人教版小学数学六年级下册《鸽巢问题》教学设计

时间:2019-05-12 23:24:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版小学数学六年级下册《鸽巢问题》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版小学数学六年级下册《鸽巢问题》教学设计》。

第一篇:人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计

【教学内容】 人教版六年级下册第68--69页《数学广角---鸽巢问题》例

1、例2。【教学目标】

1.经历鸽巢原理的探究过程,初步理解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

4.使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。

【教学重点】 经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。【教学难点】 理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。【教学过程】

一、创设情境 引入课题 1.“魔术”表演:

规则:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张。抽到牌后藏好,等老师来猜。

大家猜猜看至少有几个同学的扑克牌花色是相同的?

猜谜:老师肯定的说:“这5张牌中,至少有2张牌是同花色的。老师猜的对不对?”

请5个同学举起手中的牌让同学们见证奇迹。大家表现这么好,我们再来玩游戏。2.玩游戏

游戏要求:老师喊“一、二、三开始” 以后,请你们5个都坐在椅子上,每个人必须都坐下。

3.导入课题:刚才的“魔术”表演和抢椅子游戏,这里面蕴藏着一个非常有趣的数学问题,这节课我们就一起来研究这类问题,下面我们先从简单的情况入手。“鸽巢问题”。(板书课题)

二、合作探究 发现规律

(一)教学例1(由枚举法引出假设法,初步“建模”——平均分。)出示例1 把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支笔。1.理解 “总有”和“至少”的意思。2.运用“枚举法”初步探究。

(1)把4支笔放进3个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现几种情况都记录下来。(2)汇报展示不同的方法。

(4)讲解:像这样一一列举出来的方法,在数学上叫枚举法。(板书:枚举法)

3.通过比较,引导“假设法”。

启发:能不能找到一种更为直接的方法,只摆一种情况也能得到这个结论?

4.初步“建模”----平均分。

引导:运用“假设法”先在每个笔筒里分1支,这种均等的分法,又叫什么分?用什么方法计算?你能列式表示吗? 板书: 4÷3=1„„1 1+1=2 5.概括“鸽巢原理”的一般规律。

追问:如果增加笔和笔筒的数量,又会怎样呢?

出示(1)把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?

(2)把6支笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?

(3)把100支笔放进99个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?

启发:“照样子,你能说一句这样的话吗?” 提问:发现了什么规律?

概括:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。提问:难道这个规律只有在这种情况下才存在吗?如果余数不是1,这个规律还存在吗?

出示:5只鸽子飞进了3个鸽笼,那么至少又会有几只鸽子飞进同一个鸽笼呢?

反馈质疑:运用“假设法”,每个鸽笼里先平均飞进1只,余下的两只会怎样飞呢?

追问:哪种情况更符合“至少”这个结论呢? 优化答案:5÷3=1„„2 1+1=2 7.对比择优,体会“假设法”的优越。

对比:刚才用枚举和假设两种方法进行思考,你认为哪一种方法更好呢?为什么?

发现:枚举法是一一列举来验证,在数字比较大的时候有局限性,而假设法先用平均分的方法在数据大的时候也同样适用。

(二)了解小资料——“鸽巢原理”。

(三)教学例2(具体问题“数学化”,深入“建模”——至少数=商+1)

1.狄里克雷发现了这个规律后,并没有停止对现象的研究,又发现了问题。如果鸽子数量更多一些呢?

2.出示例2 把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书?为什么? 3.组内同学交流汇报。

4.出示:如果有8本书会怎样呢?10本书呢? 5.总结规律。

师:如果继续增加书本的数量,你还能回答刚才的问题吗? 看来你们又发现规律了,是吗?说一说。

总结概括: 书本放进抽屉,如果平均分后有剩余,那么总有一个抽屉里

放进“商+1”本书。

6、你理解上课前表演的扑克牌魔术的道理了吗?

三、联系生活 学以致用 1.基础园----我会填空

(1)三个小朋友做游戏,至少有()个小朋友性别相同。(2)5名同学一起练投篮,共投进41个球,那么必定有1人至少投进()个球。

(3)随意找13位老师,他们中至少有()人属相相同。(4)给一个正方体的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有()个面涂的颜色相同。2.拓展练习。

下关九小全校有842人,至少有()人的生日是在同一季度;至少有()人的生日是在同一个月;至少有()人的生日是在同一天。

四、课堂总结 反思提升

师: 通过这节课的学习,说说自己的收获或感受吧!

1.学生反思总结数学思想方法,归纳所学知识。

2.师:最后,老师送同学们一句话,在学习中“只要留心观察加上细心思考,总有新的发现!”

人教版小学数学六年级下册《鸽巢问题》教学设计

下关九小 宋 萍

第二篇:六年级下册鸽巢问题教学设计

鸽巢问题教学设计

教学内容:人教版小学数学六年级下册教材第68~69页。教材分析:

鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。学情分析:

“鸽巢问题”看似简单,但因为其实质是揭示了一种存在性,比较抽象,要让小学生建构起自己的实质性理解,还是很有挑战性的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。“鸽巢问题”的精练表述,明显超出了一般人的抽象概括能力。对“总有一个鸽巢里放入的物体数至少是多少” 这样的表述,学生不易理解,教学中学生也很难用“总有”、“至少”这样的语言来陈述。设计理念:

在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。教学目标:

1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。教学准备:多媒体课件、微视频、合作探究作业纸。教学过程:

一、谈话引入:

1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。你们信吗?

2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。适时引导:“至少2个同学”是什么意思?(也就是2人或2人以上,反过来,生日在同一个月的可能有2人,可能3人、4人、5人……,也可以用一句话概括就是“至少有2人”)

3、设疑:你们想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。下面我们就来研究这类问题,我们先从简单的情况入手研究。

二、探究原理。

1、出示:小明说“把4枝铅笔放进3个笔筒中。不管怎么放,总有一个笔筒里至少放进2枝铅笔”,他说得对吗?

师:“总有” 和“至少”是什么意思?他说得对吗?(可能会出现“对”或“不对”两种说法。)

师:要想知道对不对怎么办?(可以亲自动手摆一摆学具,也可以在纸上画一画图,看看有哪几种放法?再进行研究。)学生思考,摆放、画图。

(1)、全班交流:

学生会出现4种放法。针对每种放法,学生描述,教师板书成(4,0,0)(3,1,0)。(2,2,0)。(2,1,1)。

从每种放法中,得出每种放法中,无论怎么放,放的最多的那个笔筒中放的支数。(4、3、2、2支)还有装得更少的情况吗?为什么?(2)、四句话可以概括成一句话吗?(小组讨论概括、全班交流)(3)、概括总结,得出结论

板书:把4枝铅笔放进3个笔筒中。不管怎么放,总有一个文具盒里至少放进2枝铅笔。

2、师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几枝铅笔。要想使这个放得最多的笔筒里尽可能的少放?可以怎么放呢?(引出平均分,)怎样进行平均分呢?

为什么要平均分呢?(因为这样分,只分一次就能确定总有一个笔筒至少有几枝笔了。)先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个笔筒至少有——2枝铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒都放一枝,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2枝铅笔。

师:如果把5枝笔放进4个盒子里呢?可以结合操作说一说。师:把6枝笔放进5个盒子里呢?还用画吗? 师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢? 把9枝笔放进8个盒子里呢?…… 你发现了什么?

(发现铅笔的枝数比数多笔筒1,不管怎么放,总有一个笔筒里至少有2枝铅笔

3、生活中有类似的例子吗?(学生举例)三、总结原理

同学们的这一发现,称为“鸽巢问题”。(板书课题:鸽巢问题)

1、阅读鸽巢问题的发现 最早指出这个数学原理的,是十九世纪的德国数学家狄里克雷,因此,这个原理被称为“狄里克雷原理”。又因为在讲述这个原理时,人们常以抽屉、鸽巢为例,所以它也被称为“抽屉原理”或“鸽巢原理”。“抽屉原理”是数学的重要原理之一,在数论、集合论中有很多应用。它也被广泛应用于现实生活中,如在招生录取、就业安排、资源分配、职称评定等方面,我们会经常看到隐含在其中的“抽屉原理,“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

第三篇:人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教

学设计

教学内容:人教版六年级下册P68-69 教学目标:

1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验操作、观察、比较、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重点:

使学生理解“抽屉原理”的基本形式,并能初步运用原理解决相关的实际问题。教学难点:

理解“总有”、“一个笔筒”、“至少”的含义。教学准备:

课件,《自主学习任务单》、《小组合作学习任务单》 教学过程:

一、交流课堂探究收获,了解鸽巢原理相关资料。

导语:这节课我们来研究第五单元数学广角里的——鸽巢问题。(板书课题)请拿出课前准备的《自主学习任务单》,先在小组里交流一

下你的收获。

1、学生分组交流,教师巡视指导。

2、全班展示汇报。

导语:哪个小组到前面来展示并介绍第1个问题? 组长主持本小组的展示汇报,并引导评价、补充。

小结:看来同学们在课前都进行了充分的准备。老师也查了一部分资料,请看大屏幕:

课件出示并简单介绍:鸽巢原理、抽屉原理和狄里克雷原理是同一个原理。狄里克雷是最早提出这一原理的,所以用他的名字来命名。但是最早使用该原理的却是我们中国人,早在公元前五百多年以前,春秋时期的晏子以两桃杀三士,他的权谋中就蕴含了鸽巢原理。而后宋代的费衮在《梁溪漫志》中运用鸽巢原理批驳了“算命”这一迷信活动的谬论。到了清代,钱大昕在《潜研堂文集》、阮葵生在《茶余客话》、陈其元在《庸闲斋笔记》中都有类似的文字记载。我国学者虽然很早就会用鸽巢原理来分析具体问题,却没有人将它概括成一条普遍的真理。最后,只能冠以外国人的名字了。同学们,此时此刻你有什么感想?

小结:在学习知识、追求真理的道路上我们不但要善于发现、善于思考,还要善于总结、善于表达。

二、小组合作,深入探究,经历探究鸽巢原理的形成过程

导语:为了研究的方便,我们借助笔和笔筒来研究鸽巢问题。(板书:笔、笔筒)

问题一:把4支笔放进3个笔筒中。可以怎么放?有几种不同的方法?这是我们课前探究的第2个问题,哪个小组到前面来展示一下你们的方案?

1、小组到前面展示汇报,组长主持评价、补充。

2、课件展示四种不同的放法,提问:这四种放法各不相同,却有一个共同之处,是什么呢?

3、出示“总有一个笔筒里至少放进2支笔”,引导理解“总有”“至少”的含义,“一个笔筒”指的是任意一个笔筒吗?引导明确是每种方法中放笔最多的笔筒。

4、好,我把这一发现记录下来。(板书:

4、3、总有一个笔筒至少放进、2)

5、什么情况下,笔筒里的笔最多?(引导体会“把笔集中放”)什么情况下,笔筒里的笔最少?(体会“把笔分散开放”)我们要研究至少的情况,看来选择哪种放法比较有利?(板书“分散”)问题二:如果把5支笔放进3个笔筒中,总有一个笔筒至少放进()支笔。

1、学生独立思考或者画图探究。

2、小组交流。

3、全班汇报交流。先选择把五种放法一一画出来的进行展示,追问:还有不同的想法吗?

生:先每个笔筒里放一支,然后把剩下的2支再分别放进2个笔筒里。

归纳并板书:列举法,假设法。

4、课件动态显示5支笔放进3个笔筒的过程。着重引导观察剩余2支笔的放法,要想达到至少的结果,必须尽量平均分。(板书:尽量平均分)

5、记录结果,板书:5、3、2。

问题三:如果笔的数量继续增加,比笔筒多3、4、5、6„„的情况下,“总有一个笔筒里至少放进2支笔”这个结论还会保持不变吗?

1、学生猜测。

2、可以怎么进行探究验证?

生:笔筒的数量保持3不变,笔的数量变成6、7、8、9、10„„ 师随机板书。

3、请同学们拿出小组合作学习任务单,4人共同来完成这项任务吧!学生分组合作探究活动。

4、全班汇报展示。

根据学生的汇报情况,相机引导归纳并板书:计算法,商+1。

5、出示鸽巢原理,学生齐读。

三、应用鸽巢原理,解决相关问题。1、19条金鱼放进4个鱼缸里,总有一个鱼缸至少放进()条鱼,为什么?

2、王叔叔参加射击比赛,共开了5枪,成绩是41环,他至少有一枪的成绩不低于()环,为什么?

3、我们学校六年级有544名同学,其中至少有()名同学在同一天过生日,为什么?

4、把红、橙、黄、绿、青、蓝、紫七种颜色的球各6个,放到同一个盒子里。如果请你闭上眼睛,至少摸出()个球才能保证有两个球是同色的。

四、总结提升,引导学生谈收获体会。

课马上就要结束了,通过本课的学习你有什么收获和体会?

第四篇:六年级鸽巢问题

东莞市东城博而思培训中心

教学辅导教案

学科

任课教师:

授课时间:

****年**月**日(星期)

鸽巢问题

基础知识点

1.鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。2.鸽巢原理

(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

3.鸽巢原理

(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式

物体个数÷鸽巣个数=商„„余数

至少个数=商+1 摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(相同颜色数-1)+1

②极端思想(最坏打算): 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

鸽巢问题的计算总结:

东莞市东城博而思培训中心

二、例题讲解:

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。

5、证明:某班有52名学生,至少有5个人在同一个月出生?

6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色?

7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。

8、学校图书馆里科普读物、故事书、连环画三种图书。每个学生从中任意借阅两本,那么至少要几个学生借阅才能保证其中一定有2人借阅的读书相同?

9、某班有学生49名,在这一次的英语期中考试中,除3人以外,分数都在85分以上,是否可以推断,至少有几人的分数会一样?

三、课堂练习1、6只鸡放进5个鸡笼,至少有几只鸡要放进同一个鸡笼里。

2、400人中至少有两个人的生日相同,请证明。

3、红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出多少个,才能保证有6个小球是同色的。

4、有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有三双分别为红、白、蓝颜色的袜子,可是你在黑暗中不能知道哪一双是颜色相同的。你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少?

5、某班有42人开展读书活动,他们从学校图书馆借了212本图书,那么其中至少有一人借多少本书?

6、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有几名学生是同年同月出生的。

东莞市东城博而思培训中心

四、巩固练习

1、今天参加数学竞赛的210名同学中至少有几名同学是同一个月出生的?

2、有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出个,才能保证有2个小球是同色的.3、五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。

4、盒子里放有三种不同颜色的筷子各若干根,最少摸几根,才能保证至少有3根筷子同色的。

5、在一间能容纳1500个座位的戏院里,证明如果戏院坐满人时,一定最少有五个观众是同月同日生。

6、在38个小朋友中,至少有几个小朋友同一个月出生的?

模拟试卷:

一、填空

1.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才 能保证有2个白球。

2.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。

3.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。

4.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。

5.二、选择

1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。

A.6

B.7

C.8

D.9 2.某班有男生25人,女生18人,下面说法正确的是()。

东莞市东城博而思培训中心

A.至少有2名男生是在同一个月出生的 B.至少有2名女生是在同一个月出生的C.全班至少有5个人是在同一个月出生的 D.以上选项都有误

3.某班48名同学投票选一名班长(每人只许投一票),候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:

规定得票最多的人当选,那么后面的计票中小华至少还要得()票才能当选?

A.6

B.7

C.8

D.9 4.学校有若干个足球、篮球和排球,体育老师让二(2)班52名同学到体育器材室拿球,每人最多拿2个(可以一个都不拿),那么至少有()名同学拿球的情况完全相同。

A.8

B.6

C.4

D.2 5.如图,在小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入()个“☆”。

A.4

B.5

C.6

D.7

三、应用

1.4名运动员练习投篮,一共投进30个球,一定有一名运动员至少投进几个球?

2.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到 4件以上的玩具?

3.有白、黑、灰三种颜色的袜子各50只混放在一个袋子里,如果闭上眼睛去摸。(同色两只为一双)(1)至少摸出多少只,可以配到一双袜子?(2)至少摸出多少只,才能保证有3只不同色的袜子?

(3)至少摸出多少只,可以保证摸出1双黑色的袜子?

(4)至少摸出多少只,可以配2双的袜子?

第五篇:六年级下册 鸽巢问题教案

第1课时 鸽巢问题(1)

【教学内容】

最简单的鸽巢问题(教材第68页例1和第69页例2)。【教学目标】

1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。【重点难点】

了解简单的鸽巢问题,理解“总有”和“至少”的含义。【教学准备】

实物投影,每组3个文具盒和4枝铅笔。

【情景导入】

教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题)教师:通过学习,你想解决哪些问题?

根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?

【新课讲授】

1.教师用投影仪展示例1的问题。

同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。

组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。教师指名汇报。

学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。

教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕 教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。

教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。

教师:还有不同的放法吗? 教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。)

教师:“总有”是什么意思?(一定有)

教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝)

教师:就是不能少于2枝。(通过操作让学生充分体验感受)教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作发现的这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢? 学生思考——组内交流——汇报

教师:哪一组同学能把你们的想法汇报一下? 学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

教师:你能结合操作给大家演示一遍吗?(学生操作演示)教师:同学们自己说说看,同桌之间边演示边说一说好吗? 教师:这种分法,实际就是先怎么分的? 学生:平均分。

教师:为什么要先平均分?(组织学生讨论)学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在哪个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 教师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)教师:哪位同学能把你的想法汇报一下?

学生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗? 生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?„„

教师:你发现什么? 学生:铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

教师:你们的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。把100枝铅笔放进99个文具盒里会有什么结论?一起说。

巩固练习:教材第68页“做一做”。A组织学生在小组中交流解答。B指名学生汇报解答思路及过程。2.教学例2。

①出示题目:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请同学们小组合作探究。探究时,可以利用每组桌上的7本书。

活动要求:

a.每人限独立思考。b.把自己的想法和小组同学交流。c.如果需要动手操作,可以利用每桌上的7本书,要有分工,并要全面考虑问题。(谁分铅笔,谁当抽屉,谁记录等)d.在全班交流汇报。(师巡视了解各种情况)学生汇报。

哪个小组愿意说说你们的方法?把你们的发现和大家一起分享,学生可能会有以下方法:

a.动手操作列举法。学生:通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。

b.数的分解法。

把7分解成三个数,有(7,0),(6,1),(5,2),(4,3)四种情况。在任何一种情况下,总有一个数不小于3。

教师:通过动手摆放及把数分解两种方法,我们知道把7本书放进3个抽屉,总有一个抽屉至少放进几本书?(3本)②教师质疑引出假设法。

教师:同学们通过以上两种方法,知道了把7本书放进3个抽屉,总有一个抽屉至少放进3本书,但随着书的本数越多,数据变大,如:要把155本书放进3个抽屉呢?用列举法、数的分解法会怎么样?(繁琐)我们能不能找到一种适用各种数据的方法呢?请同学们想想。

板书:7本3个2本„„余1本(总有一个抽屉里至少有3本书)8本3个2本„„余2本(总有一个抽屉里至少有3本书)10本3个3本„„余1本(总有一个抽屉里至少有4本书)师:2本、3本、4本是怎么得到的? 生:完成除法算式。7÷3=2本„„1本(商加1)8÷3=2本„„2本(商加1)10÷3=3本„„1本(商加1)师:观察板书你能发现什么? 学生:“总有一个抽屉里的至少有3本”,只要用“商+1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 学生:“总有一个抽屉里至少有3本”只要用5÷3=1本„„2本,用“商+2”就可以了。

学生有可能会说:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论、交流、说理活动。

可能有三种说法:a.我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

b.把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

c.我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

教师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢? 学生回答:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

教师讲解:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

提问:尽量把书平均分给各个抽屉,看每个抽屉能分到多少本书,你们能用什么方式表示这一平均的过程呢?

学生在练习本上列式:7÷3=2„„1。

集体订正后提问:这个有余数的除法算式说明了什么问题?

生:把7本书平均放进3个抽屉,每个抽屉有两本书,还剩一本,把剩下的一本不管放进哪个抽屉,总有一个抽屉至少放三本书。

③引导学生归纳鸽巢问题的一般规律。

a.提问:如果把10本书放进3个抽屉会怎样?13本呢? b.学生列式回答。

c.教师板书算式:10÷3=3„„1(总有一个抽屉至少放4本书)13÷3=4„„1(总有一个抽屉至少放5本书)④观察特点,寻找规律。提问:观察3组算式,你能发现什么规律?

引导学生总结归纳出:把某一数量(奇数)的书放进三个抽屉,只要用这个数除以3,总有一个抽屉至少放进书的本数比商多一。

⑤提问:如果把8本书放进3个抽屉里会怎样,为什么? 8÷3=2„„2 学生汇报。可能出现两种情况:一种认为总有一个抽屉至少放3本书;一种认为总有一个抽屉至少放4本书。

学生讨论。讨论后,学生明白:不是商加余数2,而是商加1。因为剩下两本,也可能分别放进两个抽屉里,一个抽屉一本,相当于数的分解(3,3,2)。所以,总有一个抽屉至少放3本书。

⑥总结归纳鸽巢问题的一般规律。

要把a个物体放进n个抽屉里,如果a÷n=b„„c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。

【课堂作业】

教材第69页“做一做”。

(1)组织学生在小组中交流解答。(2)指名学生汇报解答思路及过程。答案:

(1)∵11÷4=2(只)„„3(只)2+1=3(只)∴一定有一个鸽笼至少飞进3只鸽子。

(2)∵5÷4=1(人)„„1(人)1+1=2(人)∴一定有一把椅子上至少坐2人。【课堂小结】

通过这节课的学习,你有哪些收获? 【课后作业】

完成练习册中本课时的练习。

第1课时鸽巢问题(1)

(4,0,0)(0,1,3)(2,2,0)(2,1,1)学生铅笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。5÷2=2„„1 7÷2=3„„1 9÷2=4„„1 要把a个物体放进n个抽屉里,如果a÷n=b„„c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。

1.小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题既好玩又有意义。

2.理解“鸽巢问题”对于学生来说有着一定的难度。3.大部分学生很难判断谁是物体,谁是抽屉。4.学生对“至少”理解不够,给建模带来一定的难度。

5.培养学生的问题意识,借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路。

6.经历将具体问题“数学化”的过程,有利于培养学生的数学思维能力,让学生在运用新知识灵活巧妙地解决实际问题的过程中进一步体验数学的价值,感受数学的魅力,激发学习的兴趣。

第2课时 鸽巢问题(2)

【教学内容】

“鸽巢问题”的具体应用(教材第70页例3)。【教学目标】

1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。

2.培养学生有根据、有条理的进行思考和推理的能力。

3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。【重点难点】

引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。

【教学准备】

课件,1个纸盒,红球、蓝球各4个。

【情景导入】

教师讲《月黑风高穿袜子》的故事。

一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少拿几只袜子出去吗?

在学生猜测的基础上揭示课题。

教师:这节课我们利用鸽巢问题解决生活中的实际问题。板书:“鸽巢问题”的具体应用。【新课讲授】 1.教学例3。

盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?

(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)师:同学们,猜一猜老师在盒子里放了什么?(请一个同学到盒子里摸一摸,并摸出一个给大家看)

师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?

请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。指名按猜测的不同情况逐一验证,说明理由。摸2个球可能出现的情况:1红1蓝;2红;2蓝

摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝

摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝 摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

2.引导学生把具体问题转化为“鸽巢问题”。

教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?

思考:

a.“摸球问题”与“鸽巢问题”有怎样的联系?

b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么? c.得出什么结论? 学生讨论,汇报。

教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“鸽巢”,“同色”就意味着“同一个鸽巢”。这样,把“摸球问题”转化“鸽巢问题”,即“只要分的物体个数比鸽巢多,就能保证有一个鸽巢至少有两个球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个鸽巢里各拿了一个球,不管从哪个鸽巢里再拿一个球,都有两个球是同色,假设最少摸a个球,即(a)÷2=1„„(b)当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有两个球同色。

结论:要保证摸出有两个同色的球,摸出的数量至少要比颜色种数多一。【课堂作业】

先完成第70页“做一做”的第2题,再完成第1题。(1)学生独立思考。

(提示:把什么看做鸽巢?有几个鸽巢?要分的东西是什么?)(2)同桌讨论。(3)汇报交流。

教师讲解:第2题:因为一共有红、黄、蓝、白四种颜色的球,可以把四种“颜色”看成四个“鸽巢”,“同色”就意味着“同一鸽巢”。把“摸球问题”转化成“鸽巢问题”,即“只要分的物体个数比鸽巢数多一,就能保证至少有一个鸽巢有两个球,摸出的球的数量至少比颜色的种数多一,所以至少取5个球,才能保证有两个同色球。

第1题:他们说的都对,因为一年中最多有366天,所以把366天看做366个鸽巢,把370名学生放进366个鸽巢里,人数大于鸽巢数,因此总有一个鸽巢里至少有两个人,即他们的生日是同一天。1年中有十二个月,如果把12个月看作是十二个鸽巢,把49名学生放进12个鸽巢里,49÷12=4„„1,因此总有一个鸽巢里至少有5(即4+1)个人,也就是至少有5个人的生日在同一个月。

教师:上课时老师讲的故事你们还记得吗?(课件出示故事)谁能说说在外面借街灯配成同颜色的一双袜子,最少应该拿几只出去?

【课堂小结】

本节课你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第2课时鸽巢问题(2)

要保证摸出两个同色的球,摸出的球的数量至少要比颜色的种类多一。

下载人教版小学数学六年级下册《鸽巢问题》教学设计word格式文档
下载人教版小学数学六年级下册《鸽巢问题》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级下册《鸽巢问题》教案

    “鸽巢问题”教案 教学内容:教材第68-70页例1、例2,及“做一做”。 学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实......

    六年级数学下册│鸽巢问题【2019新人教版】

    鸽巢问题(2) 教学导航: 【教学内容】 “鸽巢问题”的具体应用(教材第70页例3)。 【教学目标】 1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。 2.培养......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计【教学内容】(人教版)数学六年级下册第68页例1。【教学目标】知识与技能:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。过程与方法:经历抽屉原理的探......

    鸽巢问题教学设计[合集]

    鸽巢问题教学设计在教学工作者开展教学活动前,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计 【教学内容】 人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。 【教学目标】 1.通过操作、观察、比较、分析、推理、抽象概括,引导学生......

    《鸽巢问题》教学设计(精选)

    教学目标:1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。2、过程与方法:通过操作、观察、比较、说理等数......

    鸽巢问题教学设计

    《鸽巢问题》教学设计 中卫九小 张永霞 一、教学内容 教材第68、69页例1和例2 二、教学目标 1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计 教学内容 人教版六年级数学下册数学广角《鸽巢问题》第一课时70、71页例1、例2. 教学目标 知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义......