和倍问题教案

时间:2019-05-13 00:21:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《和倍问题教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《和倍问题教案》。

第一篇:和倍问题教案

和倍问题

教学目标:

学会运用画图线的方法表示和倍关系中两个量,以更方便的找到解题的思路。

熟练掌握解答和倍问题的方法,理解和倍问题中各个量之间的关系。教学重点:运用画图线的方法,准确分析各量之间的关系。教学难点:能够理解和倍应用题中各倍数和差倍数的量得关系。

教学过程:

1、认识倍数

出示:甲数是乙数的4倍

请学生说说想到了什么?这里谁自己可以算一份? 小组交流怎样用图示表示他们之间的数量关系。交流,展示成果,并说说自己是怎样想的。师小结:一般用线段图来帮助分析。乙数: 甲数:

2、应用倍数知识

出示例1:白兔和灰兔一共有32只,白兔是灰兔的3倍,白兔和灰兔各有多少只?

集体讨论:白兔和灰兔各有多少只,你能不能画出倍数图线?

分析:设灰兔为1份,则白兔只数是灰兔的3倍,那么白兔只数和灰兔和相当于灰兔的4倍.还可以理解为4份的数量是32只,求出1份的数量也就求出了灰兔只数,然后再求白兔只数.这道应用题解答完了,怎样验算呢?

可把求出的白兔只数和灰兔只数相加,看和是不是32只;再把白兔只数除以灰兔只数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:

小结:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。解答和倍应用题,关键是找出两个数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。

数量关系可以这样表示:

两数和 ÷倍数和= 小数(1倍数)小数 × 倍数 = 大数(几倍数)两数和-小数 = 大数

三、巩固练习:

1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?

2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲 水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?

今天这节课同学们有什么收获?在解决和倍应用题时关键是要做什么?(先要画出线段图,分析数量关系)

第二篇:和倍问题教案

教 学 设 计

【教学题目】——“和倍”问题 【教学目标】

知识与技能:学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知量的实际问题。

问题解决与数学思考:学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力;培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

情感、态度与价值观:让学生体验到生活中处处是数学体验数学的应用价值和数学学习的乐趣。

【教学重点】明确数量关系列方程解决问题。

【教学难点】能理解把一倍量的未知数设为X,则用含有X的式子表示另一个未知数。【教学过程】

一、复习引入 1.用字母表示复习。

学校科技组有女同学X人,男同学是女同学的3倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。2.引入新课

二、探究新知

呈现问题情景:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍。

(1)这道题,告诉我们哪些已经条件?(2)你能提出哪些数学问题?

(3)能解决这个问题吗?请同学们独立解答。(4)汇报,说说你是怎么想的?(5)请同学们思考下面的问题:

①题中有几个未知数?

②怎样设未知数?为什么?

③问题中包含这样的等量关系吗?(6)汇报交流

(7)师小结:根据题中另一个条件找数量间的相等关系,然后列方程。

(8)解方程,并汇报。

(9)你是根据什么求出海洋面积的呢?(10)我们做的对吗?如何检验呢?

三、巩固拓展

练习十三相关习题(生独立列式解答并集体反馈。)

四、课堂总结

简述今天所学方程的解法。

第三篇:和倍问题教案

和倍问题

教学目标:

学会运用画图线的方法表示和倍关系中两个量,以更方便的找到解题的思路。

熟练掌握解答和倍问题的方法,理解和倍问题中各个量之间的关系。

教学重点:运用画图线的方法,准确分析各量之间的关系。教学难点:能够理解和倍应用题中各倍数和差倍数的量得关系。

一、引入课题。

二、教学过程:

学习例1:学校将360本图书分给二、三两个年级,已知三年级所 分得的本数是二年级的2倍,问二、三两年级各分得多少本 图书?

集体讨论:

二、三两个年级各占多少分,你能不能画出倍数图线? 分析与解答:设二年级的图书本数为1份,则三年级的图书为二年级的2倍,那么三年级和二年级图书本数的和相当于二年级图书本数的3倍.还可以理解为3份的数量是360本,求出1份的数量也就求出了二年级的图书本数,然后再求三年级的图书本数.用下图表示它们的关系:

解:二年级:360÷(2+1)=120(本)

三年级:120×2=240(本)或 360-120=240(本)

答:三年级有图书240本,二年级有图书120本。

这道应用题解答完了,怎样验算呢?

可把求出的三年级本数和二年级本数相加,看和是不是360本;再把三年级的本数除以二年级本数,看是不是等于2倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。验算:120+40=160(本)

120÷40=3(倍)。

小结:已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做“和倍问题”。解答和倍应用题,关键是找出两个数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。数量关系可以这样表示:

两数和 ÷倍数和= 小数(1倍数)小数 × 倍数 = 大数(几倍数)两数和-小数 = 大数

学习例2: 小红有圆珠笔芯20支,小青有圆珠笔芯25支,问小青 给小红多少支后,小红的圆珠笔芯是小青的2倍?

集体讨论:你能画出图线来表示题中小红和小青的倍数的关系吗?

分析与解答:解这题的关键是找出哪个量是变量,哪个量是不变量从已知条件中得出,不管小青给小红多少支笔芯,还是小红从小青得到多少支笔芯,笔的总和是不变的量.最后要求小红的笔芯是小青的笔芯的2倍,那么笔芯的总和相当于小红现有笔芯的3倍.依据解和倍问题的方法,先求出小红现有笔芯多少支,再与原有笔芯相比较,可以求出小青给小红多少支笔。(见上图)。解:①小青和小红一共拥有的笔芯总和:

20+25=45(支)

②小青给小红若干支笔芯后,小青和小红共有的倍数是: 2+1=3(倍)

③小红现有的笔芯数是:45÷3=15(支)④小青给小红笔芯数是:25-15=10(支)综合算式:

(20+25)÷(2+1)=15(支)25-15=10(支)

答:小青给小红10支笔芯后,小青的笔芯是小红的2倍。小结:要想顺利地解决和倍应用题,最好的办法就是:

(1)根据题目所给的已知条件和问题画出线段图;(2)进行认真仔细的分析; 这样数量关系就可以一目了然了。

学习例3: 甲、乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

分析与解答:把乙仓库存粮看作一份,甲仓库是乙仓库的2倍。由于甲库运出30吨,给乙库运进10吨,所以总量变了,首先要求出总量。(见下图)。

解:甲库与乙库存粮数:170-30+10=150(吨)

乙库存粮数150÷(2+1)=50(吨)50-10=40(吨)

甲库存粮数50×2+30=130(吨)答:甲库存粮数有130吨,乙库存粮数有40吨。

学习例4: 果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?

分析与解答:下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树

少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。

解:①梨树的棵数:

(552+20-12)÷(1+1+2)=560÷4=140(棵)

②桃树的棵数:140×2+12=292(棵)③苹果树的棵数: 140-20=120(棵)

答:桃树、梨树、苹果树分别是292棵、140棵和120棵。

三、巩固练习:

1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?

2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲

水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?

四、全课总结

今天这节课同学们有什么收获?在解决和倍应用题时关键是要做什么?(先要画出线段图,分析数量关系)

第四篇:和倍问题教案

和倍问题教案

教学目标:

学会运用画图线的方法表示和倍关系中两个量,以更方便的找到解题的思路。熟练掌握解答和倍问题的方法,理解和倍问题中各个量之间的关系。教学重点:运用画图线的方法,准确分析各量之间的关系。

教学难点:能够理解和倍应用题中各倍数和差倍数的量得关系。

教学过程: 学习例1:

甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?

集体讨论:甲班和已班各占多少分,你能不能画出倍数图线?

分析与解答:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:

解:乙班:160÷(3+1)=40(本)

甲班:40×3=120(本)

或 160-40=120(本)

答:甲班有图书120本,乙班有图书40本。

这道应用题解答完了,怎样验算呢?

可把求出的甲班本数和乙班本数相加,看和是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果与条件相符,表明这题作对了.注意验算决不是把原式再算一遍。

验算:120+40=160(本)

120÷40=3(倍)。

学习例2:

甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?

集体讨论:你能画出图线来表示题中甲班和已班的倍数的关系吗?

分析与解答:解这题的关键是找出哪个量是变量,哪个量是不变量从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总和是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总和相当于乙班现有图书的3倍.依据解和倍问题的方法,先求出乙班现有图书多少本,再与原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。

解:①甲、乙两班共有图书的本数是:

30+120=150(本)

②甲班给乙班若干本图书后,甲、乙两班共有的倍数是: 2+1=3(倍)

③乙班现有的图书本数是:150÷3=50(本)④甲班给乙班图书本数是:50-30=20(本)综合算式:

(30+120)÷(2+1)=50(本)50-30=20(本)

答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。验算:(120-20)÷(30+20)=2(倍)(120-20)+(30+20)=150(本)。

学习例3:

光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?

分析与解答:把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。

解:①女生人数:(760+40)÷(3+1)=200(人)

②男生人数:200×3-40=560(人)

或 760-200=560(人)

答:男生有560人,女生有200人。

验算:560+200=760(人)

(560+40)÷200=3(倍)。

练习:

1.小明和小强共有图书120本,小强的图书本数是小明的2 倍,他们两人各有图书多少本?

2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树 的3倍多20棵,两种树各种了多少棵?

3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方 形的面积。

4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲 水池里的水以每分种23立方米的速度流入乙水池,那么多 少分种后,乙水池中的水是甲水池的4倍?

(可以观看视频《四年级卡通奥数快乐学和倍问题》)v.youku.com

第五篇:和倍问题(一)·教案

和倍问题 第 一 讲

一、兴趣导入(Topic-in): 趣味分享

麒麟飞到北极变什么啊?答案:冰激凌 世界上什么鸡跑的快?答案:肯德鸡块 一片大草地(植物)答案:梅花(没花)又一片大草地(植物)答案:野梅花 来了一群羊(水果)答案:草莓 来了一群狼(水果)答案:杨梅 来了一群狮子(体坛名将)答案:郎平什么动物最没有方向感?答案:麋鹿(迷路)

二、学前测试(Testing): 问答题(口答)

1、有三块布料一共190米,第二块比第一块长20米,第三块比第二块长30米.每块布料各长多少米?

【解析】先画线段图,从线段图可以看出,以第一块为标准,第二块减少20米,第三块减少203050

(米),总和减少205070(米),即19070120(米).120米相当于第一块布料长的3倍,求出第一块布料的长度,第二块、第三块就可以求出.

(202030)120(米)⑴ 第一块布料长度的3倍是:190⑵ 第一块布料的长度是: 120340(米)⑶ 第二块布料的长度是: 402060(米)⑷ 第三块布料的长度是: 603090(米)

三、知识讲解(Teaching): 基础知识

和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.

解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。

和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:

和÷(倍数+1)=小数

小数×倍数=大数 或 和一小数=大数

如果要求两个数的差,要先求1份数:

l份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。

【例 1】 根据线段图列式:

———————————————————————————————————————————————————

【解析】 列式:28(31)7(米)

【例 2】 有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同(条件A);如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍(条件B).第一盘有苹果多少个? 【解析】 本题的数量关系更为隐蔽.首先须理解条件表述语中隐含的数量关系.

条件A的数量关系为:第一盘中的苹果数比第二盘多2+2=4(个).从条件B可知,如果从第二个盘中拿2个放到第一盘里,那么第一盘就比第二盘多4+(2+2)=8(个);此时,第一盘的苹果数是第二盘的2倍.

(1)原来第一盘比第二盘多:2+2=4(个)或2×2=4(个)(2)从第二盘拿2个到第一盘里,第一盘就比第二盘多: 4+(2+2)=8(个)或4+2×2=8(个)(3)第二盘拿走2个后剩下的苹果:8÷(2-1)= 8(个)(4)第一盘原有苹果:8×2-2=14(个)答:第一盘有苹果14个.

【例 3】 师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?

【解析】 引导学生画图时,一定要注意“多5个”的画图方法,并找和与份数之间的关系.

【详解】 从线段图上可以看出,把徒弟加工的个数看作1份数,师傅加工的个数就比3份数还多5个,如果师傅少加工5个,两人加工的总数就少5个,总数变为(1055)个,这样这道题就转化为例5类型的题目,就可以求出师傅和徒弟各加工多少个了.列式:如果师傅少做5个,师、徒共做: 1055100(个),徒弟做了:100(31)25(个),师傅做了:253580(个).

【例 4】 实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?

【解析】 已知四年级同学制作的航模件数是三年级的2倍,可以想到三年级同学制作的航模件数是1倍数.两个年级共制作了318件,这318件就相当于123倍,这样就可以求得

再根据四年级同学和三年级1倍数——三年级同学的制作件数是:3183106(件).同学制作航模件数的倍数关系,求出四年级同学制作航模的件数是:1062212(件)或318106212(件)。

【例 5】 果园里有梨树和苹果树共54棵,苹果树的棵数是梨树的5倍,苹果树比梨树多多少———————————————————————————————————————————————————

棵?

【解析】 把梨树的棵数看作l份数,苹果树的棵数就是5份数,54棵就相当于(5+1)份数,分别求出梨树和苹果树的棵数,再把苹果树的棵数减去梨树的棵数,就是苹果树比梨树多的棵数.这道题还可以这样想,先求出1份数,再求苹果树比梨树多几份,就可直接求出苹果树比梨树多多少棵了.(法1)梨树:54(51)9(棵),苹果树:9545(棵),苹果树比梨树多:

45936(棵)

(法2)梨树:54(51)9(棵),苹果树比梨树多:9(51)36(棵)

四、强化练习(Training):

1、小敏有14元,小花有10元,小花给小敏几元,小敏的钱数就是小花的2倍?

【解析】 小花现在的钱数:(1410)(12)8(元),小花给小敏:1082(元)

2、一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米? 【解析】 先求出长方形长和宽的和:36÷2=18(厘米)把长方形的宽看作1份,长就是2份,长和宽的和对应的就是3份,所以长方形的宽是:18÷(2+1)=6(厘米)长是:6×2=12(厘米)这个长方形的面积是:12×6=72(平方厘米)

五、训练辅导(Tutor):

1、两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人? 【解析】 把乙组学生人数看作1份,画出线段图如下:

甲组学生人数是乙组学生人数的3倍,则甲组学生人数的3倍就是乙组人数的(3×3=)9倍。

所以,乙组人数为:40÷(9-1)=5(人); 参加义务劳动的学生共有:5×(1+3)=20(人)。

———————————————————————————————————————————————————

2、一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?

妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作

=8(岁),妈妈的年龄是:为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72(144)8432(岁),爸爸和妈妈同岁为32岁.

六、反思总结(Thinking):

———————————————————————————————————————————————————

课堂训练

(总分100分)

1、小华和爷爷今年共72岁,爷爷的岁数是小华的7倍.爷爷比小华大多少岁?

【解析】 小华:72(17)9(岁),爷爷:9763(岁),63954(岁)或9(71)54(岁).2、5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍。每箱苹果和每箱葡萄各重多少千克? 【解析】 5箱苹果和5箱葡萄共重75千克,平均分成5份,1箱苹果与1箱葡萄重量和为:75÷5=15(千克)。

把1箱葡萄的重量看作一份,重量为:15÷(2+1)=5(千克); 每箱苹果重量为:5×2=10(千克)。

3、实验小学共有学生956人,男生比女生2倍少4人.问:实验小学男学生和女学生各有多少人?

【解析】 女生:(9564)3320(人),男生:956320636(人)或32024636(人)

4、某镇上有东西两个公交车站,东站有客车84辆,西站有客车56辆,每天从东站到西站有7辆车,从西站到东站有11辆车,几天后,东站车辆是西站的4倍? 【解析】 “每天从东站到西站有7辆车,从西站到东站有11辆车”,则每天东站增加(11-7=)4辆车,西站减少4辆车,但两站车辆总数不变为:84+56=140(辆)。要使东站车辆是西站车辆的4倍,西站只能有车辆:140÷(4+1)=28(辆)。用西站需要减少的总车辆数除以每天减少的车辆数,可以得出所求天数:(56-28)÷4=7(天)。所以,7天后,东站车辆是西站的4倍。

5、甲、乙两位学生原计划每天自学时间相同.若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相当于甲自学1天的时间.问:甲、乙原定每天自学的时间是多少? 【详解】 改变后,甲每天比乙多自学1小时,即60分钟.它是乙现在五天自学的时间,即乙现在每天自学:60(61)12(分),原来每天自学的时间是:123042(分).

———————————————————————————————————————————————————

家庭作业

(总分100分)

1、小明和奶奶今年共81岁,爷爷的岁数是小华的8倍.爷爷比小华大多少岁?

【解析】 小华:72(17)9(岁),爷爷:9763(岁),63954(岁)或9(71)54(岁).2、6箱苹果和6箱葡萄共重120千克,每箱苹果是每箱葡萄重量的3倍。每箱苹果和每箱葡萄各重多少千克? 【解析】 6箱苹果和6箱葡萄共重120千克,平均分成6份,1箱苹果与1箱葡萄重量和为:120÷6=20(千克)。

把1箱葡萄的重量看作一份,重量为:20÷(3+1)=5(千克); 每箱苹果重量为:5×2=10(千克)。

3、商店运来橘子、苹果、香蕉共53千克,橘子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,橘子重多少千克? 【解析】 我们可以把苹果的重量看作1份,如下图:

如果橘子重量增加3千克,正好是苹果重量的3倍,香蕉的重量减少2千克,正好是苹果重量的2倍,这时三种水果的总重量变为:53+3-2=54(千克),正好是苹果重量的(1+3+2)倍,苹果有(53+3-2)÷(1+3+2)=54÷6=9(千克),橘子有9×3-3=24(千克).4、光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人? 【解析】 把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总和760人再加上40人,就等于女生人数的4倍(见下图)。女生人数:(760+40)÷(3+1)=200(人)男生人数:200×3-40=560(人)或 760-200=560(人)验算:560+200=760(人)(560+40)÷200=3(倍)。答:男生有560人,女生有200人。

5、红、黄、蓝三个纸盒里共有彩票56张.其中红色纸盒里的彩票是黄色纸盒的2倍,蓝色纸盒里的彩票是红色纸盒的2倍,红、黄、蓝三个纸盒里各有多少张彩票? 【解析】 以黄色纸盒的彩票数为1倍数,红纸盒是这样的2倍,蓝纸盒是红纸盒的2倍,也就是黄纸盒的4倍,一共就是(1+2+4)倍,这样就能建立起彩票总数与总倍数之间的对应关系,从而求出黄纸盒里有几张彩票.56÷(1+2+4)=8(张)„„黄纸盒里的彩票数; 8×2=16(张)„„红纸盒里的彩票数 ; 16×2=32(张)„„蓝纸盒里的彩票数。

———————————————————————————————————————————————————

下载和倍问题教案word格式文档
下载和倍问题教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    差倍问题教案

    Abc暑期奥数班课程安排 第三讲 差倍问题 教学目标: 1 进一步掌握运用画图线的方法表示差倍关系中的两个量。 2 比较和倍问题的阶梯方法的基础上,熟练掌握解答差倍问题的方法,理......

    差倍问题教案

    第八讲 差倍问题教案 教学目标: 1 进一步掌握运用画图线的方法表示差倍关系中的两个量。 2 比较和倍问题的阶梯方法的基础上,熟练掌握解答差倍问题的方法,理解和倍问题中各个量......

    家教教案 和倍问题

    复习(20min) 1、巧算,给下面的式子加上括号,使其便于计算 6.7-1.2-2.3-3.26.7-3.3+1.3-2.3-2.49÷1.5÷23×1.2÷2÷0.9×1.5 2、给下面的式子去括号,然后计算 (3-1.2)-(1+1.3)+(1-1.5......

    和倍问题

    和倍问题 1、 图书馆买回来60本文艺书和科普书,其中文艺书是科普书的3倍,文艺书有多少本?2、 一个果园种有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵数是龙眼的3倍,芒果的棵......

    差倍问题(一)·教案专题

    差倍问题 第 一 讲 一、兴趣导入(Topic-in): 趣味分享 麒麟飞到北极变什么啊?答案:冰激凌 世界上什么鸡跑的快?答案:肯德鸡块 一片大草地(植物)答案:梅花(没花) 又一片大草地(植物)答......

    教案—和倍差倍问题[推荐阅读]

    和倍、差倍问题 【教学内容】 教材第41~42页例6及练习九第1~5题。 【教学目标】 1.使学生理解与掌握分数和倍、差倍问题的解题思路与方法。 2.提高学生分析数量关系及列方程......

    差倍问题,习题课教案

    教学内容:差倍问题 教学目标:1、帮助学生掌握解决差倍问题的技巧 2、体会数学问题解决的策略的灵活性,体会解题技巧对提高解题速度的重要性 3、培养学生的观察力和抽象概括能力......

    差倍问题教案(合集5篇)

    差倍问题 知识要点 解答差倍问题与解答和倍问题相类似,要先找出差所对应的倍数,先求1倍数,再求出几倍数。此外,还要充分利用线段图帮助分析数量关系。 用关系式可以这样表示: 两......