《实际问题与反比例函数》说课稿

时间:2019-05-15 12:03:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《实际问题与反比例函数》说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《实际问题与反比例函数》说课稿》。

第一篇:《实际问题与反比例函数》说课稿

一、数学本质与教学目标定位

《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。

本节课的教学目标分以下三个方面:

1、知识与技能目标:

(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;

(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

2、能力训练目标

分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。

3.情感、态度与价值观目标:

(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作.

二、学习内容的基础以及其作用

在17.1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。

本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的“杠杆定理”,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。

第二篇:八年级数学《实际问题与反比例函数》说课稿

【小编寄语】查字典数学网小编给大家整理了八年级数学《实际问题与反比例函数》说课稿,希望能给大家带来帮助!

《实际问题与反比例函数(第三课时)》说课稿

一、数学本质与教学目标定位

《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题的过程。

本节课的教学目标分以下三个方面:

1、知识与技能目标:

(1)通过对杠杆原理等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;

(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

2、能力训练目标

分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。

3.情感、态度与价值观目标:

(1)利用函数探索古希腊科学家阿基米德发现的杠杆定律,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作.二、学习内容的基础以及其作用

在17.1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。

本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的杠杆定理,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。

三、教学诊断分析

本节课容易了解的地方是:杠杆是我们在生活中常常遇到的物理模型,利用杠杆定理容易建立函数关系式。

而我认为本节课有两个问题学生比较难理解:(1)是注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。在讲课时注意提醒学生关注实际问题的意义;(2)从函数的角度深层次挖掘变量的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变。授课时教师要按照学生的认知规律有层次、有步骤地引导学生分析解决问题。学生可以在我设计的问题的提示下来进行探究,学生若能发现其他的规律,教师应表扬,并让同学自己来讲解。

四、教法特点以及预期效果分析

教法特点:

1、在研究性学习中应以问题情境和学习任务为驱动.教学过程中 ,教师不应把现成的结论和方法直接告诉学生,应以问题情境和学习任务为驱动,激发学生的探索精神和求知欲望.同时,又要营造一种宽松、和谐、积极民主的学习氛围,使每位学生都成为问题的探索者、研究中的发现者.2、注重观察能力的培养.教学过程中应注重对学生观察的目的性、敏锐性和思辨性结合的培养 ,优化观察的对象,透过现象看本质,迅速从繁杂无序问题中捕捉最有价值的信息.此能力是发现问题和解决问题的关键.3、合作意识和合作能力的培养.合作意识和合作能力是现代人才必备的基本素质之一.现代社会中,几乎任何一项工作都要许多人通力合作才能完成(如上述众多结论的获得),是否具有协作精神,能否与他人合作,已成为决定一个人能否成功的重要因素.教师要创设一切为学生合作的情境和机会,使学生学会与他人合作.4、数学应用意识的培养.作为数学教师 ,我们的主要任务是,培养学生用数学的眼光去观察和分析实际问题,提高对数学的兴趣,增强学好数学的信心,达到培养创新精神和能力的目的.以上问题的解决过程,实际上就是要求学生作为主体去面对解决的问题,主动去探索、讨论,寻找问题解决的途径,用数学的方法和技术来处理实际模型,最终得出结论.5、数学审美能力的培养.数学是真的典范 ,同时又是美的科学.教师应引导学生去发现美、体验美、感受美和创造美,这样能够使学生的思维得到锻炼、智力得到开发、情操得到陶冶和创新能力得到提高.它是鼓舞学生奋发向上,引导学生积极创造的重要因素.预期效果分析:

(1)教学难点的突破

本节的难点在于把实际问题利用反比例函数转化为数学问题加以解决,课前预设通过师生共分析分析错处再独立解题的三个环节,以达到学生逐步掌握转化的方法。

(2)教学重点的落实

在探索实际问题与反比例函数时,教学活动设计了学生通过现观察后归纳再比较后小结的循环上升的思维进程进行引导,在实际教学活动中学生通过自主探索能发现并归纳,使学生所学知识进一步内化和系统化。

总之 ,学生是具有学习的自主性、探索性、协作性和实践性.本节课是学生对科学探索与研究的初步尝试,但是它对学生今后的学习和15.1分式的意义说课稿

教材《上教版九年制义务教育课本数学七年级第二册》P51-P53

一、教材分析

1.地位、作用和前后联系。

本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对式的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。

2.学情分析

我校初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.二、目标分析

教育目标的确立应该建立在学生的学习过程上,而学生对数学的学习应该包括三个层次:学习数学基础知识;形成一定的数学能力;完善自我的精神品格。结合我校学生的实际情况,我对本节课的教学目标确定如下:

? 知识技能目标 ①理解分式的概念.②能求出分式有意义的条件.? 过程性目标

①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题.②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.? 情感与态度目标

① 通过联系实际探究分式的概念,能够体会到数学的应用价值.② 在合作学习过程中增强与他人的合作意识.三、教学方法

1.师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.3.设计理念.根据《上海市中小学数学课程标准(试行本)》中明确指出以学生发展为本,坚持全体学生的全面发展,关注学生个性的健康发展和可持续发展。

本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.4.教学重点与难点:重点:分式的概念.难点:理解和掌握分式有意义、值为0的条件.突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.四、教学过程分析

1、教学流程图

2、流程说明:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计思路:

? 创设情景 从实际问题引入,提出表示数量关系仅用整式是不够的,体现了数学源于生活.? 形成概念 类比分数知识,得到分式概念.由分式的概念,类比分数得到分式有意义的条件.? 反馈训练 为了更好地理解、掌握分式的基本概念,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了2个由浅入深的例题.例1是熟悉分式有意义的条件,其变式是训练学生掌握分式无意义的条件;例2是如何求分式的值为0.同时配有三个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能.? 归纳小结 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.

第三篇:《实际问题与反比例函数》参考教案

26.2 实际问题与反比例函数(1)

教学目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从实际问题中建构反比例函数模型. 教学难点

从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教学过程

一、创设问题情境,引入新课 活动1 问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境.

(1)请你解释他们这样做的道理.

(2)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么: ①用含S的代数式表示P,P是S的反比例函数吗?为什么?

/ 6

②当木板面积为0.2m2时,压强是多少? ③如果要求压强不超过6000Pa,木板面积至少要多大? ④在直角坐标系中,作出相应的函数图象.

⑤请利用图象对(2)(3)作出直观解释,并与同伴交流. 设计意图:

展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣.

师生行为:

学生分四个小组进行探讨、交流.领会实际问题的数学煮义,体会数与形的统一.

教师可以引导、启发学生解决实际问题. 在此活动中,教师应重点关注学生:

①能灵活列反比例函数表达式解决一些实际问题; ②能积极地与小组成员合作交流; ③是否有强烈的求知欲.

生:在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S的增大,人和木板对地面的压强p将减小.

生:在(3)中,①p=

(S>0)p是S的反比例函数;②当S= 0.2m2时.p=3000Pa;③如果要求压强不超过6000Pa,根据反比例函数的性质,木板面积至少0.1m2;那么,为什么作图象在第一象限作呢?因为在物理学中,S>0,p>0.④图象如下图

/ 6

师:从此活动中,我们可以发现,生活中存在着大量的反比例函数的现实.从这节课开始我们就来学习“17.2实际问题与反比例函数”,你会发现有了反比例函数,很多实际问题解决起来会很方便.

二、讲授新课 活动2 [例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数).

设计意图:

让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题.

师生行为:

先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动. 在此活动中,教师有重点关注: ①能否从实际问题中抽象出函数模型; ②能否利用函数模型解释实际问题中的现象; ③能否积极主动的阐述自己的见解.

生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.

变形就可得到底面积S与其深度d的函数关系,即S=所以储存室的底面积S是其深度d的反比例函数.

/ 6

生:根据函数S=,我们知道给出一个d的值就有唯一的S的值和它相对应,反过来,知道S的一个值,也可求出d的值.

题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S= 500m2时,d=?m.根据S=,得500=,解得d=20.

即施工队施工时应该向下挖进20米.

生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢? 根据S=,把d=15代入此式子,得S=≈666.67.

当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要. 师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,三、巩固提高 活动3 练习:如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.

(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少? 设计意图:

/ 6

让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望.

师生行为:

由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:

①学生能否顺利建立实际问题的数学模型;

②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;

③学生能否注意到单位问题.

生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米.

所以,S·d=1000,S=

. ,中,得100=,d=30(cm).(2)根据题意把S=100cm2代入S=所以如果漏斗口的面积为100cm2,则漏斗的深为30cm. 活动4 练习:(1)已知某矩形的面积为20cm2,写出其长y与宽x之间的函数表达式.(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少? 设计意图:

进一步让学生体会从实际问题中建立函数模型的过程,即将实际问题置于已有的知识背景之中,然后用数学知识重新理解这是什么?可以看成什么? 师生行为

由学生独立完成,教师根据学生完成情况及时给予评价. 生:解:(1)根据矩形的面积公式,我们可以得到20=xy. 所以y=,即长y与宽x之间的函数表达式为y=

/ 6

(2)当矩形的长为12cm时求宽为多少?即求当y=12cm时,x=?cm,则把y=12cm代入y=中得12=,解得x=(cm).

当矩形的宽为4cm,求长为多少?即当x=4cm时,y=?cm,则 把x=4cm代入y=

中,有y=

=5(cm).

所以当矩形的长为12cm时,宽为cm;当矩形的宽为4cm时,其长为5cm.

(3)y=小于8cm,此反比例函数在第一象限y随x的增大而减小,如果矩形的长不即y≥8cm,所以 即宽至多是m.

≥8cm,因为x>0,所以20≥8x.x≤(cm).

四、课时小结

本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想.

/ 6

第四篇:实际问题与反比例函数巩固练习

【巩固练习】 一.选择题

1.(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()

A.B.CD.2.日常生活中有许多现象应用了反比例函数,下列现象符合反比例函数关系的有()①购买同一商品,买得越多,花得越多; ②百米赛跑时,用时越短,成绩越好; ③把浴盆放满水,水流越大,用时越短;

④从网上下载一个文件,网速越快,用时越少.A.1个 B.2个 C.3个 D.4个 3.汽车油箱中有油20升,汽车行驶过程中每小时耗油x升,其行驶时间y(小时)与x(升)之间的函数关系式为()

x20 C.y D.y20x

20x4.若r为圆柱底面的半径,h为圆柱的高.当圆柱的侧面积一定时,则h与r之间函数关A.y20x B.y系的图象大致是().()

5.如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的函数关系图象大致是

6.下列各问题中,两个变量之间的关系不是反比例函数的是()

A:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系.B:菱形的面积为48cm,它的两条对角线的长为y(cm)与x(cm)的关系.C:一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系.D:压力为600N时,压强P与受力面积S之间的关系.二.填空题

7.一定质量的氧气,密度是体积V的反比例函数,当V=8m时,=1.5kg/m3,则与V的函数关系式为______.

8.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20时,电流强度I=0.25A.则

(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5时的电流强度I=______A;(4)当I=0.5A时,电阻R=______.

9.一水桶的下底面积是桶盖面积的2倍,如果将其底朝下放在桌上,它对桌面的压强是500.翻过来放,对桌面的压强是_____________. 10.一个水池装水12m,如果从水管中每小时流出xm的水,经过yh可以把水放完,那么y 与x的函数关系式是______,自变量x的取值范围是______.

11.某种大米单价是y元/千克,若购买x千克花费了2.2元,则y与x的表达式是 . 12.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=20m时,33

331.36kg/m3,当V=40m3时,______kg/m3.三.解答题

13.池内装有12m的水,如果从排水管中每小时流出的水是xm,则经过y小时就可以把水放完.

(1)求y与x的函数关系式,并写出自变量x的取值范围;

(2)画出函数图象的草图.

14.(2015•温州模拟)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=(1)若等待时间x=5分钟时,求舒适度y的值;

(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根,求: 33据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?

15.某机床加工一批机器零件,如果每小时加工30个,那么12小时可以完成.

(1)设每小时加工x个零件,所需时间为y小时,写出y与x之间的函数关系式,画出图象;

(2)若要在一个工作日(8小时)内完成,每小时要比原来多加工几个?

【答案与解析】 一.选择题

1.【答案】C;

【解析】设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=大致是C.2.【答案】C;

【解析】②③④为反比例函数,①为正比例函数.3.【答案】C;

【解析】由xy20,可得y,则y与x的函数图象

20.x4.【答案】B;

【解析】侧面积一定,h,r成反比例,考虑到实际问题,选

14.【解析】

解:(1)当x=5时,舒适度y=

=

=20;

(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10 所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟. 15.【解析】

解:(1)需加工的零件数为30×12=360(个).

y与x之间的函数关系式为y图象如图所示.

360(x0). x

(2)当y=8时,x=360÷8=45,45-30=15. ∴ 要在8小时内完成,每小时比原来要多加工15个.

第五篇:实际问题与反比例函数(教学设计)

26.2 实际问题与反比例函数 第1课时 实际问题与反比例函数(1)

——面积问题与装卸货物问题

一、新课导入 1.课题导入

前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标

(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点

重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习

1.自学指导

(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:

①圆柱的体积=底面积×高,104教材P12例1中,圆柱的高即是d,故底面积S.d②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;y60 xb.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6 m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:

①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化

(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;

②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少? ③如果要求矩形的长不小于8 cm,其宽最多是多少? 答案:①y2055②cm;5 cm③cm x32

1.自学指导

(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:

①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?

②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是v240.t③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?v480 tb.如果该司机必须在4小时之内返回甲地,则返程时的速度不得

低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)

2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:

①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化

(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?

②设开放x个窗口时,需要y小时才能让当天就餐的同学全部买上饭,试求出y与x之间的函数关系式;

③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?

答案:①1800个;②y

三、评价

10;③30分钟.x 4

1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)

1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B)

A.50吨 B.60吨 C.70吨 D.80吨

2.(10分)用规格为50 cm×50 cm的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为(A)

A.y***0

2y B.C.y=150000a D.y=150000a a2a3.(10分)如果以12 m3/h的速度向水箱注水,5 h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为(A)

A.t606060 B.t=60QC.t12 D.t12 QQQ4.(10分)如果等腰三角形的底边长为x,底边上的高为y,当

它的面积为10时,x与y 的函数关系式为(D)

A.y105x20 B.y C.y D.y xx20x135.(10分)已知圆锥的体积V=Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为h300.S6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?

解:m1000;250天.n7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?

(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?

2106解:(1)y;(2)长:2×103 m,宽:103 m.x

二、综合应用(20分)

8.(10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;

(2)由于工程进度的需要,实际平均每天运送土石方比原计划

多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?

解:(1)y360(2≤x≤3);x(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则36036024.解得 x=2.5.(x0.5)x因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?

解:(1)n=5×103S;

(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104

x=1.25×105

因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)

10.(10分)水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:

观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;

(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?

(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

解:(1)y关系.(2)30+40+48+(2104-504)÷

12000+60+80+96+100=504(千克),24012000=20(天).15012000÷2=200(千克),12000÷200=60(元/15012000;不选一次函数是因为y与x之间不成正比例x(3)(20-15)×千克).

下载《实际问题与反比例函数》说课稿word格式文档
下载《实际问题与反比例函数》说课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《反比例函数》说课稿

    一、 说教学内容(一)、本课时的内容、地位及作用本课内容是苏科版八年级(下)数学第九章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中......

    实际问题与反比例函数教学设计(模版)

    实际问题与反比例函数 目标认知 学习目标 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程. 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用......

    《实际问题与反比例函数》参考教案1

    17.2实际问题与反比例函数(1) 一、教学目标 1.利用反比例函数的知识分析、解决实际问题 2.渗透数形结合思想,提高学生用函数观点解决问题的能力 二、重点、难点 1.重点:利用反比例函......

    17.2.实际问题与反比例函数王波

    崇文实验学校八年级下数学教案主备人:王波时间:2012.1.18. 17.2实际问题与反比例函数(四) 一、学习目标:进一步提高学生用反比例函数解决实际问题的能力。 二、学习重点:利用反比......

    1 7.2实际问题与反比例函数教案

    1 7.2实际问题与反比例函数教学目标 进一步体验现实生活与反比例函数的关系.能解决确定反比例函数中常数志值的实际问题.会处理涉及不等关系的实际问题. 继续培......

    实际问题与反比例函数的教学反思

    实际问题与反比例函数的教学反思一.预见到的问题 1.学生可能记不清圆锥体积公式,影响教学进度, 2.学生对分米厘米的换算可能会出现问题, 3.使用小组会占时间长,独立完成,小组交流,......

    《实际问题与反比例函数(三)》教学设计

    《实际问题与反比例函数(三)》教学设计 教学目标 1. 能灵活列反比例函数表达式解决一些实际问题. 2. 能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题. 3. 体会......

    8下17.7《实际问题与反比例函数4》教学反思

    教学反思 17.2 实际问题与反比例函数(第4课时) 一、成功之处: 本节课的教学内容是人教版八年级数学下册第十七章第二节第四课时的内容,讨论了反比例函数在物理电学中的应用,在这些......