第一篇:七年级数学下册5.1.2垂线教案
5.1.2垂线
教学目标
1.了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;
2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线,会用三角板过一点画已知直线的垂线,并会度量点到直线的距离。教学重点
1.两条直线互相垂直的概念、性质和画法.2.“垂线段最短”的性质,点到直线的距离的概念及其简单应用.教学难点:
对点到直线的距离的概念的理解 教学过程
一、情境导入
利用多媒体展示田亮和三位跳水运动员入水前的精彩图片。
教师提出问题:如果用一条水平直线a表示水面,你能用另一条直线b画出不同选手入水的示意图吗?
如图(1),直线a与直线b的位置关系就是我们今天要学习的内容——垂线。设计意图:“兴趣是最好的老师”借助于多媒体,展示田亮的照片来激发学生的好奇心,从而激起学生的学习兴趣,使学生先得到直观的感性认识,培养学生从感性到理性的认知方
式。
二、探究新知
活动一:探究垂线的概念及画法
1.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
bba
教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.AODCB
5.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质:过一点有且只有一条直线与已知直线垂直.活动二:探究垂线的性质及点到直线的距离
1、在灌溉时,要把河流ι短,为什么?
中的水引到农田P处,可以有多少种引法?如何挖渠能使渠道最
2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗? 学生说出:两点间线段最短.(2)如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?
3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.3
PaAl
使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.4.学生画图操作,得出结论.(1)画出直线L,L外一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3„„在L上,连接PA、PA2、PA3„„;(4)用叠合法或度量法比较PO、PA1、PA2、PA3„„长短.5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.6.师生根据两点间的距离的意义给出点到直线的距离命名.结合课本图形(图5.1-9),深入认识垂线段PO:PO⊥L,∠POA=90°,O为垂足,垂线段PO的长度比其他线段PA1、PA2„„中是最短的.按照两点间的距离给点到直线的距离命名,教师板书: 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2„„长度都不是点P到L的距离.设计意图:这个环节主要体现出学生的学,给出问题让学生边看书边思考问题,从而让每位学生都投入紧张的学习中,培养学生的自学能力。
三、随堂练习
1、下列说法中,不正确的是()A.在同一平面内,经过一点只能画一条直线和已知直线垂直 B.一条直线可以有无数条垂线 C.在同一平面内,过射线的端点与该射线垂直的直线只有 一 条 D.过直线外一点并过直线上一点可画一条直线与该直线垂直
2、如图,点D在直线AB上,当∠1与∠2具备条件________时,CD与AB的位置关系是垂直.3、如图,三条直线AB,CD和EF相交于点O,∠AOE=40°,∠BOD=50°,则图中互相垂直的两条直线是________.4、已知直线L外一点P,则点P到直线L的距离是指()A.点P到直线L的垂线的长度 B.点P到直线L的垂线 C.点P到直线L的垂线段的长度 D.点P到直线L的垂线段
5.如图,AB丄BD于点B,CD丄BD于点D,则∠ABD=________,∠CDB=_________.设计意图:在学生练习时,教师调查和摸清学习基础差的学生中疑难问题,并且帮助学困生;也及时检查学生的自学成果,当学生遇到疑难时教师及时引导。
四、拓展延伸
1、一辆汽车在直线形的公路上由A向B行驶,M,N分别是位于公路AB两侧的学校,如图所示.(1)汽车在公路上行驶时,会对两个学校的教学都造成影响,当汽车行驶到何处时,分别对两个学校的影响最大?在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两个学校的影响越来越大?哪一段上对M学校的影响逐渐减小,而对N学校的影响逐渐增大?
2、如图,AC垂直BC于点C,CD垂直AB于点D,DE垂直BC于点E,试比较四条线段AC,DC,DE和AB的大小。
设计意图:帮助全体学生巩固新学的知识、技能、方法,加深对相关知识和方法的理解;给有特殊学习需求的学生一个自我提升的空间,达到教学目标,又确保了学生当堂完成作业,从根本上保证了减轻学生课外的负担,让学生全面发展,健康成长。
四、课堂小结
1、垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直
2、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3、点到直线的距离:直线外一点到这条直线的垂线段的长度。
设计意图:学生巩固本节知识的同时学会总结反思,初步学会自我评价学习结果,,也锻炼了学生的归纳、整理和表达能力.参考答案: 随堂练习:
1、【解析】选D.过一点有且只有一条直线与已知直线垂直;过直线外一点并过直线上一点不一定有一条直线与已知直线垂直.故D错.2、【解析】因为∠1与∠2互补,所以当∠1=∠2=90°时,CD与AB垂直.3、【解析】因为∠AOE和∠BOF是对顶角,所以∠BOF=∠AOE =40°,又∠BOD=50°,所以∠DOF=∠BOD+∠BOF=90°,所以EF⊥CD.4、【解析】选C.点到直线的距离是指点到直线的垂线段的长度.5、【解析】由垂直的定义得,∠ABD=90°,∠CDB=90°.拓展延伸:
1、【解析】(1)如图,作MC⊥AB于点C,ND⊥AB于点D,根据垂线段最短,所以在点C处对M学校的影响最大,在点D处对N学校的影响最大.(2)由A向点C行驶时,对两个学校的影响逐渐增大;由点C向点D行驶时,对M学校的影响逐渐减小,对N学校的影响逐渐增大.2、解:∵AC⊥BC,(已知)∴AC<AB,(垂线的性质二)∵CD⊥AB,(已知)∴DC<AC,(垂线的性质二)∵DE⊥BC,(已知)∴DE<DC,(垂线的性质二)∴DC<DC<AC<AB.
第二篇:七年级数学人教版下册:5.1.2垂线第一课时导学案
第五章5.1.2
垂线(1)
主备人
审核人
审核时间
课型
班级
姓名
流程
导学内容
助教策略
(学习随笔)
目标导学
学习目标:了解垂直概念和性质,会用三角尺或量角器画垂线.能力目标:培养学生观察、分析、归纳的能力;
情感目标:把学到的知识应到生活中去,做个爱学爱思的人。
学习重、难点:两条直线互相垂直的概念、性质和画法.自主学习
1.如图∠1=60°,那么∠2、∠3、∠4的度数
2.∠1=90°,那么∠2、∠3、∠4的度数
3.观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?
合作探究
1.观察思考:固定木条a,转动木条b,当b的位置变化时,a、b所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
结论:当b的位置变化时,角α从锐角变为钝角,其中∠α是_____角是特殊情况.其特殊之处还在于:当∠α是_____角时,它的邻补角,对顶角都是_____角,即a、b所成的四个角都是_____角,都_____.2.垂直定义:两条直线相交,所成四个角中有一个角是_____角时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.表示方法:垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如右图.(1)、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
(2)、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
(3)、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
课堂小结
本节课我们学习了哪些内容?
达标检测
(一)、判断题.1.两条直线互相垂直,则所有的邻补角都相等.()
2.一条直线不可能与两条相交直线都垂直.()
3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.()
(二)、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE
与直线AB的位置关系是_________.(1)
(三)、解答题.1.已知钝角∠AOB,点D在射线OB上.(1)画直线DE⊥OB;(2)画直线DF⊥OA,垂足为F.2.已知:如图,直线AB,垂线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD
与OE的位置关系.3.如下图,P是∠AOB的OB边上的一点,请分别过P点画OA、OB的垂线
1、自主检测
2、小组展示
学
(教)后
反思
通过本节课的学习:对自己说,你有哪些收获?
第三篇:七年级下数学教案:5.1.2垂线
5.1.2垂线(1)
教学目标
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线, 并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.教学重点
两条直线互相垂直的概念、性质和画法.教学过程
一、创设问题情境,研究垂直等有关概念
1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线„„,思考这些给大家什么印象? 在学生回答之后,教师指出:“垂直”两个字对大家并不陌生, 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型,演示模型,学生观察思考:固定木条a,转动木条, 当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
bba
教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。
4.垂直的表示法.垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.AODBC
5.简单应用
(1)学生观察课本P6图5.1-6中的一些互相垂直的线条, 并再
举出生活中其他实例.(2)判断以下两条直线是否垂直: ①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质
1.学生用三角尺或量角器画已知直线L的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流, 使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直.3 2.变式训练,巩固垂线的概念和画法,如根据下列语句画图:(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.PMANPPAB
B
学生画完图后,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线.三、小结
本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?
四、作业
1.课本P7练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等.()2.一条直线不可能与两条相交直线都垂直.()
3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互为垂直.()
二、填空题.1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.4 BOCA(1)DCO(2)DABACO(3)EDB
2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与
直线AB的位置关系是_________.
第四篇:第一周教案——5.1.2垂线教案
5.1.2垂线(第2课时)
垂线(二)备课人:张玉林
使用时间:第 1 周 2012.2.16
教学目标
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。
2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离.重点、难点
重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.难点:对点到直线的距离的概念的理解.教学过程
一、创设问题情境,探究垂线段最短的垂线性质
1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?
学生看图、思考.2.教师以问题串形式,启发学生思考.(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?
学生说出:两点间线段最短.(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?
3.教师演示教具,给学生直观的感受.教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.PaAl
使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA 长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.4.学生画图操作,得出结论.(1)画出直线L,L外一点P;
(2)过P点出PO⊥L,垂足为O;
(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;
(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短.5.师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.关于垂线段教师可让学生思考:
(1)垂线段与垂线的区别联系.(2)垂线段与线段的区别与联系.1
ACB作业答案:
一、1.4.8,6,6.4,10 2.小明说法是错误的,因为AD与BE是否垂直无判定.二、1.(1)PQ=
11OP(2)OQ=OP 2.略.22
第五篇:七年级下册垂线教案
课题:5.1.2 垂线
【学习目标】
1、了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;
2、会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用.【学习难点】垂线的画法以及对点到直线的距离的概念的理解.【学习难点】
环节一:复习引入
在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一 点,得到四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB与CD相交于点O”.
我们如果把直线CD绕点O旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD的大小都将发生变化.
当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图 方式⑴
∵ ∠AOC=90° ∴ AB_____CD,垂足是_____ 方式⑵
∵ AB⊥CD于O ∴ ∠AOC=______
探索一:请你认真画一画,看看有什么收获.
⑴如图1,利用三角尺或量角器画已知直线l的垂线,这样的垂线能画__________条;
⑵如图2,经过直线l上一点A画l的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l外一点B画l的垂线,这样的垂线能画_____条;
经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.
【习题练习】
1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,求∠BOC度数
2.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,求∠2的度数.
3.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.
(2)过点P画CD的垂线,与AB相交于F点.(3)比较线段PE,PF,PO三者的大小关系
探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是,垂线段是一条,点到直线的距离是一个数量,不能说“垂线段”是距离.【习题练习】
1.在下列语句中,正确的是().
A.在同一平面内,一条直线只有一条垂线
B.在同一平面内,过直线上一点的直线只有一条
C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条 D.在同一平面内,垂线段就是点到直线的距离
2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB•的距离是_______,•AC>CD•的依据是_________
3.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()
A.∠EOD比∠FOB大
B.∠EOD比∠FOB小
C.∠EOD与∠FOB相等
D.∠EOD与∠FOB大小关系不确定
【知识总结】
1、两条线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足
2、在同一平面内,过点有且只有一条直线与已知直线垂直
3、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单来说:垂线段最短
4、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离