五年级数学下册解决问题策略教学设计(最终版)

时间:2019-05-13 01:31:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级数学下册解决问题策略教学设计(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学下册解决问题策略教学设计(最终版)》。

第一篇:五年级数学下册解决问题策略教学设计(最终版)

五年级数学下册解决问题策略教学设计

李佐坤

一 教学内容

数学广角

教材第134、135 页的例

2、做一做4-6题。二 教学目标 .通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。2 .感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。三 重点难点

尝试用数学方法解决实际生活中的简单实际问题。四 教具准备

投影,天平。五 教学过程

(一)新授

1、解决9 个零件的问题,归纳出找次品的最优方法。

(1)出示问题:有9 个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?

老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?(2)自主探索。在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品,?(3)反思自己的分法并在小组内交流。老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?

(4)全班汇报。老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。

(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

(6)小结:把9 个零件分成3 部分,并且平均分,能够保证找出次品而且称的次数最少。

2、.推测多个零件找次品的解决办法。

(l)提出猜测:那么,是否在所有的找次品问题中,这样平均分成3 份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。(2)学生猜想。

(3)要验证猜想我们再来试一下。如果有12 个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3 份,即4 , 4 , 4。)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

学生汇报:3 次。

(4)我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2,2,8)(3,3,6)(5,5,2)(6,6)„„学生选择一种分法在纸上进行分析。(5)全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

(6)小结:这样看来利用天平找次品的时候,把待测物品分成3 份,并且平均分的方法能保证找出次品而且称的次数一定最少。.完成教材第136、137 页练习二十六的第4一6 题。学生独立完成,集体交流。

⑴第5 题让学生脱离具体的操作活动,学会用图来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3 次。⑵第6 题与例题不同,是另一种类型的“找次品”,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3 份,至多称2 次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。对学有余力的学生,可以此题为起点,探索数量为4 , 5 „„ 时如何找出次品。

⑶第7 题是一道关于集合运算的题目。学生在三年级下册学过用集合圈来分析解决问题,所以本题可引导学生利用集合知识画出图。再分析题意:两个组都没有参加的有6 人,所以参加课外小组的一共有25 一6 一19(人)。这样,结合以前学过的知识,就可算出集合圈中表示既参加音乐组又参加美术组的有12 + 10 一19 =3(人)(二)课堂作业新设计 .有7 瓶药片,其中1 瓶中少2 片,你能设法把它找出来吗? 2 .有15 盒巧克力派,其中1 盒中少3 块,设法把它找出来。

(三)课堂小结

本节课我们研究了在生活中如何从几个物品中找出次品的策略。在解决问题时,我们知道了很快解决这类问题的方法和原则:一是把待分的物品分成3 份;二是要分得尽量平均,能够平均分的平均分成3 份,不能平均分的,也应使多的与少的一份只差1。

第二篇:苏教版五年级下册数学解决问题的策略教学设计

苏教版五年级数学下册《解决问题的策略》

教学设计

教学内容:

苏教版五年级数学下册《解决问题的策略》P105-P106例1及练一练

教材分析:

转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。

学情分析:

本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。

教学目标:

知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。

教学重点:

1、会运用转化的策略分析问题、解决问题。

2、初步掌握转化的方法和技巧

教学难点:

能根据问题的特点确定具体的转化方法,初步形成策略意识。

教学准备:

课件、方格纸、彩笔、卡片(长方形、平行四边形、三角形、梯形、圆形)、题纸。

教学过程:

(一)感知转化

师:同学们喜欢听故事吗?

(多媒体出示《曹冲称象》的画面)

提出问题:曹冲是用什么方法称出大象重量的呢?

(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)

也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。

转化是我们平时常用的一种解决问题的策略。(板书:转化)

(二)自主探索,初步感受转化策略

1.任意出示两个图形,学生观察,哪个图形面积大?

学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。

2.再出示例1图,仔细比比,哪个图形面积大?

由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。

3.用课件演示用平移和旋转转化成长方形比较大小的过程。

教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——转化)

4.提问:(1)这是把什么转化成了什么?

学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书:

→),新问题也就迎刃而解了。

(2)转化过程中什么变了?什么没变?(形状变了,大小没变)

(三)回顾旧知,体会转化策略的运用

1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢?

学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。

2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。

四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。

3.举个例子说说你的发现。

学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数

②计算小数乘法时把小数乘法转化成整数乘法

提问:这里都用了转化策略,有什么共同地方?

引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。

小结:这么多地方用到转化的策略,说说你有什么体会?

学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。

(四)解决问题,深化转化策略

1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?

学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。

2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?

师:指名学生用手指出右边图形的周长是由哪些线段围成的生:(边指边说)是这些线段围成的总长度

师:对,那如何来计算它的周长呢?谁来说说你的想法?

生:我想把这条边移到这儿,这条边移到这儿……这样就成了一个长方形。

师:听明白了吗?谁再来说一说?

生:这两条横着的边移到这儿,这两条竖着的边移到这儿。

师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?

生:没有。

师:现在你能快速计算它的周长了吗?

生:(3+5)×2=16(厘米)

师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了

3.用分数表示各图中的涂色部分。

先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。

①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。

②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。

③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8。

4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?

师:要求学生先独立思考,看如何计算比较简便?

生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。

师:对于一些复杂的图形都能被大家轻松攻破了,真不错。

(五)总结延伸,渗透思想

提问:通过今天的学习,你有什么收获?

师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。

今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。

(六)作业布置,用转化策略解决实际问题

谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。

相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。

(七)板书设计:

解决问题的策略

转化

不规则图形

──→

规则图形

第三篇:苏教版五年级下册数学解决问题的策略教学设计

苏教版五年级数学下册《解决问题的策略》

教学设计

商酒务镇实验小学 吴晓旭

教学内容:

苏教版五年级数学下册《解决问题的策略》P105-P106例1及练一练

教材分析:

转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。

学情分析:

本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。

教学目标:

知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。

教学重点:会运用转化的策略分析问题、解决问题。初步掌握转化的方法和技巧

教学难点:能根据问题的特点确定具体的转化方法,初步形成策略意识。

教学准备:

课件,题纸。

教学过程:

(一)感知转化

师:从日常生活买东西引出称重的概念,然后提问同学们打的物体,比如一头大象该怎么称出它的重量?引出曹冲称象的故事。

(多媒体出示《曹冲称象》的画面)

提出问题:曹冲是用什么方法称出大象重量的呢?

(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)

也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。转化是我们平时常用的一种解决问题的策略。(板书:转化)

(二)自主探索,初步感受转化策略

1.出示例1图,仔细比比,哪个图形面积大?

由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。

2.用课件演示用平移和旋转转化成长方形比较大小的过程。

教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略—— 3.提问:(1)这是把什么转化成了什么?

学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。

(2)转化过程中什么变了?什么没变?(形状变了,大小没变)

(三)回顾旧知,体会转化策略的运用

1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。

2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。

四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。

3.举个例子说说你的发现。

学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数

②计算小数乘法时把小数乘法转化成整数乘法

提问:这里都用了转化策略,有什么共同地方?

引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。

小结:这么多地方用到转化的策略,说说你有什么体会? 学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。

(四)总结延伸,渗透思想

提问:通过今天的学习,你有什么收获? 师:学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。

今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。

(五)作业布置,用转化策略解决实际问题

谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。

相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。

(六)板书设计:

解决问题的策略

转化

不规则图形

──→ 规则图形

第四篇:苏教版五年级下册数学解决问题的策略教学设计

(二)自主探索,初步感受转化策略

1.任意出示两个图形,学生观察,哪个图形面积大?

学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。

2.再出示例1图,仔细比比,哪个图形面积大?

由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。

3.用课件演示用平移和旋转转化成长方形比较大小的过程。

教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——

4.提问:(1)这是把什么转化成了什么?

学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。

(2)转化过程中什么变了?什么没变?(形状变了,大小没变)

(三)回顾旧知,体会转化策略的运用

1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。

2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。

四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。

3.举个例子说说你的发现。

学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数

②计算小数乘法时把小数乘法转化成整数乘法

提问:这里都用了转化策略,有什么共同地方?

引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。

小结:这么多地方用到转化的策略,说说你有什么体会? 学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。

(四)解决问题,深化转化策略

1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?

学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。

2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?

师:指名学生用手指出右边图形的周长是由哪些线段围成的 生:(边指边说)是这些线段围成的总长度

师:对,那如何来计算它的周长呢?谁来说说你的想法? 生:我想把这条边移到这儿,这条边移到这儿„„这样就成了一个长方形。

师:听明白了吗?谁再来说一说?

生:这两条横着的边移到这儿,这两条竖着的边移到这儿。师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?

生:没有。

师:现在你能快速计算它的周长了吗? 生:(3+5)×2=16(厘米)

师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了 3.用分数表示各图中的涂色部分。

先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。

②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。

③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8。

4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?

师:要求学生先独立思考,看如何计算比较简便?

生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。

师:对于一些复杂的图形都能被大家轻松攻破了,真不错。

(五)总结延伸,渗透思想

提问:通过今天的学习,你有什么收获? 师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。

今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。

(六)作业布置,用转化策略解决实际问题

谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。

相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。

(七)板书设计:

解决问题的策略

转化

不规则图形

──→ 规则图形

第五篇:苏教版五年级下册数学解决问题的策略教学设计

苏教版五年级数学下册《解决问题的策略》

教学设计

凤阳县武店中心小学

朱守丽

教学内容:

苏教版五年级数学下册《解决问题的策略》P105-P106例1及练一练

教材分析:

转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。

学情分析:

本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。

教学目标:

知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。

教学重点:会运用转化的策略分析问题、解决问题。初步掌握转化的方法和技巧

教学难点:能根据问题的特点确定具体的转化方法,初步形成策略意识。

教学准备:

课件、方格纸、彩笔、卡片(长方形、平行四边形、三角形、梯形、圆形)、题纸。

教学过程:

(一)感知转化 师:同学们喜欢听故事吗?(多媒体出示《曹冲称象》的画面)

提出问题:曹冲是用什么方法称出大象重量的呢?

(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)

也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。转化是我们平时常用的一种解决问题的策略。(板书:转化)

(二)自主探索,初步感受转化策略

1.任意出示两个图形,学生观察,哪个图形面积大?

学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。

2.再出示例1图,仔细比比,哪个图形面积大?

由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。3.用课件演示用平移和旋转转化成长方形比较大小的过程。

教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——

4.提问:(1)这是把什么转化成了什么?

学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。

(2)转化过程中什么变了?什么没变?(形状变了,大小没变)

(三)回顾旧知,体会转化策略的运用

1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。

2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。

四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。

3.举个例子说说你的发现。

学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数

②计算小数乘法时把小数乘法转化成整数乘法

提问:这里都用了转化策略,有什么共同地方?

引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。

小结:这么多地方用到转化的策略,说说你有什么体会? 学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。

(四)解决问题,深化转化策略

1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?

学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。

2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?

师:指名学生用手指出右边图形的周长是由哪些线段围成的 生:(边指边说)是这些线段围成的总长度

师:对,那如何来计算它的周长呢?谁来说说你的想法? 生:我想把这条边移到这儿,这条边移到这儿„„这样就成了一个长方形。

师:听明白了吗?谁再来说一说?

生:这两条横着的边移到这儿,这两条竖着的边移到这儿。师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?

生:没有。

师:现在你能快速计算它的周长了吗? 生:(3+5)×2=16(厘米)

师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了 3.用分数表示各图中的涂色部分。

先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。

③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8。

4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?

师:要求学生先独立思考,看如何计算比较简便?

生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。

师:对于一些复杂的图形都能被大家轻松攻破了,真不错。

(五)总结延伸,渗透思想

提问:通过今天的学习,你有什么收获? 师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。

今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。

(六)作业布置,用转化策略解决实际问题

谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。

相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。

(七)板书设计:

解决问题的策略

转化

不规则图形

──→ 规则图形

下载五年级数学下册解决问题策略教学设计(最终版)word格式文档
下载五年级数学下册解决问题策略教学设计(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    最新苏教版五年级数学下册“解决问题的策略(转化)教学设计

    最新苏教版五年级下册“解决问题的策略(转化)教学设计 教学内容: 五年级下册“解决问题的策略(转化)”第105-108页、教学目标 : 1、学生初步学会运用转化的策略分析问题,灵活确定解......

    苏教版五年级数学下册《解决问题的策略》教学反思

    苏教版五年级数学下册《解决问题的策略》教学反思 [自我反思]本节课关注学生的精神世界和生命意义的建构,注重了学生的切身体验和感悟。1.在情境中体验。学生体验的过程是一......

    苏教版数学五年级上册解决问题的策略教学设计

    苏教版五年级数学上册《解决问题的策略》 画图法解决问题 (亢北学校:郭利萍) 教材内容: 课本96页例2以及练习十七5、6题 教学目标: 1.让学生继续在解决问题的过程中掌握列举......

    苏教版数学五年级上册《解决问题的策略》教学设计

    《解决问题的策略——一一列举》教学设计 教学目标: 1、经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。 2、在对解决简单实际问题的......

    二年级下册数学《解决问题》教学设计

    二年级下册数学《解决问题》教学设计 农垦二小 李晓英 教学内容:人教版义务教育课程标准实验教科书·数学二年级下册第2-4页。 教学目标: 1.使学生能从具体的生活情境中发......

    三年级下册数学解决问题教学设计

    解决问题(一) 学习内容:教材第99页例1及做一做和练习二十三第1﹑3、4题。 学习目标: 1、经历解决问题的过程,学会用乘法两步计算解决问题。 2、通过解决具体问题,获得用乘法计算解......

    数学二年级下册《解决问题》教学设计

    数学二年级下册《解决问题》教学设计 数学二年级下册《解决问题》教学设计1 教学目标:1.使学生精力解决问题的完整过程,学会用找出中间问题的方法解决需要两步解决的问题,丰富......

    二年级数学下册《解决问题》教学设计

    解决问题教案设计 第一课时 解决问题 教学内容: 课本第4页例1 教学目标: 1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。 2......