《立体图形的整理与复习》教学设计(推荐5篇)

时间:2019-05-12 23:17:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《立体图形的整理与复习》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《立体图形的整理与复习》教学设计》。

第一篇:《立体图形的整理与复习》教学设计

小学数学精选教案

《立体图形的整理与复习》教学设计

教学内容:教科书第88页例

4、例5及相关内容。教学目标:

1.使学生进一步理解立体图形的特征,比较、沟通相关立体图形之间的联系与区别,构建知识网络。2.使学生进一步理解立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强沟通知识之间的内在联系,将所学知识进一步条理化和系统化,发展空间观念。

3.使学生进一步感受数学与生活的联系,体会数学的价值,体会转化、类比、数形结合等数学思想和方法,增强创新意识,发展数学思考,提高解决实际问题的能力。

教学重点:理解立体图形的特征,沟通立体图形的表面积、体积计算公式之间的联系,灵活运用计算公式解决实际问题。

教具、学具准备:多媒体课件和立体图形学具。教学过程:

(一)创设情境,导入复习1.设疑导入。

师(出示茶杯和一袋牛奶):同学们喜欢喝牛奶吗?看着茶杯和牛奶,你最想解决哪些数学问题? 学生自由回答,引出计算茶杯的体积。2.揭示课题。

师:好,真是好学的孩子,要想解决这个与我们生活息息相关的现实问题,我们今天将走进立体图形王国,再次和这些我们学过的立体图形亲密接触。(板书课题:立体图形的整理和复习)

3.回忆我们学习了那些立体图形? 4.引发探究欲望。

师:看到这些图形.你想从哪些方面对这些立体图形进行整理和复习?怎样整理和复习?

引导学生从“三点复习法”入手,即看看自己已经掌握了哪些知识要点,哪些地方容易混淆,哪些方面还比较薄弱,即知识点、重难点、薄弱点。

(二)回顾整理,建构网络 1.课前布置,自主梳理。

教师在课前布置学生选用自己喜欢的方式先尝试整理和复习。2.小组交流,分享收获。

师:现在请大家在小组里汇报、交流自己的复习收获吧。

1/4

小学数学精选教案

3.学生汇报,串点成面。

师:请小组代表发言,看哪组汇报最精彩。

组1:我们组认为,面对长方体、正方体、圆柱和圆锥“四体”,可采用一一列举法逐个击破,先复习各图形的外形特征,再复习表面积和体积计算公式的由来。

组2:请大家看表格,我们组采用表格法来对比复习。附表一:

组3:我们组喜欢用表演的方式来快乐复习,请大家一起来欣赏。我叫长方体,长方体就是我,我长得可好看啦!有6个面,8个顶点,12条棱,相对的两个面大小相等,我的兄弟中有一组相对的面是正方形,其余四个面大小都相等。我还有一个弟弟,叫正方体,正方体弟弟快点出来啦!谁叫我俩兄弟长得像?也有6个面,而且6个面大小都相等,有8个顶点,12条棱,长度都相等。所以又叫做特殊的长方体。

组4:我们组用电脑演示法,请看大屏幕。先展示立体图形表面积计算公式:再展示立体图形体积计算公式:其中,长方体、正方体和圆柱的体积都可以用V=Sh来计算。为了预防V=Sh=πr²h中的被遗漏,我们做了标记 4.方法优化,温馨提示。

师:同学们复习的主要内容包括立体图形的特征、表面积和体积的计算方法。复习的办法真多,有列举法、表格法、表演法、演示法,只要是你们喜欢的,都是很好的方法。

师:你觉得有什么要给大家温馨提示的呀?

学生回答如下:(1)如果长方体有一组相对的两个面是正方形时,那么其余四个面一定是相等的长方

2/4

13131

3小学数学精选教案

形;(2)要预防求圆锥体积时漏乘;(3)要注意取近似值时根据实际情况决定该用进一法、去尾法还是“四舍五入”法,得数保留整数还是整

十、整百、整千数;(4)列式时要先考虑单位是否统一;(5)要看清题目中的对象是什么立体图形,要求的是表面积还是体积或是容积;求表面积时,要求几个面的面积总和要具体问题具体分析。

师:看得出,同学们对立体图形的特征、表面积和体积的计算方法掌握得很不错,想不想试一试自己根据这些图形的特点分分类,做一个结构图。

(三)重点复习,强化提高 1.深思熟虑填一填。

(1)一个长方体,长8cm,宽5cm,高4cm,这个长方体的棱长总和是()cm,表面积是()cm²,体积是()cm。

(2)一个正方体的棱长5dm,这个正方体的棱长总和是()dm,表面积是()dm²,体积是()dm。

(3)一个圆柱的底面直径是4cm,高是5cm,侧面积是()cm²,表面积是()cm²,体积是()cm。

(4)一个圆锥的底面积12m²,高是6m,它的体积是()m²,与它等底等高的圆柱体积是()m,圆锥体积比圆柱体积少()m。

2.明察秋毫判一判(正确的打“√”,错误的打“×”)。(1)圆柱的体积是圆锥体积的3倍。()

(2)长方体、正方体和圆柱的体积都可以用底面积乘高来计算。()

(3)-瓶矿泉水的包装上标有净含量为560mL,是指矿泉水的体积就是560mL。()

(4)一个圆锥的底面半径扩大到原来的2倍,高扩大到原来的2倍,它的体积就扩大到原来的8倍。()

3.综合练习——解决问题。

师:吴老师的朋友买了一套新房,客厅长6m,宽4m,高3m。请同学们帮吴老师的朋友算一算装修时所需的部分材料。

(1)客厅准备用边长是5dm的方砖铺地面,需要多少块?

(2)准备粉刷客厅的四周墙壁和顶面,门窗、电视墙等10m²不粉刷,实际粉刷的面积是多少平方米?(3)装修新房时,所选的木料是直径4dm、长是3m的圆木,自己加工,大约需要5根。求装修新房时

33333

133/4

小学数学精选教案

所需木料的体积。

师:吴老师替朋友谢谢同学们这么快帮忙解决了装修材料的问题,你认为平时做题时应该养成怎样的好习惯?

引导学生回忆归纳:一看,二想,三算,四查,五注意。

教师评价:各小组表现都很棒,请大家把掌声送给同伴、送给自己,希望同学们各方面表现都能越来越棒。

(四)自主检评,完善提高。

师:这节课你最大的收获是什么?还有什么疑问?对自己的表现满意吗?还有没有遗憾? 引导学生解决课始提出的问题:这个茶杯究竟能否装下这一袋牛奶呢?

教师小结:同学们,实践出真知,不怕我们做不到,就怕我们想不到,只有勤于思考,敢于实践,乐于探究,勇于发现,成功终究会属于你们的。

4/4

第二篇:立体图形整理与复习教学设计

《立体图形的整理与复习》教学设计

运城市逸夫小学 史小苗

教学目标:

1. 进一步让学生掌握立体图形表面积、侧面积、体积的计算公式以及各个图形之间的联系。培养学生运用所学的立体图形知识灵活地解决实际问题的能力。

2. 让学生亲历整理和复习过程,理解立体图形知识之间的结构,梳理知识并构建知识网络。

3. 通过复习,学生能感悟到数学知识内在的联系,提高自身的数学素养。教学重点: 立体图形表面积和体积的推导过程以及各图形体积之间的联系。教学难点: 立体图形表面积之间的联系,会灵活运用公式解决实际问题。教学过程:

一、情境导入

请看大屏幕,这是一个?(点)

想一想,将点移一移,所留下的痕迹,你能想到什么?(线)

很好,看来联想对学数学很重要,继续想。如果将线再这样移一移,你又能想到什么?(面)刚才大家由点想到了线,由线又想到了面,接着想,如果把这个面再向上移一移,你又能想到什么?(体)

总结:刚才我们想象的过程其实可以用12个字来概括。那就是:点动成线、线动成面、面动成体。

二、整理复习

1.回想一下,在小学阶段,我们都学过哪些立体图形?

今天我们就对这些立体图形进行整理复习,(板书课题:立体图形整理复习)这节课我们主要研究他们的表面积和体积。(板书:表面积、体积)

什么叫做表面积呢?什么叫做体积?

2.这些立体图形的表面积和体积怎么计算呢?它们的公式又是如何推导出来的?现在请同桌两人为一组,完成学习单上的内容。1.完成表格立体图形aaaaohorhorhb表面积S=S=S=V=V=V=体积V=2.同桌互相说一说圆柱、圆锥的体积推导过程。

3.学生汇报

(1)表面积公式

(2)圆柱的表面积推导过程

(3)体积公式

(4)圆柱和圆锥的体积推导过程

4.多媒体演示圆柱的表面积、体积,圆锥的体积公式推导过程。

总结:

刚才,我们把圆柱转化成长方体,由长方体推导出圆柱的体积,又把圆锥转化成了圆柱,由圆柱推导出圆锥的体积,对于正方体那就更简单了,因为它是特殊的长方体,所以由长方体和可以推导出正方体的体积。5.渗透直柱体体积计算方法(1)长方体、正方体、圆柱的体积有怎么的联系呢?

在这里,长方体的底面积是指?正方体的底面积是指?圆柱呢?

所以它们的体积都可以用v=sh来计算。

(2)再认真观察这些图形,它们有什么共同的特征?(底面一样,粗细一样)

(3)像长方体、正方体、圆柱等等类似于这样的立体图形我们统称它为直柱体。只要是符合直柱体的特征,它们的体积就都可以用v=sh来计算。

(4)判断下列哪些立体图形的体积可以用v=sh来计算。

(5)其实在我们的生活中还有很多这样的直柱体,比如钢管、堤坝、饼干盒、积木等等,它们的体积都可以用v=sh来计算。(也可以用横截面积x长计算)

三、巩固应用

1.老师的袋子里装着一块长方体的橡皮泥,它长5cm、宽4cm、高3cm,大家想象一下这块橡皮泥有多大?

学生比划,出实物对照

2.给这块橡皮泥的四周贴上彩纸,至少需要多大面积的彩纸。

独立完成 汇报结果

(1)5 ×3 ×2+4 ×3 ×2=54(cm²)(2)(5 ×3+4 ×3)×2=54(cm²)(3)(5+4)×2×3=54(cm²)小组讨论第三种计算方法,学生汇报讨论结果。

教师实物演示,将长方体侧面沿高剪开得到一个长方形,长方形的长等于长方体的底面周长,长方形的宽等于长方体的高,所以长方体的侧面积可以用底面周长×高来计算。正方体的侧面积可以这样计算吗?回想圆柱的侧面积是如何让计算的?

总结:长方体、正方体、圆柱它们的侧面积都可以用底面周长×高来计算,它们的侧面积加上各自的两个底面积就是它们的表面积。所以我们说它们的表面积也有共同的计算方法。

在实际生活中,有许多地方需要去计算侧面积,比如制作书的腰封、橡皮的包装纸、罐头的商标、茶叶盒的封面。我们在裁剪时必须要先确定所裁剪的长方形的长和宽。用立体图形底面周长来做为长、高来作为宽这样便于裁剪。

3.以长方体橡皮泥的底面为底,削出一个最大的圆柱。这个圆柱的底面直径是多少厘米?体积是多少立方厘米? 交流:为什么底面直径不能是5厘米? 独立计算体积。

4.把削出的圆柱形橡皮泥沿着与底面平行的方向切成3段,表面积增加了多少?(单位:厘米)思考:(1)沿着与底面平行的方向切,切出的面和哪一个面的面积相等?(2)(3)(4)切3段一共要切几刀? 每切1刀会增加几个面? 切2刀一共增加了几个面?

学生汇报结果:3.14×(4 ÷2)²×4 5.(1)把圆柱形橡皮泥捏成一个与它等底的圆锥,圆锥的高为()厘米。

(2)把圆柱形橡皮泥捏成一个与它等高的圆锥,圆锥的底面积列式为()。

(3)把圆柱形橡皮泥削成一个最大的圆锥,圆锥的体积是圆柱的()。

通过练习研究圆柱与圆锥3种不同的关系:等体积等底、等体积等高、等底等高。

同桌互相说一说这三种关系,加深理解。

6.如果把这块橡皮泥掰下来一块,你有办法计算出它的体积吗? 学生思考交流汇报

总结:水具有流动性,把它放在什么样的容器里它就是什么形状,正是利用水的这种特性,我们巧妙的把不规则的形状转化为规则的形状。(板书:转化)

四、全课总结

其实,不仅在这里用到了转化,在我们整节课的研究中始终都没有离开转化,把没有学过的转化为学过的,把不会的转化为会的,希望这种思想能伴随你学习更多的数学知识、解决更多的生活问题。

第三篇:立体图形整理与复习教学设计

《立体图形的整理与复习》教学设计

一、情境导入

请看大屏幕,这是数学中最基本的图形:(一个点)。无数个点组成一条线,无数条线形成一个面。无数个面围成一个体。这就是点动成线,线动成面,面动成体。

点、线、构成了丰富多彩的图形世界。这节课我们就来整理和复习由点面构成的立体图形。板书课题,立体图形

二、整理复习

1、整理归纳本节课知识结构。

师:一起来看一下这节课的学习目标 出示:

1、回顾整理立体图形的有关内容,进一步认识立体图形,理解表面积、体积及计算公式的含义。

2、灵活运用公式解决问题。

师:大家听明白了没有,明确了学习目标,学习就有了方向。课前同学们结合88页的例4,例5对立体图形的有关知识进行了整理和复习,现在请同学们在小组内合作学习。请看学习要求。出示:群学共享

合作要求:(1)小组内交流学习成果,及时完善补充。(2)整理出最佳知识结构图,做好汇报准备。

(小组合作开始)小组粘贴;师:这一小组已经整理好了,来说说怎么整理的。生:我们是从立体图形的认识、表面积、体积、来整理的。师:还有那些同学整理的方法一样的。这一组整理的方法师是按什么整理的?(生:各立体图形的特征,表面积,体积。)师:我们班的同学有的是以表格的形式整理的,有点同学是以智慧树的形式整理的。其实,不管以哪一种形式,都包含了以下几个知识点。立体图形的认识,立体图形的表面积,以及体积的相关知识。今天这节课就按这里的思路梳理、深化知识。

师:同学们你们喜欢玩的游戏吗?请听游戏规则:听要求,摸物体,说特征。

2、长方体和正方体的特征。

师:老师这里有一个百宝箱,谁来试试。请摸出长方体,对不对? 师:你是怎么摸得又对又快的,给我们大家介绍一下。

生:因为长方体的特征是:有6个面,12条棱,有一个一定是长长的。顺桌长的面往下摸应该是窄一些的面。

师:也就是她师根据什么来摸的?长方体的特征还有什么? 生:对面相等。

我们一起来回顾一下长方体的特征。你来读一下。

师:再次回顾了长方体的特征。我们的游戏进行,谁愿意第二个来摸,请摸出正方体。摸的对不对?给我介绍一下你的秘诀是什么? 生:正方体有6个面,每个面都是正方形。(他还是根据什么来摸的?)生:正方体的特征。

师:请同桌两人互相说说,正方体的特征。

师:我们刚才回顾了长方体、正方体的特征,想想长方体和正方体有什么关系?

生:当长方体的长宽高相等的时候,就变成了正方体。师:她说的非常正确,所以长方体、正方体还可以这样表示 师:请同学们按自己的方式再次识记长方体、正方体的特征。

2、圆柱和圆锥的特征。

师:我们的游戏继续进行,请你摸出圆柱体,大家想想圆柱体的特征师什么?摸的正确吗?给我大家介绍一下你是怎么摸的? 生:圆柱体有两个圆的底面,一个曲面 师:请齐读圆柱体的特征。

师:猜一猜接下来老师请大家摸出什么立体图形。生:圆锥,请同学们想一想圆锥的特征?来摸一摸 生:一个底面,一个曲面,一个顶点,一条高。师:说的非常完整,请坐。请默读圆锥的特征。

师:请同学们按自己的方式再次识记长方体、正方体的特征。师:我们刚才再次回顾了立体图形的特征,他们有各自的特征。他们之间也有着密切的联系。比如正方体是特殊的长方体,当一个圆柱的一个底面缩小到一个点时,它就变成了一个圆锥。这是以后我们要学习的知识。

3、立体图形表面积。

那立体图形表面积的知识请同学们同桌之间对学。请看对学要求,你来读一下。听清楚了吧,看那一组互相帮助,共同提高。开始 师:谁愿意第一个来展示你与同桌两人共同成果。、生:立体图形所有面的总和就是立体图形的表面积。

师:说的很好,请坐。谁来举例说说长方体的表面积指的是什么?什么是长方体的表面积。

生:数学数就有六个面,这六个面的总和就是长方体的表面积。师:说的好不好。请坐。谁来说说圆柱体的表面积? 生:圆柱体的表面积就是两个底面积加上一个侧面积。

师:看来同学们对立体图形的表面积有了深刻的理解。那怎样来求长方体的表面积?

生:长方体的表面积等于长乘宽乘2加长乘高乘2加宽乘高乘2;用字母公式s=2ab+2ah+2bh 师:他掌握的非常好,既能说出它的文字公式又能说出它的字母公式。你们想的和他一样吗?那长乘宽指的是那个歌面的面积?那长乘高呢?那宽乘高呢?我们在做题的时候就可以利用公式来计算。

师:正方体的表面积怎样求?一起说。生:棱长x棱长x6 s+6aa 师:在这里棱长x棱长指的是几个面的面积?所以再x6

师:圆柱体的表面积该怎样求?

生:圆柱体的表面积等于一个侧面的面积加两个底面的面积。用字母表示s= 师:请齐读,2tr指的什么,2tr2求的是的什么?一个圆柱体当告诉了我们底面半径和高就能求出圆柱的表面积。

师:我们会求立体图形的表面积,但是在实际生活中,我们要根据实际的情况来确定是求几个面的面积。比如要求火柴盒的内盒的表面积是求几个面的面积?外盒呢?

如果要求圆柱形的通风管需要多少平方米的钢材?是求什么?、如果做一个圆柱形的无盖水桶,需要多少铁皮?是求什么?有盖呢?

师:在求立体图形的表面积的时候,关键是求立体图形几个面的面积。

3、立体图形体积。

师:立体图形体积有关知识,老师想放手让同学们自己来学习,请看自学提示:根据自学提示,独立自主的学习师:来班长当小老师展示我班自学成果。

生:什么是立体图形的体积?谁来回答一下。(立体图形所占空间的大小)一起读一读。

生:想一想怎样求长方体、正方体、圆柱和圆锥的体积?

长方体的体积用文字叙述一下,字母公式是? 圆柱的体积用文字叙述一下,字母公式是? 圆锥的体积用文字叙述一下,字母公式是? 为什么圆锥的体积要乘三分之一。

师:这位图形当的小老师当的好不好。我们一起来看想一想在长方体的体积中公式中ab的求的是什么?(底面积)所以还可以写成v=sh 正方体师特殊的长方体也可以说乘aa就是求的底面积,圆柱的体积也是v=sh,所以他们可以用同一个公式v=sh来计算他们的体积。

师:请观察,他们在形体上有什么共同的特征。(底面一样,粗细一样)

像长方体、正方体、圆柱等等类似于这样的立体图形我们统称它为直柱体。只要是符合直柱体的特征,它们的体积就都可以用v=sh来计算。师:刚才我们也提到了圆锥的体积等于与它等底等高的圆柱的体积的三分之一。而圆柱与长方体正方体的体积都是底面积乘高,所以我们也可以说圆锥的体积也是与它等底等高的长方体,正方体的三分之一。

三、综合练习巩固应用

师:通过这节课的整理与复习,大家对立体图形有了进一步的理解和认识。我们一起进入这节课的综合练习。请同学们拿出导学案,完成第一第二题。师:错误的改正过来,继续第三大题,灵活运用我会算。

师:做完的同学对照一下,做错的更正过来,再继续第四题,展示才能。计算难度有点大,就把算是写出来。进一法,还是去一法。

三、课堂总结

畅谈收获

师:在今后做题的时候,老师希望你们做到1看,2想,三算,4查

第四篇:立体图形的整理与复习教学设计

《立体图形的复习与整理》教学设计

【备课指导】

小老师备课内容:

1、立体图形的特征、表面积、体积,包括各种公式的推导过程。

2、记录三道你认为重要的易错题,并进行解答。温馨提示:

1、整理知识点时可以选择自己喜欢的方式,如表格、大括号、箭头等。

2、整理的易错题可以用圈一圈的方法对易错点进行标注。【教材分析】

《立体图形的整理和复习》它包括了小学阶段所有学过的立体图形,复习时可以让学生回忆有关立体图形的相关知识。本课知识容量比较大。重点是对立体图形的特征、表面积和体积进行系统的复习,要求学生能对各类立体图形的知识顺利再现,认识形体之间的联系和区别,形成较清晰的知识网络,并能解决实际问题。【学情分析】

学生基本掌握了立体图形的特征和立体图形的表面积和体积计算方法。但对立体图形知识整体的结构特征较淡薄,有必要进行知识的整理和复习。同时激发学生的学习兴趣,最大地发挥学生的自主性,才能有效地完成预定目标。【教学目标】

1、进一步理解和掌握立体图形的特征和表面积、体积的计算方法,并能解决问题。

2、引导学生整理和复习立体图形的相关知识,发展学生整理和复习的能力。

3、进一步巩固学生的空间观念,提高学生的数学素养。

【教学重点】复习立体图形的主要特征,并能熟练地应用公式解决问题。【教学难点】构建立体图形表面积和体积的计算公式的知识网络。【开讲流程】

一、小老师家庭开讲情况总结

利用投影展示小老师备课指导、部分优秀的小老师备课以及家庭开讲情况。通过这一总结为其他同学树立榜样,进一步提高家庭开讲质量。

二、小组开讲

1、开讲要求:

(1)开讲内容:A、立体图形的特征、各种计算公式以及公式的推导过程。B、每位同学选一道易错题在组内进行分析。(2)小组发言时每位同学努力做到表达清楚,倾听认真。(3)小组长组织调控组内同学发言,做到认真负责、机智灵活。(4)组长在白板上及时记录知识中的重难点。

2、小组开讲。

3、小组开讲情况总结。

三、全班开讲

全班开讲以讲解易错题为主。由学生当小老师为全班同学分析题意,讲解易错点。

1、一间教室的长是9米,宽是7米、高3米。要粉刷教室的屋顶和四面墙壁(除去门窗和黑板的面积30平方米),粉刷的面积是多少平方米?如果平均每平方米用涂料0.2千克,至少需要多少千克涂料?

2、做一个底面周长是25.12厘米、高10厘米的笔筒,大约需要多少平方厘米的材料?(得数保留整数)

3、用棱长是60厘米的正方体冰块雕成一个最大的圆锥。圆锥的体积是多少立方分米?

4、学生动笔做题,从三道题中选择一道,做后集体讲评。

四、课堂总结。

第五篇:立体图形的复习教学设计

立体图形的复习

教学目标

1、牢固掌握长方体、正方体、圆柱体和圆锥体的特征,弄清它们之间的区别和联系。能进一步分清表面积和体积两个概念的不同含义,熟练掌握这几种立体图形表面积的计算方法和体积的计算公式。

2、能运用有关知识灵活地解决一些实际问题。

3、继续培养学生的空间观念和解决问题的能力。.教学过程

一、创设情景,导入复习

同学们知道我们今天复习的内容吗?(学生回答)师板书课题:立体图形的复习。还记得我们小学阶段都学过了哪些立体图形?学生回答,课件显示:长方体、正方体、圆柱体、圆锥体和球这些立体图形的名称。这些立体图形的形状还记得吗?教师出示这些立体图形的图片,请一位同学上来按课件显示的顺序在黑板上摆出来,其他同学看他摆得与课件显示的图是否一样。学生边摆,课件边显示图。

这些立体图形就是今天复习的内容,你们想复习他们哪些方面的知识呢?学生回答,老师板书。立体图形

二、回顾整理,建构网络

为了复习时便于比较,老师想把它们分成两类,你认为怎样分好呢,说明理由。根据学生回答,师板书: 长方体

正方体都是平面围成的圆柱体圆锥体 球有曲面

下面分别进行复习。

1、复习长方体、正方体。

① 长方体、正方体有什么特征?它们有什么相同点与不同点? ② 分小组讨论。

③ 学生共同完成表格。(根据学生回答,师板书)名称面棱 顶点 关系

长方体6个面,至少有4个面是长方形,相对的面完全相同。12条棱,相对的棱长相等。8个顶点

正方体6个面都是正方形,且面积相等。12条棱长都相等。8个顶点正方体是特殊的长方体

2、复习圆柱体、圆锥体。

① 圆柱体、圆锥体有什么特征?它们有什么相同点与不同点? ② 同桌讨论。

③ 师生共同完成表格。(根据学生回答,课件显示答案。)形体名称面侧面底面高

圆柱体侧面是一个曲面,展开后可能是一个长方形或正方形……上、下两个底面是面积相等的圆。无数条

圆锥体侧面也是一个曲面,展开后是扇形。底面是一个圆。只有一条 根据刚才的复习,请同学们看一组概念题: 巩固练习:判断题

① 长方体和正方体都有六个面,而且六个面都相等。()

② 圆柱体的侧面展开后是一个正方形,那么它的底面周长和高一定相等。()③长方体的三条棱就是它的长、宽、高。()

3、复习表面积和体积。

(1)什么是立体图形的表面积?举例说说。

如:什么是长方体、圆柱体的表面积?(出示教具)学生分别回答。启发学生概括表面积的定义。(出示表面积定义卡片贴在黑板上),计量表面积使用什么单位?我们都学过哪些立体图形表面积的计算?(根据学生回答教师出示几何图贴黑板上)这些表面积是怎样求的,说给同桌听听,然后完成书上表面积字母公式。指一名学生演板。什么是立体图形的体积?学生说说,计量体积用什么单位?我们都学过了哪些立体图形体积的计算?(学生回答)教师出示图贴在黑板上。圆柱体和圆锥体是我们这个学期新学的,它们的体积公式的推导还记得吗?。教师说明:从这里可以看出,以后在学习新知识的时候尽量挖掘它与学过知识之间的联系,利用旧知识学习新知识,可以化难为易。那么它们的体积公式还记得吗?写出体积的字母公式,完成书上填空。指一名学生演板

4、回忆体积公式的推导过程,并在小组内交流。(1)汇报复习情况:

师:我们是怎么得出长方体体积计算公式的?

生:长宽高各可以摆几个小立方体,算出共有几个小立方体就用长,宽高的乘积。师:圆柱的体积又是怎么得出的呢?

生:可以通过切拼把圆柱转化成等底等高的长方体。师:圆锥的体积公式呢? 生:做实验发现圆锥体积是等底等高圆柱的1÷3 小结:从刚才你们的回答中,我们知道了一些新的知识可以转化成旧知识解决。

5、疏理沟通阶段

(1).小组讨论:立体图形的体积计算公式之间有什么联系?有没有一个大家公用的公式?

(2).归纳形成知识网络。

讨论后归纳:长方体、正方体、圆柱具有统一的求体积公式V=SH 形成网络:正方体——长方体——圆柱——圆锥

表面积与体积的计算公式,我们已经复习完了,但在实际的应用中,却不能简单地套用,而要根据实际情况,灵活地判断。判断什么时候求面积,什么时候求体积,求面积是求几个面的面积.重点复习,强化提高 填空题:

①做一个圆柱形铁皮罐头盒,求需要多少铁皮,是求它的(),罐头盒周围贴商标纸,求商标纸的面积是求它()。

做一节圆柱形通风管要用多少铁皮,是求它的()。求一个圆柱形容器能装水多少升是求它的()。

④求一段圆柱形钢材有多少立方分米就是求它的()。

2、计算:

一个圆柱形的水池,直径是20米,深2米。①这个水池占地面积是多少?

②挖成这个水池,共需挖土多少立方米?

③在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

3、.只列式不计算

一个正方体棱长和是60厘米,这个正方体的体积是多少? 学校沙坑长5米,宽3米,深0.5米,每立方米沙重1400千克,填满这个沙坑需要多少千克?

一个圆柱体的容积是42.39立方米,底面积是7.065平方米,求这个圆柱的高。(4)图:一个长6厘米的圆锥和圆柱,底面半径是4,求他们组合的体积 列式计算

图:一个长宽高分别为20、15、2的游泳池。问:泳池的站地面积是多少? 要挖掉多少沙?

若每立方米沙重1400千克,需要载重1.5吨的卡车几辆? 若在四周和底面贴上瓷砖,要贴多少面积?

如果注满1.5米深的水,需要多少立方米的水?5 走进学习

如果想知道刚才实验中铁块的体积,你准备怎么做?

学生演示测出溢出的水在长方体水槽中的高度及长方体的长和宽。

b.学生将铁块拉出水面后,测量圆柱水槽槽囗到水面距离及圆柱的底面直径。c.集体计算,然后比较计算结果。实践活动:

每个小组带1千克大米,想:怎么计算1千克大米的体积 生:堆成圆锥或长方体 生:放在铅笔盒内

小组合作选择方法测出体积 交流汇报

自主建平,完善提高

通过这节课的复习,你认为自己有收获吗?更清楚了哪些知识?把你的收获说给你的同桌听听(同桌互相说)。谁愿意说给老师和同学听听呢?

五、课后反思:

本节课我抓住两个点:一是空间图形的形成;二是空间图形的相关知识,我就是通过这两个知识点来串成教学主线。在复习空间图形的形成中,让学生感受到立体图形各自的特征和共同点与不同点;在复习空间图形的相关知识中。通过观察、回忆、交流将立体图形的知识连贯起来。通过板书中的梳理知识脉络,并沟通知识间的相互联系。注重沟通知识间的相互联系。

下载《立体图形的整理与复习》教学设计(推荐5篇)word格式文档
下载《立体图形的整理与复习》教学设计(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《立体图形总复习》 教学设计

    《立体图形总复习》教学设计平罗县陶乐第一小学 魏小艳 《立体图形总复习》教学设计 教学内容: 教学目标: 1、进一步让学生掌握立体图形表面积、体积的计算公式,从而锻炼学生......

    立体图形的整理和复习的教学设计

    《立体图形的整理和复习》的教学设计 天台县街头镇中心小学 安传平教学内容: 人教版义务教育教科书小学数学六年级下册第六单元第88页例4、例5及做一做。 教学目标: 1.掌握所......

    立体图形总复习教学设计

    《立体图形总复习》教学设计 海宁市实验小学朱冬春 教学内容:复习立体图形的认识、表面积和体积(人教版第88页) 教学目标: 1.复习长方体、正方体、圆柱、圆锥体积的计算公式,加深......

    总复习立体图形教学设计

    总复习——立体图形的体积 教学目标: 1.使学生进一步熟悉立体图形体积的计算公式,理解体积公式的推理过程及相互联系。 2.经历运用公式解决实际问题的过程,培养应用数学知识的......

    立体图形整理与复习教案

    整理与复习——立体图形 教学内容:立体图形的特征与计算公式的整理与复习教学目标:1.使学生进一步明确长方体、正方体、圆柱和圆锥等立体图形的特征, 使学生从整体上把握这些......

    立体图形整理与复习教案

    整理与复习——立体图形 爱凡杰学校 路蒙 教学内容:立体图形的特征与计算公式的整理与复习教学目标:1.使学生进一步明确长方体、正方体、圆柱和圆锥等立体图形的特征, 使学生......

    “立体图形的体积”整理复习教学设计

    人教版小学六年级数学下册第六单元第2部分第四课时 “立体图形的体积”整理复习教学设计 授课教师:张剑武 教学目标: 1、培养学生归纳、总结、比较、分析的逻辑思维能力及......

    一上:《立体图形复习课》教学设计(范文大全)

    一、教学目标(一)知识与技能通过复习,使学生全面回顾长方体、正方体、圆柱和球的特征,熟练辨认这4种形状的物体。(二)过程与方法通过动手操作、想象、总结和归纳,掌握数组合图形的......