第一篇:分数乘整数教学设计
分数乘以整数的意义和计算方法
无棣县碣石山镇小学 刘长海
教学目标:
1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。
2.渗透事物是相互联系、相互转化的辩证唯物主义观点。教学重点:
分数乘以整数的意义及计算方法。教学难点:
分数乘以整数的计算法则的推导。教具准备:多媒体课件。教学过程: 一:复习
1.口算:
问:怎样计算?(分母不变分子相加)2.根据题意列出算式:(1)5个12是多少?(2)3个14是多少? 列式:
(1)12+12+12+12或12×5(2)14+14+14或14×3 题中的两个式子哪个简便?(12×5,14×3)
它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗? 二:讲授新课
1.出示课题明确学习目标。2.出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
例1 小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)
(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,取其中2份。)
听回答,老师边重复边电脑演示(三层复式演示)。把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。
师:(结合图)说:“那块”是多大?(边说边演示)
师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)
问:3个块是多少呢?(边说边翻投影)
平均分9份,取6份(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)问:还可以怎么列式?(×3)问:为什么?(三个加数相同)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出×3 的意义。(讨论)(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)3.分数乘以整数的法则。(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗? A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)
如果学生写出这个步骤时,老师继续追问。
问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?
引导学生讨论得出:
又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。
只是为了说明算理,计算时省略不写。(边说边加上虚线框。B.归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢? 师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
计算(做本上,投影反馈)(约分数位对齐)
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习投影出示练习题。
(四)回顾整理:
教师引导学生回顾本届所学的内容。
(五)布置作业 自主练习的题目。
第二篇:《分数乘整数》教学设计
分数乘整数
教学内容:
《义务教育课程标准实验教科书·数学》(青岛版)六年制六年级上册第一单元第1页。教材简析:
《分数乘整数》一课是在学生掌握整数乘法、理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的,所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也为学生进一步学习分数除法、分数四则混合运算奠定基础。教学目标:
1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。
2.学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。
3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。教学过程:
一、创设情境,探究新知
(一)探索分数乘整数的意义。
1.引入信息窗1。(课件出示信息窗1情境图)
师:同学们,老师学校要举行一次小手艺展示活动,老师班里有一位小强同学也想参加。看,他准备制作一个漂亮的风筝,这个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,不知道该用多少材料,咱们都来帮帮他,好吗? 2.交流信息,列出算式。
师:仔细看图,你了解到哪些信息?根据这些信息,能提出什么数学问题?要解决这个问题可以怎样列式?随学生发言依次板书算式。追问:每一种列式各是怎样想的? 怎么知道求6个相加的和,可以用乘法计算?
明确:相同整数连加可以用乘法算式表示,那么可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。
3.拓展、丰富认识。
谈话:如果要做个大一点的风筝,根据提供的数学信息(风筝的尾巴是由9根布条做成的,每根布条长需要多少米布条? 学生回答,教师适时板书:
777777777 ++++++++ ***21277用乘法计算: ×9 9×
1212127米)做这个大风筝的尾巴,12用加法计算:明确:分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。尽管乘法简单,乘法是在加法的基础上得到的,所以有了乘法,可不能把加法忘记了。
【设计意图:分数乘整数的意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。之后,教者特别强调把
7×9还原成连加算式,通过12强烈、鲜明的对比,学生再一次深刻的感受到用乘法算式表示的优势,由此进一步强化了分数乘整数的意义。“有了乘法,可不能把加法忘记了,有了新朋友可不能忘记老朋友啊”,通过教师的小结有意识地引导学生学会辩证地看待问题,提升了对问题的认识和理解。】
(二)认读分数乘整数算式。质疑:在这些乘法算式中,和
127是什么数?(板书:分数)612和9呢?(板书:整数)这是什么样的题?(板书课题:分数乘整数)能不能再举出几道这样的题目?
学生举例,老师随机板书。
【设计意图:让学生自己列举算式,自己提出研究内容,一方面充分发挥学生学习的主动性,明确了探究方向;另一方面,也为后面的教学提供了丰富的学习和探究素材。】
(三)探索分数乘整数的计算方法。1.独立计算。
谈话:尝试计算×6,你觉得怎样算好就怎样算,不仅要会算,还要把道理说清楚。
学生活动,教师巡视指导,了解信息,并相机让学生把几种典型做法板书在小黑板上。2.小组内说想法。
123.算法交流,分析比较:黑板上有序板贴学生的不同做法:
1211111116②×6=+++++==3(米)22222222①×6=0.5×6=3(米)
③×6=④×6=121x66==3(米)2211x66=(米)
22x612111⑤×6==(米)22x612谈话:请同学们认真观察黑板上几种不同的做法,只看结果,判断哪些是对的?哪些是错的?
明确:第④和第⑤种做法是错误的,因为结合实际情况,所需6根布条总长度不能小于或等于一根布条的长度。
(1)请学生当小老师讲解每种算法的计算道理,鼓励学生互相质疑、答疑。老师针对一些重点问题进行提问:
1×6=0.5×6=3(米)怎么会想到用这种方法解决问题的?(引2导学生体会转化的数学思想与方法。)
11111116×6和+++++这两部分相等吗?为什么?是怎样得22222222来的?
在方法③中,为什么分母2不变,单单只把分子1和6相乘呢?(2)课件演示方法③的计算道理。(3)再回顾×6=12111x661=和×6==两种做法,指出错误原因。
22x6122x612【设计意图:在教学过程中,教者注意充分挖掘文本资源,留给学生充足的时间和空间,放手让学生运用已有的知识和经验自主探索计算方法,极大程度地发挥了学生的主体性,产生了多种算法,有效地落实“解决问题策略多样化”的理念。“为什么分母2不变,单单只用分子1去乘6”,这是理解的难点,在这里,教者不断地“追问”,看似多用了时间,多费了笔墨,实则提升了学生对问题的认识和理解,也为后面总结计算方法提供了有力的支撑。】
二、沟通优化,促进发展
(一)独立计算9×
7。1
2(二)组间交流:说说计算的道理。
(三)全班交流:
1.请1位学生说计算过程,课件板演。2.说计算道理。3.质疑:
为什么不用第①和第②种方法计算?(引导学生体会第①和第②种方法或有局限性,或者麻烦,所以用第③种方法较普遍,适用于任何一道分数乘整数题。)
4.学生小结分数乘整数的计算方法。
【设计意图:放手让学生自主选择解决问题的方法,把学生推向主体地位,通过亲身体验发现了计算的一般方法,达到了真正理解的目的。】
三、探索计算中的简便方法 1.独立计算10×2.独立计算
2,之后请一位同学说计算过程。1517×36。81①质疑:怎么这次的做题速度明显落后了,你们遇到什么问题?(使学生产生探究简便方法的心理需求)
②讨论:能不能在原有方法的基础上,想办法使计算再变得简单一些?
③课件出示简便算法:先约分再计算。3.独立计算13×21,再次感受简便算法。49【设计意图:先约后乘这种简便计算方法的教学并不是教师强加给学生,而是在师生共同计算、观察、比较的基础上自然生成出来的。教师在教学完分数乘整数的一般计算方法后,教师并没有立刻把算法优化,而是引导学生继续用这种方法做,促使学生自己亲身体验后发现:一般方法挺麻烦。通过这一引导,寻找更优算法的想法呼之欲出,并成了全体学生的追求方向,这样,再引入简便算法的学习就水到渠成了。】
四、联系实际,灵活运用
多媒体出示帮助老师完成十字绣作品——“寿字图”的画面。谈话:老师的妈妈下个月就要过70大寿了,老师想把这幅作品送给她老人家。现在知道了这幅作品的面积大约是45平方分米,如果我每天绣平方分米,40天能绣完吗?帮老师来解决这个问题,好吗?先独立思考。
老师班里三位同学是这样做的:
小强:×40 小丽:45× 小方:45÷40 他们做得对吗?同学们讨论讨论。
【设计意图:解决问题的素材仍然是关于“小手艺”的内容,体现了情境创设的连贯性,同时,所选题目也体现了浓浓的生活味,很强的开放性,练习的过程体现了学生的自主性和教师的民主性。】 656565
五、课堂回顾,交流收获
师:时间过得真快,一节课就要结束了,大家有什么收获?谁会用一个字母式子表示分数乘整数的计算方法?
师:用含有字母的式子能更清楚、明了地表示计算方法。好,这节课,同学们不仅探索出了分数乘整数的计算方法,而且还能用它解决问题。收获真不少!
【设计意图:课的最后,老师不仅与学生一起回顾了本节课学到的数学知识,还要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号感。】
教学反思
1.从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
2.关注学生的情感教育,将数学知识的学习与科技发展和生活实际相联系,激发学生的参与学习积极性,体验数学与生活的联系,感受数学的价值。
第三篇:《分数乘整数》教学设计
【教学内容】人教版小学数学六年级上册第一单元第一课 【教学目标】 知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观: 通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。【教学重难点】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。2.引导学生总结分数乘整数的计算法则。【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。【教学过程】
一、铺垫孕伏
(一)出示复习题。1.口答:
5个12的和是多少? 10个23的和是多少? 4个0.5的和是多少?
2.整数乘法的意义是什么? 3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个? 指名读题。1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = =(个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)
2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
ppt出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
1.推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个 的和。板书: + +。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。3.概括总结:
请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三)反馈练习: 1.看图写算式。
订正时让学生说出乘法的意义各表示什么? 2.口答列算式: =()×()
3个 是多少? 5个 是多少?
订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。
第四篇:《分数乘整数》教学设计
《分数乘整数》教学设计
本资料为WORD文档,请点击下载地址下载全文下载地址
文 章来 源莲山 课件 w w w.5Y k J.cO m 《分数乘整数》教学设计
【教学内容】人教版小学数学六年级上册第一单元第一课 【教学目标】 知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。【教学重难点】 1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.引导学生总结分数乘整数的计算法则。【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。【教学过程】
一、铺垫孕伏
(一)出示复习题。1.口答:
5个12的和是多少? 10个23的和是多少? 4个0.5的和是多少? 2.整数乘法的意义是什么? 3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个? 指名读题。1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = =(个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
PPT出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。1.推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个 的和。板书: + +。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。3.概括总结:
请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三)反馈练习: 1.看图写算式。
订正时让学生说出乘法的意义各表示什么? 2.口答列算式:
=()×()
3个 是多少?
5个 是多少? 订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。【板书设计】 分数乘整数
+ + + = = =(个)
= =(个)
文 章来 源莲山 课件 w w w.5Y k J.cO m
第五篇:分数乘整数教学设计
《分数乘整数》教学设计 小学课堂网 http://www.xiexiebang.com
教材分析
分数乘整数的意义是以整数乘法的意义“求几个相同加数的和的简便运算”为基础进行教学的,而推导分数乘以整数的计算法则,需要从同分母分数加法入手,因此同分母分数加法的计算法则也是这节课的知识基础,另外,为了计算简便,在分数乘法中能约分的要先约分,然后再乘,所以,求两个数的公约数以及约分也是这节课很重要的知识基础.
这节课的教学内容在教材中分为三部分:
第一部分是复习部分:第一题复习整数乘法的意义,求5个12是多少,怎样列式?既可以列成加法,也可以列成乘法,使学生回忆起加法与乘法的联系,从而回忆乘法的意义.第(2)题复习了同分母分数加法,但两道题又各有不同,第一小题主要复习法则,第二小题不但分母相同,分子也相同,除了按法则计算以外,还有什么更简便的方法吗?从而激发学生的兴趣,引起思考,起到设疑激趣、承前启后的作用.
第二部分是例1,理解分数乘以整数的意义,总结分数乘以整数的计算法则,这是一道应用题,从实际生活引入:小新、爸爸、妈妈一起吃一块蛋糕,每人吃
2块,3人一共吃多9少块?
把整块蛋糕看成“单位1”,平均分成9份,每人吃其中的2份,可以有两种方法计算:加法和乘法.这个例题的目的有二:一是解决分数乘整数的意义,二是推导分数乘整数的法则,推导方法是将乘法算式转化为加法算式,根据分子是3个2连加,变为2×3,最后得出分数乘法的意义和整数乘法的意义相同,并归纳出法则.在例1的后面,提出:为计算简便,能约分的要先约分,然后再乘,这样可以培养学生思维的灵活性和敏捷性.
最后一部分是“做一做”,共安排了三道题,属于形成性练习,主要是巩固分数乘法的意义和法则. 教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则. 教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则. 教学难点
引导学生总结分数乘整数的计算法则. 教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
123333++=
++= 666101010说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试. 同学之间交流想法:
333333339++== 3× ×3= ***×3这个算式表示什么?为什么可以这样计算? 1033339教师板书:++=×3=
1010101010
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃1.读题,说说
2块,3人一共吃多少块? 92块是什么意思?
92.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
22222262++===(块)99999322222222362方法2:×3=++====(块)
99999993方法1:
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:2222++=×3 99992相加,因为加数相同,写成乘法更简便. 9
(三)为什么可以用乘法计算?
加法表示3个
(四)2×3表示什么?怎样计算? 92表示3个的和是多少?
92222222362++====,用分子2乘3的积做分子,分母不变. 999999
3(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合3333922222=×3=和++=×3=,说一说一个分数乘整数表 10101099993示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
3333+++=()×()444455555555+++++++=()×()88888888132.只列式不计算:3个是多少?
5个是多少?
1010
(二)巩固法则
1.计算(说一说怎样算)
35322×4
×6
×21
×4
×8 712141515思考:为什么先约分再相乘比较简便? 2.应用题
(1)一个正方体的礼品盒,底面积是少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长配上镜框,需要木条多少米?
(三)对比练习
1平方米,要想将这个礼品盒包装起来,至 97米的正方形的,如果为这几幅画 101千米,4天修多少千米? 612.一条路,每天修全路的,4天修全路的几分之几?
61.一条路,每天修
六、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变. 例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃用加法算:
2块,3人一共吃多少块? 922222262++===(块)99999322222222362用乘法算:×3=++====(块)
999999932答:3人一共吃了块.
3分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.