七年级数学下册5.1.2垂线教案

时间:2019-05-12 23:06:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学下册5.1.2垂线教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学下册5.1.2垂线教案》。

第一篇:七年级数学下册5.1.2垂线教案

5.1.2垂线

教学目标

1.了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;

2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线,会用三角板过一点画已知直线的垂线,并会度量点到直线的距离。教学重点

1.两条直线互相垂直的概念、性质和画法.2.“垂线段最短”的性质,点到直线的距离的概念及其简单应用.教学难点:

对点到直线的距离的概念的理解 教学过程

一、情境导入

利用多媒体展示田亮和三位跳水运动员入水前的精彩图片。

教师提出问题:如果用一条水平直线a表示水面,你能用另一条直线b画出不同选手入水的示意图吗?

如图(1),直线a与直线b的位置关系就是我们今天要学习的内容——垂线。设计意图:“兴趣是最好的老师”借助于多媒体,展示田亮的照片来激发学生的好奇心,从而激起学生的学习兴趣,使学生先得到直观的感性认识,培养学生从感性到理性的认知方

式。

二、探究新知

活动一:探究垂线的概念及画法

1.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?

bba

教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.AODCB

5.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质:过一点有且只有一条直线与已知直线垂直.活动二:探究垂线的性质及点到直线的距离

1、在灌溉时,要把河流ι短,为什么?

中的水引到农田P处,可以有多少种引法?如何挖渠能使渠道最

2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短.(2)如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?

3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.3

PaAl

使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.4.学生画图操作,得出结论.(1)画出直线L,L外一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3„„在L上,连接PA、PA2、PA3„„;(4)用叠合法或度量法比较PO、PA1、PA2、PA3„„长短.5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.6.师生根据两点间的距离的意义给出点到直线的距离命名.结合课本图形(图5.1-9),深入认识垂线段PO:PO⊥L,∠POA=90°,O为垂足,垂线段PO的长度比其他线段PA1、PA2„„中是最短的.按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2„„长度都不是点P到L的距离.设计意图:这个环节主要体现出学生的学,给出问题让学生边看书边思考问题,从而让每位学生都投入紧张的学习中,培养学生的自学能力。

三、随堂练习

1、下列说法中,不正确的是()A.在同一平面内,经过一点只能画一条直线和已知直线垂直 B.一条直线可以有无数条垂线 C.在同一平面内,过射线的端点与该射线垂直的直线只有 一 条 D.过直线外一点并过直线上一点可画一条直线与该直线垂直

2、如图,点D在直线AB上,当∠1与∠2具备条件________时,CD与AB的位置关系是垂直.3、如图,三条直线AB,CD和EF相交于点O,∠AOE=40°,∠BOD=50°,则图中互相垂直的两条直线是________.4、已知直线L外一点P,则点P到直线L的距离是指()A.点P到直线L的垂线的长度 B.点P到直线L的垂线 C.点P到直线L的垂线段的长度 D.点P到直线L的垂线段

5.如图,AB丄BD于点B,CD丄BD于点D,则∠ABD=________,∠CDB=_________.设计意图:在学生练习时,教师调查和摸清学习基础差的学生中疑难问题,并且帮助学困生;也及时检查学生的自学成果,当学生遇到疑难时教师及时引导。

四、拓展延伸

1、一辆汽车在直线形的公路上由A向B行驶,M,N分别是位于公路AB两侧的学校,如图所示.(1)汽车在公路上行驶时,会对两个学校的教学都造成影响,当汽车行驶到何处时,分别对两个学校的影响最大?在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两个学校的影响越来越大?哪一段上对M学校的影响逐渐减小,而对N学校的影响逐渐增大?

2、如图,AC垂直BC于点C,CD垂直AB于点D,DE垂直BC于点E,试比较四条线段AC,DC,DE和AB的大小。

设计意图:帮助全体学生巩固新学的知识、技能、方法,加深对相关知识和方法的理解;给有特殊学习需求的学生一个自我提升的空间,达到教学目标,又确保了学生当堂完成作业,从根本上保证了减轻学生课外的负担,让学生全面发展,健康成长。

四、课堂小结

1、垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直

2、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短。

3、点到直线的距离:直线外一点到这条直线的垂线段的长度。

设计意图:学生巩固本节知识的同时学会总结反思,初步学会自我评价学习结果,,也锻炼了学生的归纳、整理和表达能力.参考答案: 随堂练习:

1、【解析】选D.过一点有且只有一条直线与已知直线垂直;过直线外一点并过直线上一点不一定有一条直线与已知直线垂直.故D错.2、【解析】因为∠1与∠2互补,所以当∠1=∠2=90°时,CD与AB垂直.3、【解析】因为∠AOE和∠BOF是对顶角,所以∠BOF=∠AOE =40°,又∠BOD=50°,所以∠DOF=∠BOD+∠BOF=90°,所以EF⊥CD.4、【解析】选C.点到直线的距离是指点到直线的垂线段的长度.5、【解析】由垂直的定义得,∠ABD=90°,∠CDB=90°.拓展延伸:

1、【解析】(1)如图,作MC⊥AB于点C,ND⊥AB于点D,根据垂线段最短,所以在点C处对M学校的影响最大,在点D处对N学校的影响最大.(2)由A向点C行驶时,对两个学校的影响逐渐增大;由点C向点D行驶时,对M学校的影响逐渐减小,对N学校的影响逐渐增大.2、解:∵AC⊥BC,(已知)∴AC<AB,(垂线的性质二)∵CD⊥AB,(已知)∴DC<AC,(垂线的性质二)∵DE⊥BC,(已知)∴DE<DC,(垂线的性质二)∴DC<DC<AC<AB.

第二篇:七年级数学人教版下册:5.1.2垂线第一课时导学案

第五章5.1.2

垂线(1)

主备人

审核人

审核时间

课型

班级

姓名

流程

导学内容

助教策略

(学习随笔)

目标导学

学习目标:了解垂直概念和性质,会用三角尺或量角器画垂线.能力目标:培养学生观察、分析、归纳的能力;

情感目标:把学到的知识应到生活中去,做个爱学爱思的人。

学习重、难点:两条直线互相垂直的概念、性质和画法.自主学习

1.如图∠1=60°,那么∠2、∠3、∠4的度数

2.∠1=90°,那么∠2、∠3、∠4的度数

3.观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?

合作探究

1.观察思考:固定木条a,转动木条b,当b的位置变化时,a、b所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?

结论:当b的位置变化时,角α从锐角变为钝角,其中∠α是_____角是特殊情况.其特殊之处还在于:当∠α是_____角时,它的邻补角,对顶角都是_____角,即a、b所成的四个角都是_____角,都_____.2.垂直定义:两条直线相交,所成四个角中有一个角是_____角时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。

3.表示方法:垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如右图.(1)、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

(2)、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

(3)、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

课堂小结

本节课我们学习了哪些内容?

达标检测

(一)、判断题.1.两条直线互相垂直,则所有的邻补角都相等.()

2.一条直线不可能与两条相交直线都垂直.()

3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.()

(二)、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE

与直线AB的位置关系是_________.(1)

(三)、解答题.1.已知钝角∠AOB,点D在射线OB上.(1)画直线DE⊥OB;(2)画直线DF⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD

与OE的位置关系.3.如下图,P是∠AOB的OB边上的一点,请分别过P点画OA、OB的垂线

1、自主检测

2、小组展示

(教)后

反思

通过本节课的学习:对自己说,你有哪些收获?

第三篇:七年级下数学教案:5.1.2垂线

5.1.2垂线(1)

教学目标

1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.教学重点

两条直线互相垂直的概念、性质和画法.教学过程

一、创设问题情境,研究垂直等有关概念

1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线„„,思考这些给大家什么印象? 在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?

bba

教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.AODBC

5.简单应用

(1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再

举出生活中其他实例.(2)判断以下两条直线是否垂直: ①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质

1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直.3 2.变式训练,巩固垂线的概念和画法,如根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.PMANPPAB

B

学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线.三、小结

本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?

四、作业

1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.()2.一条直线不可能与两条相交直线都垂直.()

3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.()

二、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.4 BOCA(1)DCO(2)DABACO(3)EDB

2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与

直线AB的位置关系是_________.

第四篇:第一周教案——5.1.2垂线教案

5.1.2垂线(第2课时)

垂线(二)备课人:张玉林

使用时间:第 1 周 2012.2.16

教学目标

1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。

2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离.重点、难点

重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.难点:对点到直线的距离的概念的理解.教学过程

一、创设问题情境,探究垂线段最短的垂线性质

1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?

学生看图、思考.2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?

学生说出:两点间线段最短.(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?

3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.PaAl

使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.4.学生画图操作,得出结论.(1)画出直线L,L外一点P;

(2)过P点出PO⊥L,垂足为O;

(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;

(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短.5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:

(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.1

ACB作业答案:

一、1.4.8,6,6.4,10 2.小明说法是错误的,因为AD与BE是否垂直无判定.二、1.(1)PQ=

11OP(2)OQ=OP 2.略.22

第五篇:七年级下册垂线教案

课题:5.1.2 垂线

【学习目标】

1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;

2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用.【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习难点】

环节一:复习引入

在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一 点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB与CD相交于点O”.

我们如果把直线CD绕点O旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD的大小都将发生变化.

当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 方式⑴

∵ ∠AOC=90° ∴ AB_____CD,垂足是_____ 方式⑵

∵ AB⊥CD于O ∴ ∠AOC=______

探索一:请你认真画一画,看看有什么收获.

⑴如图1,利用三角尺或量角器画已知直线l的垂线,这样的垂线能画__________条;

⑵如图2,经过直线l上一点A画l的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l外一点B画l的垂线,这样的垂线能画_____条;

经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.

【习题练习】

1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,求∠BOC度数

2.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,求∠2的度数.

3.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.

(2)过点P画CD的垂线,与AB相交于F点.(3)比较线段PE,PF,PO三者的大小关系

探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.【习题练习】

1.在下列语句中,正确的是().

A.在同一平面内,一条直线只有一条垂线

B.在同一平面内,过直线上一点的直线只有一条

C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条 D.在同一平面内,垂线段就是点到直线的距离

2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________

3.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()

A.∠EOD比∠FOB大

B.∠EOD比∠FOB小

C.∠EOD与∠FOB相等

D.∠EOD与∠FOB大小关系不确定

【知识总结】

1、两条线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足

2、在同一平面内,过点有且只有一条直线与已知直线垂直

3、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单来说:垂线段最短

4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离

下载七年级数学下册5.1.2垂线教案word格式文档
下载七年级数学下册5.1.2垂线教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学垂线课件

    教学建议1.知识结构2.重点和难点分析本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调“有一个角是直角”,但实际上......

    新人教版七年级数学下册《垂线》教学反思一

    本节课主要是让学生认识垂线,知道垂线的画法,理解垂线的性质,明白出现在生活中的作用,并能将学到的知识运用于生活中,解决生活中简单的问题。让学生运用原有的有关角的知识,充分发......

    七年级数学下册教案

    七年级数学下册教案 七年级数学下册教案1 教学目标:1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。2、让学生感受到可以用数量表示图形位置,几......

    七年级数学下册教案

    七年级数学下册教案1 知识与技能:1、了解一元一次不等式组的概念、2、理解一元一次不等式组的解集,能求一元一次不等式组的解集、3、会解一元一次不等式组、过程与方法:通过具......

    10.1相交线-垂线及其性质教案-沪科版数学七年级下册

    第十章相交线、平行线和平移10.1相交线第2课时 垂线及其性质一、教学目标1.理解并掌握垂线的概念及性质;2.了解点到直线的距离;3.能够运用垂线的概念及性质进行运算并解决实际问......

    七年级数学垂线课件案(优秀范文5篇)

    设计说明:1、学情分析:《垂线的画法》是现行人教版义务教育课程标准实验教科书小学数学四年级上册第四单元《平行四边形和梯形》的第二节课。垂线的画法既建立在学生已经学过的......

    画垂线教案

    第二课时:画垂线 说学情 小学四年级学生认知水平以及生活阅历相对较少,但孩子们都喜欢亲自动手试一试。所以学生的这种认知特征要善于引导,寻求科学的学习方法和适合学生年龄特......

    垂线教案反思

    垂线 ——教学案例与反思 张晓娟[教学内容] 两条直线的特殊情形——垂线,以及与它有关的概念和结论。 [教学目标] 经历探索垂线的过程丰富两条直线互相垂直的认知,掌握垂线......