第一篇:22.3.1实际问题与二次函数实际问题与二次函数教案
22.3 实际问题与二次函数(1)教学设计 教学目标
1.会求二次函数y=ax2+bx+c的最小(大)值.
2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 教学重点
求二次函数y=ax2+bx+c的最小(大)值. 教学难点
将实际问题转化成二次函数问题. 教学过程
一、导入新课
在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如抛球、围墙、拱桥跨度等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.从这节课开始,我们就共同解决这几个问题.
二、新课教学
问题1 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少? 教师引导学生找出问题中的两个变量:小球的高度h(单位:m)与小球的运动时间t(单位:s).
然后让学生计算当t=
1、t=
2、t=
3、t=
4、t=
5、t=6时,h的值是多少?
再让学生根据算出的数据,画出函数h=30t-5t2(0≤t≤6)的图象(可见教材第49页图).
根据函数图象,观察出小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
学生结合图象回答:这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.
教师引导学生求函数的顶点坐标,解决这个问题. 当t=3时,h有最大值=45.
答:小球运动的时间是3s时,小球最高.小球运动中的最大高度是45m.
问题2 如何求出二次函数 y=ax2+bx+c的最小(大)值? 学生根据问题1归纳总结:当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(大)值.
三、巩固练习
探究1 用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大? 教师引导学生参照问题1的解法,先找出两个变量,然后写出S关于l的函数解析式,最后求出使S最大的l值.
解:矩形场地的周长是60 m,一边长为l m,所以另一边长(-l)m.场地的面积S=l(30-l),即S=-l2+30l(0<l<30).
因此,当l=-=-=15时,S有最大值==225.也就是说,当l是15 m时,场地的面积S最大.
四、课堂小结
利用二次函数解决实际问题的过程是什么?
找出变量和自变量;然后列出二次函数的解析式;再根据自变量的实际意义,确定自变量的取值范围;最后在自变量的取值范围内,求出二次函数的最小(大)值.
五、布置作业
习题22.3 第1、4题.
22.3.1实际问题与二次函数说课稿
教材分析
本节课中关键的问题就是如何使学生 把实际问题转化为数学问题,商品销售问题何时获得最大利润这正是我们研究的二次函数的范畴,二次函数化为顶点式后,很容易求出最大至于最小值,从而把数学知识运用于实践,即时否把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。学生分析
学生活泼好动有大但好奇好胜的特点,本节课对于学生之间的相互合作交流,共同探索,培养和提高学生全新的思维能力,探索规律的能力。设计理念 在探索规律的活动中,鼓励学生,提高教学质量,强化解决问题的意识,从而把更多的精力投入到现实的探索性,创造性的数学活动中去。教学目标 知识技能:
1.会求二次函数y=ax2+bx+c的最小(大)值.
2.通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。过程与方法:
1、通过对生活中实际问题的研究,体会建立数学建模的思想。
2、通过对“矩形面积”的学习和探究,渗透转化及分类的数学思想方法。
3、通过对生活中实际问题的研究,体会数学知识的现实意义,进一步认识利用二次函数的有关知识解决实际问题。情感态度价值观:
1、通过“二次函数的最大值“的知识灵活用于实际,让学生亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣。
2、体会到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。重点难点 重点:
让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法,会求二次函数y=ax2+bx+c的最小(大)值. 难点: 运用二次函数的知识解决实际问题。关键: 能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数知识求出实际问题中最大(小)值,发展解决问题的能力。教学方法
在教师的指导下自主学习法 教学过程
1.创设情境,引入主题
[问题1] 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
教师引导学生找出问题中的两个变量:小球的高度h(单位:m)与小球的运动时间t(单位:s).
然后让学生计算当t=
1、t=
2、t=
3、t=
4、t=
5、t=6时,h的值是多少?
再让学生根据算出的数据,画出函数h=30t-5t2(0≤t≤6)的图象(可见教材第49页图).
根据函数图象,观察出小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
学生结合图象回答:这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.
教师引导学生求函数的顶点坐标,解决这个问题. 当t=3时,h有最大值=45.
答:小球运动的时间是3s时,小球最高.小球运动中的最大高度是45m.
[问题2 ]如何求出二次函数 y=ax2+bx+c的最小(大)值? 学生根据问题1归纳总结:当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(大)值.
2.[探究1]现有60米的篱笆要围成一个矩形场地,(1)若矩形的长为10米,它的面积是多少?(2)若矩形的长为15米,20米,30米时,它的面积有多大?(3)从上两问,同学们发现了什么?教师提出问题,学生独立回答,通过几个简单的问题,让学生体会两个变量之间的关系 在活动中,教师应重点关注: 学生是否发现了两个变量。学生是否发现了矩形长的取值范围。通过矩形的面积的探究,激发学习欲望。自主阅读,合作交流
创设自主学习情景 教师引导学生分析与矩形面积有关的量,教 师要深入小组参与讨论。在活动中,教师应重点关注:(1)学生是否能准确的建立函数关系
(2)学生是否能利用已学的函数知识求出最大面积。(3)学生是否能准确讨论出自变量的取值范围。通过这种设计,让学生体会函数模型在同一个问题中的不同情况下可以是不同的,培养学生考察问题的完善性。
小组评价,问题生成
(1)创设问题探究性情境有矩形面积问题,你有哪些收获?学生思考回答,师生共同归纳得到:(1)二次函数是现实生活中的模型,可以用来解决实际问题。(2)利用函数的观点来认识问题,解决问题。通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值。综合问题,引发思考 归纳,总结
本节课你后哪些收获?有哪些新的问题?和同伴交流交流。教学反思
因此在本节课的设计上突出了引导学生观察、分析、思考、归纳、猜想、判断的过程,充分注意了让学生去经历初步用数学的思维方式进行观察、分析判断的体验过程。这一教学过程实质上是课程标准中要求我们达到的目标—不是培养学生“学新知识”而是去“生长知识”,也为培养学生获得适应未来社会生活和进一步发展所必须的数学知识以及数学思想方法和应用技能,打下良好的基础。
通过教师创设情境,现易后难,将难点分化,学生在有趣的氛围中研究问题,通过自主主动参与,互相合作等活动,培养和提高了探索能力。
第二篇:22.3实际问题与二次函数教案
22.3实际问题与二次函数
一、教学内容
用二次函数解决实际问题
二、教材分析
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。
三、学情分析
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
四、教学目标
1、知识与技能:
能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。
2、过程与方法:
应用已有的知识,经过自主探索和合作交流尝试解决问题。
3、情感态度与价值观:
在经历和体验数学发现的过程中,提高思维品质,在勇于创新的过程中树立人生的自信心。
五、教学重难点
重点:探究利用二次函数的最大值(或最小值)解决实际问题的方法.
难点:如何将实际问题转化为二次函数的问题.
六、教学方法和手段
讲授法、练习法
七、学法指导
讲授指导
八、教学过程
(一)复习旧知
导入新课
1.写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=6x2+12x;
(2)y=-4x2+8x-10 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?
有了前面所学的知识,现在就可以应用二次函数的知识去解决生活中的实际问题。
(二)学习新知
1、应用二次函数的性质解决生活中的实际问题
出示例
1、要用总长为60m的篱笆围成一个矩形的场地,矩形面积S随矩形一边长L的变化而变化,当L是多少时,围成的矩形面积S最大? 解:设矩形的一边为Lm,则矩形的另一边为(30-L)m,由于L>0,且30-L>O,所以O<L<30。
围成的矩形面积S与L的函数关系式是
S=L(30-L)
即S=-L2+30L(有学生自己完成,老师点评)
2、引导学生自学P23页例2
质疑 点评
3、练一练:(1)、某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大? 请同学们完成解答;
教师巡视、指导;
师生共同完成解答过程:
解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。商品每天的利润y与x的函数关系式是:
y=(10-x-8)(100+1OOx)即y=-1OOx2+1OOx+200
配方得y=-100(x-12)2+225 因为x=12时,满足0≤x≤2。
所以当x=12时,函数取得最大值,最大值y=225。
所以将这种商品的售价降低0.5元时,能使销售利润最大。
九、课堂小结
小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;
(2)研究自变量的取值范围;
(3)研究所得的函数;
(4)检验x的取值是否在自变量的取值范围内,并求相关的值:
(5)解决提出的实际问题。
十、作业布置
P51第2题
十一、板书设计
22.3实际问题与二次函数
十二、教学反思
第三篇:实际问题与二次函数教学反思
实际问题与二次函数教学反思
本节课是有关函数应用题解法的再一次巩固,尤其是二次函数的实际应用,重点是如何利用二次函数建立数学模型,并利用二次函数的有关性质来解决实际问题。继续经历利用二次函数知识解决最值问题;会综合运用二次函数和其他数学知识解决如有关距离、建立函数模型等问题;发展应用数学知识解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
二次函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结合实际,让学生学有所用,在教学中应注意以下几个问题:
(一)把握好课标。九年义务教育初中数学教学大纲却降低了对二次函数的教学要求,只要求学生理解二次函数和抛物线的有关概念,会用描点法画出二次函数的图像;会用配方法确定抛物线的顶点和对称轴;会用待定系数法由已知图像上三点的坐标求二次函数的解析式。
(二)把实际问题数学化。首先要深入了解实际问题的背景,了解影响问题变化的主要因素,然后在舍弃问题中的非本质因素的基础上,应用有关知识把实际问题抽象成为数学问题,并进而解决它。
(三)函数的教学应注意自变量与函数之间的变化对应。函数问题是一个研究动态变化的问题,让学生理解动态变化中自变量与函数之间的变化对应,可能更有助于学生对函数的学习。
(四)二次函数的教学应注意数形结合。要把函数关系式与其图像结合起来学习,让学生感受到数和形结合分析解决问题的优势。
(五)建立二次函数模型。利用二次函数来解决实际问题,重在建立二次函数模型。但是在解决最值问题时得注意,有时理论上的最大值(或最小值)不是实际生活中的最值,得考虑实际意义。
(六)注重二次函数与一元二次方程、一元二次不等式的关系。利用二次函数的图像可以得到对应一元二次方程的解、一元二次不等式的解集。
本节课我有一个收获,学生思维的活跃让我兴奋。我认识到:只要你相信学生,他就能给你创造奇迹。
第四篇:《实际问题与二次函数》教学反思
《实际问题与二次函数》教学反思
刚刚上完了《实际问题与二次函数》,自我感到满意的地方是,通过探究“矩形面积”“销售利润”问题,激发学生的学习欲望,渗透转化及分类的数学思想方法,把知识回归于生活,又从生活走出来。我是这样设置问题: 现有60米的篱笆要围成一个矩形场地,若矩形的长分别为10米、15米、20米、30米时,它的面积分别是多少?你能找到篱笆围成的矩形的最大面积吗?让学生能准确的建立函数关系并利用已学的函数知识求出最大面积。又设置问题:我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件。该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查:如调整价格,每降价1元,每星期可多卖出20件。请问同学们,该如何定价,才能使一星期获得的利润最大?该同学又进行了调查:如调整价格,每涨价1元,每星期要少卖出10件,则此时该如何定价,才能使一星期获得的利润最大?通过这样层层设问,由易到难,符合学生的认知水平,引导学生不断思考,积极探索,让学生感受到数学的应用价值。但感到不足的地方是,由于题目设计比较多,在处理起来比较仓促,时间上前松后紧,在今后的教学中要注意这一点。还要尽可能地让每一个学生参与到学习中,提高学生学习数学的积极性。
第五篇:《实际问题与二次函数》教学设计
《实际问题与二次函数》教学设计
教学目标:
21.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax的关系式。
2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。重点难点:
重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。
难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。教学过程:
一、创设问题情境
如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢? 分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。
如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,2开口向下,所以可设它的函数关系式为:y=ax(a<0)(1)因为y轴垂直平分AB,并交AB于点C,所以CB=错误!未指定书签。=2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。
因为点B在抛物线上,将它的坐标代人(1),得-0.8=a×22所以a=-0.2 因此,所求函数关系式是y=-0.2x2。
请同学们根据这个函数关系式,画出模板的轮廓线。
二、引申拓展
问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系? 让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。
问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗? 分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。
二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。
2解:设所求的二次函数关系式为y=ax+bx+c。因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。
由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到错误!未指定书签。解这个方程组,得错误!未指定书签。所以,所求的二次函数的关系式为y=-错误!未指定书签。x2+错误!未指定书签。x。
问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同? 问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)请同学们阅渎P18例7。
三、课堂练习:P18练习1.(1)、(3)2。
四、综合运用
例1.如图所示,求二次函数的关系式。
分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。
解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。
设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到错误!未指定书签。解这个方程组,得错误!未指定书签。
所以,所求二次函数的关系式是y=-错误!未指定书签。x2+错误!未指定书签。x+4 练习:一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。
五、小结:二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。
六、作业
1.P19习题26.2 4.(1)、(3)、5。2.选用课时作业优化设计,每一课时作业优化设计
1.二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。2.若二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,求这个二次函数的解析式。
3.如果抛物线y=ax2+Bx+c经过点(-1,12),(0,5)和(2,-3),;求a+b+c的值。4.已知二次函数y=ax2+bx+c的图象如图所示,求这个二次函数的关系式;
5.二次函数y=ax+bx+c与x轴的两交点的横坐标是-错误!未指定书签。,错误!未指定书签。,与x轴交点的纵坐标是-5,求这个二次函数的关系式。