:①这个数必须是100以内的自然数;②2、3、5、7本身不划掉,这种方法叫筛选法。

师:咱们再做一个游戏:这个游戏还与每个同学的学号有关。

学号是偶数的同学请起立,其中是质数的同学请到一边排队。你发现了什么? 生A:我发现2是偶数,也是质数,除了2以外所有的偶数都是合数。生B:我发现2是最小的合数。师:坐着的同学都是什么数吗? 生齐:都是奇数。

师:坐着的同学中,学号是质数的同学请排过来,剩下的都是合数吗?你有什么发现? 生A:剩下的学号不都是合数,这里还有不是质数,也不是合数的数1。生B:我知道了3是最小的质数。

生C:我明白了不是所有的奇数都是质数,也不是所有的偶数都是合数。生D:我也明白了不是所有的质数都是奇数,不是所有的合数都是偶数。师:大家根据自己的学号,请说出这个数的特性,能说多少就说多少?(先示范后小组互说)生A:我是10,我的因数有4个,是一个合数。我是2的倍数,是一个偶数。同时,我还是最小的两位数。„„

师:大家都喜欢下跳棋吗?我给大家带来了一副跳棋(棋盘如下)。一组四人各执一枚跳棋,分别将跳棋放在左右两边的四个数中的任意一个格中,然后轮流走,可以向任意方向走,每次只能走一格,每人都要走出一组有相同规律的数,先到者胜。

组内四人开始下棋,然后由组长组织组内同学展开汇报,说出自己走出的是一组什么数。学生走出的一组数有:奇数、偶数、质数、合数等。反思:

一、为学生自主探究创设足够的空间

有效的数学学习过程不是单纯地依赖模仿与记忆,教师应该努力为学生自主学习创设足够的学习空间,引导学生主动从事观察、实验、猜测、推理与交流等数学活动,从而使学生形成自己对数学知识的理解。本节课我通过引导学生认识到质数、合数与一个数的因数个数的关系,明确了探究的方向,为学生主动探索构建了思维空间。通过小组内的合作交流,让学生在发现中领悟了研究数的方法,加深了对质数、合数的理解。

二、为学生积极互动创设足够的空间

通过对教材的悉心揣摩,精心设计,有效重组和完善整合,凸现崭新的教学理念。设计让学生思考“一个数的因数个数应怎样分类才合理”,将质数固有的特性巧妙地隐含于学生所要探究的问题中,学生从自己的实际出发,或拼摆、或画图、或在脑子里想象„„用自己的思维方式自由地进行探究,并发现“一个数的因数若要把个数相同的分成一类,那么无法进行分类时,”进一步引导学生寻探这些数的共同特点,学生自己会发现它们的因数只有1和它本身,从而获得质数的本质属性,在与质数的比较中,建立合数的概念。在这种数形结合、多种感官参与以及自主探究的活动中,学生建构起质数与合数的概念,自然理解透彻、印象深刻、记忆牢固,更重要的是学生的比较、抽象、概括等思维能力及探究精神得到较好的锻炼和培养。

三、为学生体验数学创设足够的空间

如何让学生愿意亲近数学、了解数学、喜欢数学,主动地从事数学学习,单纯地采取教师权威的方式迫使学生参与数学学习,显然是不行的,而从学生的实际需要出发,创造出丰富多彩的学习活动是吸引学生主动参与学习的重要教学策略。我在设计教学内容时,有意识地将教材知识与学生喜闻乐见的活动形式相联系,这样可以使枯燥无味的数学问题变成活生生的生活现实,使抽象空洞的数学知识变成生动有趣的数学活动。增强学生对教学内容的亲切感,促进了学生积极的数学情感的发展。在本节课上我利用生动的游戏,不但使学生在兴趣盎然中完成对所学知识的综合运用,而且使学生体验到了数学无处不在。

通过本节课的学习,我感受最深的是,作为教师要使自己真正成为活动前的策划者,活动中的引导者和合作者,疑难处的参与者和研究者,要搭建一架无形的“梯子”,让学生在自主探究的登攀中拾级而上。值得深思的问题:

由于外界教育信息的丰富多彩,加上家长对子女教育的重视,不少学生实际上对本课内容已经有或多或少的掌握,在课堂教学过程中也有所反映,学生能不约而同的说出这样的数叫做质数,1既不是质数也不是合数等等。课后对学生的个别谈话中了解到,有的是父母事先教过的,有的是自己看书学习的,尽管他们的认识有可能是一知半解,但至少有一定层次的认识,但从中可以看出教师在教学设计上应注重考虑学生现有的教学起点,如何找准教学的起点?教学的切入口在哪里?是否可以在课堂上充分呈现学生已有的知识基础上展开教学,放手让优秀学生带动中下游学生展开学习,以体现陶行知的“小先生”制?另外课堂教学中还表现出对知识掌握的两极分化的现象,老师又如何全面考虑到不同层次的学生的学习,这些都值得我们在以后的实际教学中进一步探究和开拓。

第二篇:质数和合数教学设计

师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?

命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念

所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)

再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?

(3)1既不是质数也不是合数

(4)分类: 所以按照因数个数的多少,自然数又可以分为哪几类呢?

明确用三分法可以把自然数分为质数和合数以及1三类 13号到27号的同学看看你们手中的因数也就这三类

判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。

二)动手实践,制作100以内的质数表。1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。

2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)

3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!

4、你还有什么发现吗?

四、课堂小结,激发学生的学习热情。

同学们善于观察、肯于动脑、敢于提问,真是太好了。关于质数与合数的学问还多着呢!你们听说过数学皇冠上的明珠—哥德巴赫猜想吗?请看大屏幕:

五完成分层测试卡

六、全课总结 你有什么收获?

第三篇:质数和合数教学设计

教学目标:

(1)经历“求因数—找规律—探究归纳—应用”等数学活动,发现并掌握质数和合数的特征,并能运用其特征判别质数和合数。

(2)在参与探索的过程中,培养观察、比较、分析、概括、推理能力,初步渗透分类归纳的数学方法和数学思想。

(3)体验数学“再创造”的乐趣,培养学生的数学意识和数学品质。

教学重点:掌握质数和合数的特征。

学法指导:帮助学生在观察,思考中发现和体会。

教学准备:电子白板? 多媒体课件 教具

课前预习准备:课前布置学生阅读课本,熟悉学习内容。

教学过程:

活动一:复习因数与倍数相关知识

提问:什么是因数和倍数?怎么找出一个数的所有因数?

交流自己的方法

【设计意图】引导学生回忆因数和倍数的意义,同时为学习质数与合数进行有效铺垫。

活动二:理解质数与合数的概念。

全班分组探讨并写出1~20各数的因数。

1.观察各数因数的个数的特点。

2.根据因数个数可以把这些数字分成几类?

3.师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。

4. 1既不是质数也不是合数

先小组交流,再请小组合作到讲台上给大家讲解分类方法及依据。

【设计意图】引导学生通过实际操作寻找1~20每个数字因数个数的不同,理解了质数与合数概念的不同。明白1既不是质数也不是合数。

活动三:寻找100以内所有质数。

1小组探究100以内的质数。

2汇报100以内的质数,说说不同的方法。

汇报时让学生充分说说划掉数的方法。

[设计意图]学生通过所学概念,选择自己喜欢的方法找出100以内的质数,学生逐步体会到了数学知识形成的过程,也获得了积极的情感体验。

活动四:自然数的分类

1。想一想

2。说一说。

注意两种分类方法的依据不同,所以分类不一样。

【设计意图】学生已经学习了奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数、合数和偶数混同起来,因此通过此项活动帮助学生辨析这些概念。

相关练习:P16页 1,2

2? 练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?

3? 思维训练。

有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。课堂小结。

这节课你学会了什么?

板书设计

第四篇:质数和合数教学设计

《质数和合数》

教学内容:人教版九年义务教育六年制小学数学第十册第59-60页的例

1、例2及相应的练习。

教材简析: 《质数与合数》是在学生已学会“因数与倍数”以及“2、5、3的倍数的特征”的基础上进行教学的。这部分教材的教学要使学生掌握质数、合数的概念,能够正确判断一个数是质数还是合数。这一节内容中抽象概念较多,有些概念容易混淆,如质数与奇数、合数与偶数等,这是教学的难点。在教学中,还要对学生进行分类、抽象、概括等思维训练。教学目标:

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

2.培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

3.培养学生自主探索、独立思考、合作交流的能力。

教学重点:理解质数和合数的概念,能正确判断一个数是质数还是合数.教学难点:正确判断一个数是质数还是合数。教学过程:

一、创设情境,诱疑引探

1.师:前几天大家提起“歌德巴赫猜想”,老师也很感兴趣,而且一直在搜集这方面材料,(出示课件)很巧前一段北京日报第九版有这样的报道:两年前, 英美两家出版社悬赏100万美元,限期两年求证“歌德巴赫猜想之解”,截稿日期就在今天。也就是说“哥德巴赫猜想”对于全世界来说仍是一个不解之谜.小时候就听说有人把“歌德巴赫猜想”比作数学王冠上的明珠,今天竞有人悬赏100万美元求证“歌德巴赫猜想之解” ,歌德巴赫猜想到底是什么呀?有兴趣看看吗?(课件出示:大于4的偶数总能写成两个奇素数之和。)

2.师: 谁来读一下著名的哥德巴赫猜想,生读。

3.师:就这样一句话呀。你读懂了吗?你读懂什么啦?(生发表自己的见解)

4.师:哦你们是这样理解的.看来质数与约数有直接关系。你从哪知道的?

二、观察启思,主动建构

1.认识质数师:看来你们对这个猜想已经初步理解了,我们能试着写一个符合这个猜想的式子吗。

生:8=3+5 3、5是奇数吗?是质数吗?

10=11+3 3、11是奇数吗?是质数吗?

14=7+7 同意吗?为什么?

师:都有兴趣举例,拿出本子来,看谁举的多。(生独立完成)

(师巡视,并板书)

师:还有补充吗?

师:我们按照自己对“哥德巴赫猜想”的理解写出了这些式子,是否都符合这个猜想呢?

师:符号右边都是奇数吗?都是质数吗?质数有什么共同特点?

生:除了1和它本身不再有其他约数的数叫质数。

师:能举出一个质数吗?5 是质数,为什么?17是质数,为什么?

师:都想再举例,拿出本子,看谁举得多?四人交流一下。

生汇报。

师:这些数都是质数,到底什么是质数。(生归纳,师板书:质数)2.认识合数。

师:9这个数为什么不是质数?我们把这样的数叫什么数。(合数)

师:谁能再举一个合数。什么是合数?(板书:合数).3、师:今天我们学习了质数和合数。(板书课题:质数 合数)还有问题吗?

4、判断数字卡片是质数还是合数?出示:

5、9 为什么?抢答:3、19、49、63、47、39、121、2、1、31、5730„„

师:2为什么是质数?1为什么不是质数也不是合数?

三、巩固强化,应用延伸

1.你还想研究质数合数的那些知识?(学生提出很多)如(:1)找最大质数.(2)如何判断一个数是质数还是合数.(3)自然数中是不是除了质数就是合数„„

2.请各小组选一个你们喜欢研究的问题,开始研究吧

.3.汇报研究成果

.4.师:我们学习了质数和合数,对于哥德巴赫猜想中的奇素数你是怎么理解的?(点击课件出示:大于4的偶数总能写成两个奇素数之和。)

师:是不是所有一个尽可能大的偶数总能写成两个奇素数之和呢?能证明吗?请同学们课后自己去尝试、验证。

板书设计:

质数与合数

质数:只有1和它本身两个因数的数。

合数:除了1和它本身还有其它因数的数。

1:

既不是质数也不是合数。

第五篇:《质数和合数》教学设计

《质数和合数》教学设计

主讲人:李振东

牛家牌镇青南中心小学

《质数和合数》教学设计

牛家牌镇青南中心小学 李振东 教学内容:人民教育出版社五年级数学下册《质数和合数》 教学目标:

1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。

2、过程与方法:采用探究式学习法,通过操作、观察自主学习——合作、交流经验——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力。

3、情感态度价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。教学重点:

理解质数和合数的意义。教学难点:

判断一个数是质数还是合数的方法。教学准备:

作业纸、多媒体课件等。教学过程:

一、复习引入

什么叫因数?什么叫倍数?(出示课件2)

(通过复习,了解学生的知识储备,为下面的学习奠定基础。)

二、创设情境,激发兴趣

1、下面请同学们帮助老师一下,找出1—20各数的因数。(出示课件3)

2、请同学们拿出作业纸,写出1—20各数的因数。

3、班上交流。

4、请同学们仔细观察1—20各数的因数,看看它们的因数的个数有什么规律。(出示课件4)

如:1只有因数1。

有的数只有两个因数,如5的因数是1和5。

有的数因数不止两个,比如9的因数是1,3和9。

5、请同学们仔细观察一下,它们的因数的个数有什么规律。(出示课件5)

6、提出要求:按这些因数个数的多少,可以分为三种情况,分别有那些数?(出示课件6)

7、班上交流,归纳总结规律,指名回答。

8、观察思考,归纳总结定义。什么是质数?(出示课件7)什么是合数?(出示课件8)

1既不是质数,也不是合数。(出示课件9)

9、将自然数分类。(出示课件10)

提问:我们以前学过自然数,那么什么是自然数呢?指名回答。自然数按因数个数可以分为: 自然数按是否是2的倍数可以分为:(设计意图:在本环节学中老师把探求知识过程让学生自己发现,让学生在合作交流中找到了按因数个数多少可以把自然数分为质数和合数。同时使学生了解自然数有不同的分类方法,学生很容易掌握了本节所学知识轻松愉快的突破了教学难点,在实践和操作的过程中向学生渗透分类的思想。)

三、巩固应用,内化提高。

1、下面老师考一考你们对质数和合数理解掌握能力。(出示课件11)

2、老师考一考你们的判断能力。(出示课件12)

四、动手操作,掌握新知

1、例

1、找出100以内的质数,做一个质数表。(出示课件13)

2、小组合作探究,请同学们拿出作业纸,按要求制作质数表(出示课件14)

要求:以二人为一小组合作学习。建议:①划去2的倍数(但2除外)

②划去5的倍数(但5除外)

③划去3的倍数(但3除外)

④划去7的倍数(但7除外)

3、集体操作交流,制作质数表。(出示课件15、16、17、18)

4、总结汇总,完成质数表。(出示课件19)

100以内的质数表 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97(通过动手操作,让学生在操作中了解事物的特征,学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。)

5、学习《质数歌》(出示课件20)• 二三五七一十一,一的后面三九七; • 二三二九三十一,还加一个三十七;

• 四的后面一三七,五三五九六十一; • 后面有个六十七,七的后面九三一; • 八三八九九十七。

五、知识拓展。

1、什么叫分解质因数?

每个合数都可以写成几个质数相乘的形式。叫分解质因数。

2、分解质因数的几种方法。(出示课件21)

3、巩固训练,完成填空。分解质因数练习(出示课件22)

六、运用知识,解决问题。(出示课件23、24、25、26)

(一)自学检测

判断下面各数,哪些是质数,哪些是合数。22 29 35 37 87 93 96

(二)填空。

1.质数有()个因数,合数至少有()个因数。

2.最小的质数是(),最小的合数是()。3.()既不是质数,也不是合数。

(三)判断下面各题,并说明理由。1.所有的奇数都是质数。()2.所有的偶数都是合数。()

3.1既不是质数,也不是合数。()

(四)试一试

1.在自然数中最小的奇数是? 2.最小的偶数是? 3.最小的质数是? 4.最小的合数是?

5.即是偶数又是质数的数只有?

(设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习,培养了学生根据问题寻找条件的分析问题能力,加深了对用质数合数的理解。培养了学生运用所学知识解决实际问题的能力。)

七、课堂总结

1、通过这节课的学习,你学会了什么(出示课件27)? 学生交流

2、教师总结(出示课件28).理解掌握质数、合数的概念。

.初步学会准确判断一个数是质数还是合数。.掌握了100以内的质数。.掌握了分解质因数的方法。

课堂作业纸

写出1—20各数的因数

1的因数:

2的因数:

3的因数:

4的因数:

5的因数:

6的因数:

7的因数:

8的因数:

9的因数:

10的因数:

11的因数:2的因数:

13的因数:

14的因数:

15的因数:

16的因数:

17的因数:

18的因数:

19的因数:

20的因数:

找出100以内的质数。利用刚才找质数的方法,找出100以内的质数。1 2 3 5 7 9 46810 1214161811 13 15 17 1922242621 23 25 27 ***1 33 35 37 39 384041 43 45 47 49 424446485051 53 55 57 59 52545658 60626466687061 63 65 67 69 727476788071 73 75 77 79 82 84868881 83 85 87 8991 93 95 97 9992 949698划去2的倍数(2除外)

90100

下载质数和合数 教学设计word格式文档
下载质数和合数 教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    质数合数教学设计

    《质数和合数》教学设计 三友小学张全艳 课前准备板书(0、1、2、3、4、5、6、7、8、9、、、、、、) 师:这节是数学课,请同学们看黑板,这些数字统称为什么数?哪些是偶数(师板书)?哪些......

    质数和合数教学设计

    质数和合数教学设计 教学目标: 1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。 2、培养学生观察、比较、概括和判断能力。 3、通过质数与合数两个概念的教学,向......

    质数和合数教学设计

    质数和合数教学设计 【教学目标】 1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。 2.知道100以内的质数,熟悉20以内的质数。 3.培养学生自主探索、独立思......

    《质数和合数》教学设计

    《质数和合数》教学设计大兴区滨河小学 李雪艳 2013年3月 《质数和合数》教学设计 一、 教学目标 1 、通过观察、比较、分类,理解自然数按其约数个数分类的思想和方法,感悟数......

    质数和合数教学设计(精选合集)

    《质数和合数》 教学内容:人教版五年级上册第14页。 教材分析: “质数和合数”作为学生学习数论知识的起步课,在《因数与倍数》这一单元教学内容中起着承前启后的作用。它是在......

    质数和合数教学设计

    质数和合数教学设计 教学内容:本内容是五年级下册。 【教材分析】 《质数与合数》它是在学生已经掌握了因数和倍数的意义,了解了2、5、3倍数的特征之后学习的又一重要内容,它是......

    《质数和合数》教学设计[本站推荐]

    《质数和合数》教学设计 教学内容:质数和合数的意义 教学目标 1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。2、过程与方法:采用探究式学习法,通过操作......

    质数和合数教学设计

    《质数和合数》教学设计 张秋丽 一、【教材背景分析】 “质数和合数”是人教版九年义务教育六年制小学数学第十册第23-24页的内容。要求使学生理解质数和合数的意义。并能......