实际问题与二次函数(商品利润问题)教学设计

时间:2019-05-13 00:41:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《实际问题与二次函数(商品利润问题)教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《实际问题与二次函数(商品利润问题)教学设计》。

第一篇:实际问题与二次函数(商品利润问题)教学设计

22.3 实际问题与二次函数

第2课时 二次函数与商品利润

标 知识技能:

①会根据实际问题列二次函数,并能根据实际情况确定自变量的取值范围; ②使学生能够运用二次函数及其图象、性质解决实际问题。方法过程:

让学生通过阅读、合作讨论、动手画草图、分析、对比,能找出实际问题中的数量关系,揭示两个变量的关系,培养学生结合图形与其性质解决问题的能力 解决问题:

通过两个变量之间的关系,进一步体会二次函数的应用,体验数形结合思想。情感态度:

通过具体实例,让学生经历应用二次函数解决实际问题得全过程,体验数学来源于生活,服务于生活的辩证观点。

重点:培养学生解决实际问题,综合解决问题的能力,渗透数形结合的思想方法。难点:对实际问题中变量和变量之间的相互依赖关系的确定。教学过程: 基础扫描

1.二次函数y=2(x-3)2+5的对称轴是 直线x=3,顶点坐标是(3,5)。当x= 3 时,y的最小 值是 5。

2.二次函数y=-3(x+4)2-1的对称轴是 直线x=-4,顶点坐标是(-4,-1)。当x=-4 时,函数有最 大 值是-1。

3.二次函数y=2x2-8x+9的对称轴是 直线x=2,2 时,函数有最 小 值,顶点坐标是(2,1).当x= 是 1。

在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。

如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?

自主探究

问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨 价1元,每星期要少卖出10件。要想获得6090元的利润,该 商品应定价为多少元?

分析:没调价之前商场一周的利润为 6000 元; 设销售单价上调了x元,那么每件商品的利润(20+x)元,每周的销售量可表示为 可表示为(300-10x)件,一周的利润可表示为(20+x)(300-10x)元,要想获得6090元利润可 列方程(20+x)(300-10x)=6090。

合作交流 问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市 场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多 少元时,商场能获得最大利润?

问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件; 每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

解:设每件涨价为x元时获得的总利润为y元.y =(60-40+x)(300-10x)(0≤x≤30)=(20+x)(300-10x)=-10x2+100x+6000 =-10(x2-10x)+6000 =-10[(x-5)2-25 ]+6000 =-10(x-5)2+6250 当x=5时,y的最大值是6250.定价:60+5=65(元)

解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20x)怎样确定x 的取值范围 =(20-x)(300+20x)=-20x2+100x+6000 =-20(x2-5x-300)=-20(x-2.5)2+6125(0≤x≤20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.由(2)(3)的讨论及现在的销 售情况,你知道应该如何定 价能使利润最大了吗? 答:综合以上两种情况,定价为65元时可获得 最大利润为6250元.解决这类题目的一般步骤

(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.当堂检测

1.某商店购进一批单价为20元的日用品,如果以单 价30元销售,那么半个月内可以售出400件.根据销 售经验,提高单价会导致销售量的减少,即销售单价 每提高1元,销售量相应减少20件.售价提高多少元 时,才能在半个月内获得最大利润? 解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x)=-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元

2.某商店经营一种小商品,进价为2.5元,据市场 调查,销售单价是13.5元时平均每天销售量是500 件,而销售单价每降低1元,平均每天就可以多售 出100件.(1)假设每件商品降低x元,商店每天销售这种 小商品的利润是y元,请你写出y与x之间的函数关 系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销 售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)

解析:(1)降低x元后,所销售的件数是(500+100x), y=-100x2+600x+5500(0<x≤11)

(2)y=-100x2+600x+5500(0<x≤11)配方得y=-100(x-3)2+6400 当x=3时,y的最大值是6400元.即降价为3元时,利润最大.所以销售单价为10.5元时,最大利润为6400元.答:销售单价为10.5元时,最大利润为6400元.布置作业:

第二篇:二次函数利润问题

1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,又要使百姓得到实惠,每台冰箱应降价多少元?

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

解:(1)根据题意,得y=(2400-2000-x)(8+4×),即;

(2)由题意,得

整理,得x2-300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200,所以,每台冰箱应降价200元;

(3)对于 当时,y最大值=(2400-2000-150)(8+4×)=250×20=5000,所以,每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元。

2、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

解:(1)y=(210-10x)(50+x-40)=-10x2+110x+2100(0≤x≤15且x为整数);

(2)配方法,有y=-10(x-5.5)2+2402.5∵a=-10<0

∴当x=5.5时,y有最大值2402.5

∵0≤x≤15,且x为整数

当x=5时,50+x=55,y=2400

当x=6时,50+x=56,y=2400

∴当售价定为每件55或56元时,每个月的利润最大,最大的月利润是2400元;

(3)当y=2200时,-l0x2+110x+2100=2200

解得x1=1,x2=10。

∴当x=1时,50+x=5

1当x=10时,50+x=60

∴当售价定为每件51或60元时,每个月的利润恰为2200元

当51元≤售价≤60元且为整数时,每个月的利润不低于2200元(或当售价为51,52,53,54,55,56,57,58,59或60元时,每个月的利润不低于2200元)。

3、某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售

经验,售价每提高1元,销售量相应减少10个;

(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是______________________个;(用含x的代数式表示)(4分)

(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?(8分)

解:(1).(10+x)(500-10x)

(2).500-10x

(3).由(10+x)(500-10x)=-10x2+400x+5000=-10(x-20)2+9000得最大利润9000

此时售价604、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上

涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

(1)y=(210-10x)(50+x-40)=-10x^2+110x+2100=-10(x-5.5)^2+2402.5(0≤x≤15)

(2)∵X为正整数∴最大利润代入X=5(或者6),y=2400

(3)根据题意,得(210-10x)(10+x)=2200.

整理,得x2-11x+10=0,解这个方程,得x1=1,x2=10

∴当x=1时,50+x=51,当x=10时,50+x=60.

答:当每件商品的售价定为51元或60元时,每个月的利润恰为2200元

第三篇:《实际问题与二次函数》教学设计

《实际问题与二次函数》教学设计

教学目标:

21.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。重点难点:

重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。

难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。教学过程:

一、创设问题情境

如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢? 分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,2开口向下,所以可设它的函数关系式为:y=ax(a<0)(1)因为y轴垂直平分AB,并交AB于点C,所以CB=错误!未指定书签。=2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

因为点B在抛物线上,将它的坐标代人(1),得-0.8=a×22所以a=-0.2 因此,所求函数关系式是y=-0.2x2。

请同学们根据这个函数关系式,画出模板的轮廓线。

二、引申拓展

问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系? 让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。

问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗? 分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

2解:设所求的二次函数关系式为y=ax+bx+c。因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到错误!未指定书签。解这个方程组,得错误!未指定书签。所以,所求的二次函数的关系式为y=-错误!未指定书签。x2+错误!未指定书签。x。

问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同? 问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)请同学们阅渎P18例7。

三、课堂练习:P18练习1.(1)、(3)2。

四、综合运用

例1.如图所示,求二次函数的关系式。

分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到错误!未指定书签。解这个方程组,得错误!未指定书签。

所以,所求二次函数的关系式是y=-错误!未指定书签。x2+错误!未指定书签。x+4 练习:一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

五、小结:二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。

六、作业

1.P19习题26.2 4.(1)、(3)、5。2.选用课时作业优化设计,每一课时作业优化设计

1.二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。2.若二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,求这个二次函数的解析式。

3.如果抛物线y=ax2+Bx+c经过点(-1,12),(0,5)和(2,-3),;求a+b+c的值。4.已知二次函数y=ax2+bx+c的图象如图所示,求这个二次函数的关系式;

5.二次函数y=ax+bx+c与x轴的两交点的横坐标是-错误!未指定书签。,错误!未指定书签。,与x轴交点的纵坐标是-5,求这个二次函数的关系式。

第四篇:实际问题与二次函数教学设计

人教版《实际问题与二次函数(第2课时)》教学设计

【教材分析】

本节的问题涉及求函数的最大值,要先求出函数的解析式,再求出使用函数值最大的自变量值,在此问题的基础上引出直接根据函数解析式求二次函数的最大值或最小值的结论,即当a0时,函

4acb2bxy最小值2a,4a;当a0时,函数有最数有最小值,并且当

4acb2bxy最大值2a4a.得出此结论后,就可以直接大值,并且当,运用此结论求二次函数的最大值或最小值。

接下来,学生通过探究并解决三个问题进一步体会用二次函数解决实际问题。

在探究1中,某商品价格调整,销售会随之变化。调整价格包括涨价与降价两种情况,一般来讲,商品价格上涨,销量会随之下降;商品价格下降,销售会随之增加,这两种情况都会导致利润的变化。教科书首先分析涨价的情况,在本题中,设涨价x元,则可以确定销售量随x变化的函数式。由此得出销售额、单件利润随x变化的函数式,进而得出利润随x变化的函数式,由这个函数求出最大利润则由学生自己完成。【学情分析】

学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。【教学目标】 智能与能力:

1、能够从实际问题中抽象出二次函数,并运用二次函数的知识解决实际问题。

2、与已有知识综合运用来解决实际问题,加深对二次函数的认识,体会数学与实际的联系。

3、通过数学建模思想、转化思想、函数思想、数形结合思想的综合运用,提高学生的数学能力。过程与方法:

1、经历探索具体问题中数量关系和变化规律的过程,并进一步体验如何从实际问题中抽象出数学模型。

2、注意二次函数和一元二次方程、不等式的联系和相互转化,及其在实际问题中的综合运用,重视对知识综合应用能力的培养。

3、经历观察、推理、交流等过程,获得研究问题与合作交流的方法与经验。

4、经历解决实际问题、再回到实际问题中去的过程,能够对问题的变化趋势进行预测。情感、态度与价值观:

1、结合实际问题研究二次函数,让学生感受其实际意义,激发学生的学习兴趣,让学生在实际应用中逐步深化对二次函数的理解和认识。

2、设置丰富的实践机会,引导学生自主学习,对解决问题的基本策略进行反思,培养学生形成良好的教学思维习惯。

3、通过同学之间的合作与交流,让学生积累和总结经验。【教学重点及难点】 重点

1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。

2、回顾并掌握二次函数最值的求法,在应用基本结论的同时掌握配方法。

3、利用二次函数的性质解决实际问题。难点

从实际情景中抽象出函数模型。【教学设想】

在实际生活有大量的可以表示为二次函数或利用二次函数知识可以解决的实际问题,教师应该充分考虑到教学内容本身的特点和学生的认知规律,从下列三个方面入手;

1、实际问题和通常习惯的数学问题不同,它的条件往往不是显而易见的,教师需要引导学生分析哪些量是已知的,哪些量是未知的,可以进行怎样的假设以及如何建立它们之间的关系等,并从实际问题中抽象出数学问题。

2、二次函数的图象和性质,为本节的学习起着铺垫作用,将已有知识综合运用来解决实际问题,能够让学生更好地理解和认识二次函数。

3、鼓励学生把所得到的结果推广到一般化,或将问题进一步延伸与拓展,学会预测问题的变化趋势。【教学设备】 多媒体课件 【教学过程】

一、复习旧知 二次函数的性质:

1.二次函数y=-3(x+4)2-1的对称轴是,顶点 坐标是。当x= 时,函数有最 值,是。

2.二次函数y=2x2-8x+9的对称轴是,顶点

坐标是.当x= 时,函数有最 值,是。利润问题:

1.总价、单价、数量的关系 2.利润、售价、进价的关系 3.总利润、单件利润、数量的关系

二、自主探究

问题1:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?

变式:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

学生阅读题目后,教师提出问题,学生思考后,教师引导学生分析:本题中,商品价格上涨,销量会之下降;商品价格下降,销售会随之增加。这两种情况都会导致利润变化,因此本题需考虑两种情况,即需要分类讨论。师生共同完成。

问题2:某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元--70元之间.市场调查发现:若以每箱50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出售价x(元/箱)与每天所得利润Y(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少? 教师引导学生整理分析,点名板演,师生共同点评。

问题3:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大? 教师引导学生整理分析,点名板演,师生共同点评。三:归纳小结:解这类题目的一般步骤

求出函数解析式,配方变形,或利用公式求它的最大值或最小值。

第五篇:《实际问题与二次函数》教学设计

《实际问题与二次函数》教学设计

广厚乡中心学校 李晓秋

教学目标:

1.复习巩固用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

2.使学生掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。

重点难点:

根据不同条件选择不同的方法求二次函数的关系式是教学的重点,也是难点。

教学过程:

一、复习巩固

1.如何用待定系数法求已知三点坐标的二次函数关系式? 2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。(1)求二次函数的关系式,(2)画出二次函数的图象;(3)说出它的顶点坐标和对称轴。

答案:(1)y=x+x+1,(2)图略,(3)对称轴x=-,顶点坐标为(-,)。

3.二次函数y=ax+bx+c的对称轴,顶点坐标各是什么? [对称轴是直线x=-,顶点坐标是(-,)]

二、范例

2例1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。

分析:二次函数y=ax+bx+c通过配方可得y=a(x+h)+k的形式称为顶点式,(-h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是(8,9),因此,可以设函数关系式为:y=a(x-8)+9 由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a的值。

请同学们完成本例的解答。练习:P18练习1.(2)。

例2.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

解法1:设所求二次函数的解析式是y=ax+bx+c,因为二次函数的图象过点(0,-5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得

解这个方程组,得:所以所求的二次函数的关系式为y=-2x+8x-5。

解法二;设所求二次函数的关系式为y=a(x-2)+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到解这个方程组,得:

所以,所求二次函数的关系式为y=-2(x-2)+3,即y=-2x+8x-5。

例3。已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。

解法1:设所求的函数关系式为y=a(x+h)+k,依题意,得y=a(x-2)-4 因为抛物线与y轴的一个交点的纵坐标为4,所以抛物线过点(0,4),于是a(0-2)2-4=4,解得a=2。所以,所求二次函数的关系式为y=2(x-2)-4,即y=2x-8x+4。

解法2:设所求二次函数的关系式为y=ax+bx+c?依题意,得解这个方程组,得:所以,所求二次函数关系式为y=2x-8x+4。

三、课堂练习

1.已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式。

解法1:设所求二次函数关系式为y=ax+bx+c,因为图象过点(0,3),所以c=3,又由于二次函数当x=-3时,有最大值-1,可以得到:解这个方程组,得:

所以,所求二次函数的关系式为y=x+x+3。解法2:所求二次函数关系式为y=a(x+h)+k,依题意,得y=a(x+3)-1 因为二次函数图象过点(0,3),所以有3=a(0+3)-1解得a=

所以,所求二次函数的关系为y=44/9(x+3)-1,即y=x+x+3.

小结:让学生讨论、交流、归纳得到:已知二次函数的最大值或最小值,就是已知该函数顶点坐标,应用顶点式求

222

解方便,用一般式求解计算量较大。

2.已知二次函数y=x+px+q的图象的顶点坐标是(5,-2),求二次函数关系式。

简解:依题意,得解得:p=-10,q=23 所以,所求二次函数的关系式是y=x-10x+23。

四、小结

1,求二次函数的关系式,常见的有几种类型? [两种类型:(1)一般式:y=ax+bx+c(2)顶点式:y=a(x+h)+k,其顶点是(-h,k)] 2.如何确定二次函数的关系式? 让学生回顾、思考、交流,得出:关键是确定上述两个式子中的待定系数,通常需要三个已知条件。在具体解题时,应根据具体的已知条件,灵活选用合适的形式,运用待定系数法求解。

五、作业:

1.已知抛物线的顶点坐标为(-1,-3),与y轴交点为(0,-5),求二次函数的关系式。

2.函数y=x+px+q的最小值是4,且当x=2时,y=5,求p和q。

3.若抛物线y=-x+bx+c的最高点为(-1,-3),求b和c。

4.已知二次函数y=ax+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是______。如果y随x的增大而减少,那么自变量x的变化范围是______。

5.已知二次函数y=ax+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x=2,求这个二次函数的关系式。

6.如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水位上升3米就达到警戒线CD,这时水面宽4米,若2洪水到来时,水位以每小时线后几小时淹到拱桥顶?

米速度上升,求水过警戒

0.25

下载实际问题与二次函数(商品利润问题)教学设计word格式文档
下载实际问题与二次函数(商品利润问题)教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数利润应用教学设计

    二次函数与实际问题 利润的最大化问题——教学设计 教学目标: 1、探究实际问题与二次函数的关系 2、让学生掌握用二次函数最值的性质解决最大值问题的方法 3、让学生充分感受......

    实际问题与二次函数教学反思

    实际问题与二次函数教学反思本节课是有关函数应用题解法的再一次巩固,尤其是二次函数的实际应用,重点是如何利用二次函数建立数学模型,并利用二次函数的有关性质来解决实际问题......

    《实际问题与二次函数》教学反思

    《实际问题与二次函数》教学反思 刚刚上完了《实际问题与二次函数》,自我感到满意的地方是,通过探究“矩形面积”“销售利润”问题,激发学生的学习欲望,渗透转化及分类的数学思......

    二次函数与实际问题最大利润公开课导学案

    实际问题与二次函数导学案 湟源二中 史正岚 第2课时 如何获得最大利润 学习目标:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小......

    二次函数与实际问题(面积最值问题)教学设计解读

    [教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其 整体性......

    实际问题与二次函数 教学反思2

    《实际问题与二次函数——面积问题》的教学反 思今天很高兴来上一堂《实际问题与二次函数(第1课)》的异地教学评选课,对我来说是第一次,所以上课前一直都有点担心和紧张。到三中......

    实际问题与二次函数 教学反思1

    实际问题与二次函数教学反思二次是函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结......

    实际问题与二次函数教学反思(最终五篇)

    实际问题与二次函数教学反思二次是函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结......