第一篇:《随机事件的概率》教学设计说明
《随机事件的概率》教学设计说明
教材:北师大版高中《数学》必修3第三章第一节第一课时
授课教师: **市第**中学 ***
一、教学内容的本质、地位与作用
《随机事件的概率》是北师大版数学《必修3》第三章第一节的内容,是学生学习《概率》的入门课,也是学习后续知识的基础,现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科.新教材在教学内容的编排上,采用了模块化、螺旋上升的方式.学生在初中阶段已经接触过随机事件、不可能事件、必然事件的概念,高中数学必修三第一章刚刚学习了统计内容,了解了频数、频率等概念,因此本节课是对已学内容的深化和延伸;同时,本节课对于后面学习的古典概型、几何概型以及选修2-3离散型随机变量的分布列等内容又是一个铺垫,具有承上启下的地位.
本节课就知识的应用价值上来看:概率反映了随机事件发生的可能性大小,为人们做出正确决策提供依据.就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证统一关系,是培养学生应用意识和思维能力的良好载体.
二、教学目标分析
(1)通过生活实例让学生进一步认识日常生活中的随机现象,理解必然事件、随机事件、不可能事件的概念,了解随机事件发生的不确定性及其频率的稳定性,从而更好的理解概率的统计定义.
(2)让学生经历抛掷硬币试验的过程,由此激发学生的学习兴趣和求知欲,通过抛硬币试验,学生获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;同时让学生明确概率与频率的区别和联系,掌握利用频率估计概率的思想方法.
(3)让学生亲历试验过程,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力;强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受必然性与偶然性的辩证统一.
基于以上教学内容分析和教学目标分析,确定本节课的教学重点是:通过抛掷硬币了解概率的统计定义、明确其与频率的区别和联系.三、教学问题诊断
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,并且学习的信心不足,对数学存在或多或少的恐惧感.但学生在日常生活中,对于概率已经有一些模糊的认识,同时学生思维比较灵活,有较强的动手操作能力和较好的实验基础,根据学生的心理特征和认知规律,我采用以教师为主导,学生为主体的探究式教学方法,力求引导学生从以下几个角度来认识随机事件的概率.
1.频率是随机的,试验前并不能确定,频率反映了随机事件发生的频繁程度,通过分组试验,每一组所做的80次试验中得到的频率不尽相同,而概率是一个客观存在的常数,与试验无关.
2.概率反映的是大量重复试验下频率的稳定性,学生常会错误理解抛两次硬币一定是一正一反.
3.出现个别频率偏离概率较大的情形是很正常的,这是随机现象的特性.在概率的教学中,对一些学生容易产生误解的地方,可以采用试验的办法帮助学生理解,比如随机事件的概率能否为0和1的问题,都可以通过试验来解决.
通过对随机事件概率的学习,学生充分体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力也得到了一定的锻炼.
基于以上分析,确定本节课的教学难点是:掌握利用频率估计概率的方法,体会随机事件发生的随机性和规律性.
四、教法特点及预期效果分析
(1)教法特点
抛硬币试验是本节课的精华,唯有亲历随机过程,体会其随机性与规律性,才能真正理解概率概念,才能真正让学生体会频率稳定于概率的过程.课堂教学中不好处理的就是数据的统计分析,以及如何呈现出大量重复试验下频率的稳定性,根据本节课教材内容的特点和学生的认知情况,为了更直观、形象地突出重点,突破难点,利用flash动画,快速、准确的计算各组的频率,绘制出频率折线图,并能方便快速的画出累积的频率折线图.另外通过动态的演示,观察大量重复试验下的频率呈现出的规律性,让教学更直观、更生动.(2)预期效果
希望通过这节课的教学,能使学生感受到随机现象在生活中是广泛存在的,并时刻影响着我们的生活,在大量纷繁杂乱的偶然现象背后,隐藏着必然的规律,而概率就是这种偶然中的一种必然;能使学生在紧张而活泼的教学环节中,亲历随机性和规律性的统一过程;能使学生初步理解随机性,并感受利用统计方法处理随机性中的规律性——随机性是表象,规律性才是我们研究的主题.
第二篇:随机事件教学设计说明
《25.1.1随机事件》教案说明
江西省高安中学 陈国庆
一、教材分析
1、教材地位与作用
《义务教育课程标准》将“统计与概率”作为义务教育阶段数学课程学习的四个领域之一,本课《随机事件》是义务教育课程标准实验教科书人教版九年级上册第二十五章第一节第一课时,主要研究事件的分类。现实生活中存在着大量的随机事件,但前面学生所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件,它既是概率论的基础,又是生活中存在的大量现象的一个反映。因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础。本课掌握得如何,直接关系“概率”整个知识体系的“坚实”性,所以本课在教材中占有非常重要的地位。
2、教学目标
(1)知识技能
理解必然事件、不可能事件、随机事件的概念; 区分必然事件、不可能事件和随机事件;
通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。.(2)数学思考
经历体验、操作、观察、归纳、总结的过程,发展学生从复杂的表象中,提炼出本质特征并加以抽象概括的能力;
从事件的实际情形出发,会分析事件发生的可能性。(3)解决问题
能根据随机事件的特点辨别哪些事件是随机事件,并在解决实际问题的过程中体会与他人的合作。(4)情感态度
学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,感受数学,喜欢数学;
让学生在与他人合作中增强互助、协作的精神;
培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
3、教学重难点
重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。随机事件的特点 难点:必然事件、不可能事件、随机事件的区别, 对生活中的随机事件作出准确判断
4、教学辅助手段
黄、白球若干,不透明袋子两个,透明杯子若干,骰子若干,多媒体课件等。
二、学情分析
由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,特别是对小概率事件的理解较为困难,教师只有通过大量、生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念。
三、教法分析
为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操作、观察、归纳、确讨论总结概括出定义,为了检验学生是否理解它的特点,我通过一定的例题加以巩固,特别让学生对“一休受罚”的问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的学习主体性。充分挖掘出学生的学习潜力,激发学生的学习兴趣,让学生充分感受数学的价值。
四、学法指导
建构主义认为:“数学学习并非是一个被动接受的过程,而应是主动建构的过程”。教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流。逐步加深对随机事件及其特点的理解和把握。充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者。
五、设计理念
本节是“概率初步”一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受必然事件,不可能事件,随机事件的意义。然后,通过演示试验,小组讨论,逐步形成对随机事件的特点及定义的理性认识,这样从易到难,从简单到复杂,逐渐深入地引入随机事件的概念的安排,显得自然而又流畅。
本节课,没有纠缠在概念的具体文字上,而是通过经典的随机事件的例子,使学生准确的理解和把握随机事件的有关概念。
新的教育观指出——动手实践、自主探索和合作交流是学生学习数学的重要方式。针对教学内容的特点,本节课遵循了教科书的结构模式:创设情景→数学活动→→从具体到抽象,从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏引出课题,以熟悉的抽签和掷骰子游戏引导学生分清必然事件,不可能事件,随机事件,增强了学生的学习兴趣。
本节课教学设计的特点是贴近生活,让学生在体验中感悟学习;创设情境,让学生在兴趣中自主学习;开放课堂,让学生在活动中探索学习。
第三篇:随机事件及其概率小结
随机事件及其概率小结
一、知识点网络图
随机事件及其概率样本空间、样本点、事件的定义事件的关系及运算事件的关系及运算(、=、、、-、互斥、对立)算律(重点:对偶率的灵合运用)统计定义、古典定义、几何定义、主观概率概率定义及性质性质:定义中三条基本性质5条性质(BA)P(AB)P(A)P(B)减法公式(一般情况)P(AB)P(A)P(AB)P(AB)P(A)P(B)(A,B互斥)加法公式P(AB)P(A)P(B)P(AB)(一般情况)(A,B独立)P(AB)P(A)P(B)乘法公式P(AB)P(A)P(B|A)(一般情况)L(A)概率的计算古典概率P(A)m/n,几何概率P(A)L()P(AB)条件概率P(B|A)P(A)全概公式P(A)P(Bi)P(A|Bi)i=1P(B)P(A|Bi)逆概公式P(Bi||A)ik1,2,3,...P(Bi)P(A|Bi)i=1两个事件独立P(AB)P(A)P(B)多个事件独立独立试验kknk贝努里概型P(k)Cp(1p)k0,1,2,......n.nn
二、解题基本思路和技巧
1、掌握事件关系和运算的概率语言,斟酌题目中的“字眼”,准确的用字母表示问题中事件关系与运算.如:(1)“至少有一个”、“或”,就是事件的和;(2)“同时”、“且”、“都”表明是事件的积;(3)“有返回”、“彼此无关”、“重复”等都说明事件独立;(4)重复实验中带个“恰”,往往是贝努里概型;(5)在问题中隐含着“包含关系”、“先后关系”、“主次关系”的就要考虑条件概率。„„
2、解决复杂事件的方法有:利用事件的运算性质化简成简单事件之和(或积);
考虑它的对立事件或者等价事件.勤动手,画个韦恩图给出直观想象,往往会得到事半功倍的效果.3、在古典概型、几何概型计算中,首先判断样本点是否具有等概性,计算古典概型中的分子与分母时,思路必须一致
4、减法公式、加法公式、乘法公式都有两个,一般和特殊,用时注意条件。
5、条件概率有两种计算方法;利用古典概型直接计算;利用定义中公式计算.6、全概公式与逆概公式是综合利用加法公式、条件概率、乘法公式解决复合事件概率问题的,关键是分析找出“结果”事件与影响结果的“原因”事件,且诸“原因”事件构成完备事件组。
求“结果”发生的概率,用全概公式;
“结果”已发生,求“原因”事件概率的,用逆概公式。
第四篇:随机事件及其概率教案
课题随机及其概率分布教案 备课时间:01—23 上课时间: 主备: 审核: 班级 姓名: [学习目标]:(1)理解随机变量的概念及0-1分布,初步理解随机变量的分布量(2)高考B级要求。[学习重点]:正确理解随机变量分布列的意义,会求随机变量的概率分布.[学习难点]:理解随机变量的概念及分布列的意义 [学法指导]:可以结合前面学过的随机事件的概念及随机试验,理解随机变量及其实际意义.[课前预习导学]: 问题(1):什么叫随机事件? 问题(2):如何把随机试验的结果数量化? 问题(3):什么叫随机变量? 概率分布是否就是概率分布表? 问题(5):两点分布的特点是什么? [课堂学习研讨]: 例
1、从装有6只白球和4只红球的口袋中任取一只球,用X表示”取到的白球个数”,即
X= 0,当取到红球时, 1,当取到白球时, 求随机变量X的概率分布.例
2、同时掷两颗质地均匀的骰子,观察朝上一面出现的点数.求两颗骰子中出现的最大点数X的概率分布,并求X大于2小于5的概率P(2 《随机事件的概率》教学设计 白月霜 教学目标: 1、知识与技能 (1)了解随机事件发生的不确定性和频率的稳定性,进一步了解频率的意义及频率与概率的区别; (2)在正确理解随机事件发生的不确定性和频率的稳定性的基础上,能辨析生活中的随机现象,澄清生活中对概率的一些错误认识,并通过做大量重复试验,用频率对某些随机事件的概率进行估计。 2、过程与方法 通过对现实生活中一些问题的探究,运用“掷硬币”随机试验,体会随机事件发生的不确定性和频率的稳定性,理解概率的统计定义在实际生活中的作用,初步掌握利用数学知识思考和解决实际问题的方法。 3、情感、态度与价值观 通过本节的教学,引导学生用随机的观点认识世界,使学生了解偶然性与必然性的辩证统一,培养辩证唯物主义思想。 教学重点:通过实验活动丰富对频率与概率关系的认识,知道当试验次数较大时,频率 稳定于理论概率。 教学难点:运用频率估算概率,解决实际问题。教学方法: 本节课采用自主探究、合作探究法,辅之以其它教学法,在探索新知的过程中,通过抛硬币活动来组织学生进行有效的学习,调动学生的积极性,在实验的过程中实现对数据的收集、整理、观察、分析、讨论,最后通过合作交流等方式,归纳出当试验次数大很大时,事件发生的频率稳定一个常数附近。 教学手段:采用多媒体辅助教学,促进学生自主学习,丰富完善学生的认知过程,使有 限的时间成为无限的空间。事先教师准备导学案、电脑、硬币等。教学流程: 一、情境导入 教师首先让学生重温守株待兔的故事:宋人有耕田者。田中有株,兔走触株,折颈而死。因释其耒而守株,冀复得兔。 提出问题:农夫会像他预期的等到兔子吗? [设计意图]:这样从实际问题抽象出数学问题,充分体现了数学来源于生活,又服务于生活的数学应用意识,能激发学生的好奇心和求知欲,为顺利实施本节课的教学目标打下了良好的基础.接着教师提出:守株待兔的结局:兔不可复得,而身为宋国笑。得出结论:事件具有偶然性、随机性。 教师要求学生根据已掌握的知识,完成自主探究,从结果能够预知的角度看,能够发现事件的共同点吗? 学生总结,发现事件可以分为以下三类: 必然事件:在条件S下一定会发生的事件叫相对于条件S的必然事件。 不可能事件:在条件S下一定不会发生的事件叫相对于条件S的不可能事件。随机事件:在条件S下可能发生也可能不发生的事件叫相对于S随机事件。[设计意图]:通过回忆初中概率的定义,为探究新课作好铺垫。举例说明同一事件在不同条件下,会产生不同结果,分类也不相同。 [设计意图]:强调事件的结果是相应于一定条件而言的。因此,要弄清某一事件,必须明确何为事件发生的条件,何为在此条件下产生的结果。例1.指出下列事件是必然事件、不可能事件、还是随机事件?(1)同性电荷,相互排斥。 (2)在标准大气压下,且温度低于零度时,冰融化。 (3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签。(4)常温下,石头一天风化。(5)木柴燃烧,产生能量。(6)掷一枚硬币,出现正面。 二、合作探索(生生合作、师生合作) 1、做数学试验,观察频率是否体现出规律性 做如下试验:从一定高度按相同方式让一枚质地均匀的硬币自由下落,可能正面朝上,也可能反面朝上,观察正面朝上的频率。 试验要求:学生六人一组,两两配合,一人掷硬币,一人做好记录,每组试验10次,注意试验条件要求:从一定高度按相同方式下落。◆试验步骤: 答:实际上,从长期实践中,人们观察到,对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定的常数附近摆动,显示出一定的稳定性。(再利用计算机模拟掷硬币试验说明问题)讨论:0.5 的意义引出概率的概念。 揭示新知 归纳:一般地,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数P附近,那么事件A发生的概率P(A)=P 教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的一些随机事件,我们也可以用频率来估计概率。讨论:事件A的概率P(A)的范围,频率与概率有何区别和联系? 频率与概率的区别和联系(重点、难点) ⑴频率是概率的近似值,随着试验次数的增加,频率会稳定在概率附近。⑵频率本身是随机的,在试验前不能确定。 ⑶概率是一个确定的数,是客观存在的,与每次试验无关。讨论探究、例题演练——深化概率认识,巩固所学知识。例2.某射手在同一条件下进行射击,结果如下表所示。 (1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少? 设计意图:通过对生活中实例的辨析,进一步揭示概率的内涵──概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中反映出来.反过来,试验次数太少时,有时不能合理估计概率.误区警示:因频率与概率的概念混肴而致错 四、课堂总结 1.本节课学习了哪些知识? 2.频率与概率的区别和联系? 3.留给你印象最深的是什么? [设计意图]:新课程理念尊重学生的差异,鼓励学生的个性发展,所以,对于课堂小结我既设置了总结性内容,又设置了开放性的问题,期望通过这些问题使学生体验学习数学的快乐,增强学习数学的信心. 五、分层作业 1.课本113页练习1,2,3.2.选做题:导学案的拓展练习。 [设计意图]:在布置作业环节中,设置了必做题和选做题,这样可以使学生在完成基本学习任务的同时,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣. 板书设计第五篇:《随机事件的概率》教学设计