第一篇:八年级数学上册 13.2.1 作轴对称图形教案 (新版)新人教版
13.2.1 做轴对称图形
◆教学目标◆ ◆知识与技能:能够做出简单图形的轴对称图形,能够利用作轴对称图形进行简单的图形设计。
◆过程与方法:通过动手实践和观察去体会作轴对称后两图形的关系,培养抽象思维能力.◆情感态度和价值观:感受生活中的数学问题,体验实际生活中的物体与图形的关系,体验学习数学的乐趣.◆教学重点与难点◆
◆重点:能够做出简单图形的轴对称图形,能够利用作轴对称图形进行简单的图形设计。◆难点:作出简单平面图形关于直线的轴对称图形,利用轴对称进行一些图案设计. ◆教学过程◆
一、设置情境,引入新课
在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.
将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.
准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的. 这节课我们就是来作简单平面图形经过轴对称后的图形.
二、导入新课
由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.
类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.
下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.
结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.
我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.
取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.
(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.
(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?
(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.
注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.
三、课时小结
本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.
四、动手并思考
(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.
(1)你会得怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.
(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?
(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?
答案:(1)得到一个有2条对称轴的图形.
(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.
(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.
(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.
五、课堂检测
1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?
2.把下列图形补成关于L对称的图形。
3.如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。
◆板书设计◆
§12.2.1 作轴对称图形
一.如何由一个平面图形得到它的轴对称图形.二。◆课后思考◆
利用轴对称设计图案
第二篇:小学数学二年级上册《轴对称图形》精品教案
人教版小学数学二年级上册《轴对称图形》
设计理念
弗赖登塔尔强调“数学是一种活动,而数学活动的主要特征是数学化”。这种数学观区别于把数学看成是印在书上或铭记在头脑里的东西。发展空间观念是“空间与图形”教学的重要目标之一。空间观念是一种数学思考,对于小学生来说,这种数学思考必须有丰富的直观、形象的积累和体验为基础,并在数学活动过程中得以发展。为此,本节课拟通过“拼一拼、折一折、说一说、画一画、剪一剪”等系列活动,使学生在经历“知识引入——概念教学——知识运用”过程中,初步感知轴对称现象,初步认识轴对称图形和对称轴,并能在方格纸上画出简单的轴对称图形,培养学生的动手操作能力、观察能力和想象力,发展学生的空间观念。
教学内容
《义务教育课程标准实验教科书 数学》(人教版)二年级上册第五单元《观察物体》的第68页例2及练习十五第2、3题的内容。
学情与教材分析
对称是一种最基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。在自然界和日常生活中具有对称性质的事物很多,学生对于对称现象并不很陌生。本册教材中的对称,仅限于轴对称和镜面对称,本节课的教学内容是认识轴对称图形。《数学课程标准》(实验稿)中对这一部分内容的学习要求是:感知对称现象;认识轴对称图形,知道对称轴;能在方格纸上画出简单图形的轴对称图形;在认识、制作和欣赏轴对称图形的过称中,发展想象能力,培养审美情趣认识轴对称图形。
教学目标
1.学生通过有序观察、操作活动,初步感知轴对称现象;初步认识轴对称图形和知道对称轴,并能在方格纸上画出简单的轴对称图形。
2.通过拼、剪、折、画等,培养学生的观察能力,动手操作能力和想象力,发展学生的空间观念。
3.通过欣赏生活中的数学美,激发学生的数学审美情趣。
教学重点:观察操作,初步感知轴对称现象。教学难点:在方格纸上画轴对称图形。教学准备
多媒体课件、图片、练习卡、彩色纸、剪刀、画有等距离点子的方格纸。
教学过程
一、拼一拼,引入对称问题 1.孕伏,引发拼一拼的欲望
教师将学生喜闻乐见的实物图片(脸谱、蝴蝶、花瓶、树叶等)分成两半,打乱后出示。
2.试拼,唤醒学生已有的经验
先让全班学生观察零乱的图片,然后请四位同学上台拼一拼,最后让学生说出图片的名称。
3.比较,引入对称现象
引导学生观察拼合的完整图片,发现它们的共同特征。教师有意识地通过图片的“分与合”过程,初步感知对称现象。
【设计意图:巧借零乱的图片,孕伏对称问题,让学生凭借经验,在尝试组拼中初步感受对称的特征以及潜在的对称轴,从而引出图形的“对称”。】
二、剪一剪,发现对称特征 1.范剪——引发数学思考
师出示一张不对称的纸张,通过几个动作剪出一个心形。2.生剪——促进数学思考
在教师的引发下,学生尝试剪出自己喜欢的图形。3.展示——发现轴对称图形的特征
选择有代表性的作品展示,欣赏并思考:剪出的图形是对称的吗?为什么?学生通过观察、对比,发现对称特征,进一步感知对称现象。
4.归纳:教师描述轴对称图形、对称轴的名称后,通过对轴对称图形位置的移动,让学生感受到轴对称图形的位置虽然发生了变化,但它的性质不变。
【设计意图:“思维是从动作开始的”,动手操作与观察比较是“空间与图形”中有效的教学策略。所以,让学生剪一剪,引发对“轴对称图形”的数学思考,促进学生在观察比较中理解概念的本质属性---“对折”与“完全重合”。继而通过转一转,使学生在观察比较中感受到轴对称图形的位置虽然发生了变化,但它的对称轴还是在这个图形对折的折痕上。】
三、折一折,理解对称内涵 1.辨析——完善数学思考
判断:课件出示常见的几何图形,(长方形、正方形、五角星、圆、平行四边形)让学生判断是否对称。
2.提升——深化数学思考
⑴猜想:轴对称图形的对称轴可能有几条?
⑵验证:学生通过动手折一折对称图形,在操作中发现有些轴对称图形的对称轴不只一条。
⑶交流:全班交流发现的结果,教师结合课件演示适时小结。
【设计意图:学生对概念的建构需要在比较辨析中加深理解,在基于学生的理解基础上,通过“猜想-验证-交流”等活动,不断丰富学生的空间观念,借助几何直观,让学生在“折”中发现有些轴对称图形的对称轴不只一条,突破学生的固有思维,拓宽学生的思维空间,学生正是借助丰富的感知,进一步加深对 “轴对称图形”的理解。】
四、画一画,应用对称深化 你能按对称轴画出另一半吗?
【设计意图:学生初步地、感性地了解轴对称图形的性质之后,通过画一画,进一步达到内化,形成一定的思考策略,使学生的空间观念得到进一步的飞跃。】
五、悟一悟,创造对称美图
⑴欣赏美:课件展示对称的花瓶、中国结,剪纸、国旗设计、建筑设计等图片。
⑵创造美:用自己喜欢的方式创造轴对称图形。⑶升华美:借汉字“美”字升华情感。
【设计意图:领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。以期构建“和谐给力”的数学美课堂】
所用教材电子扫描图
第三篇:五年级上册轴对称图形教案
《轴对称图形》
教学内容:青岛版小学数学五年级上册第二单元信息窗1第一课时 教学目标:
1、进一步对称认识轴图形,能用对折等方法确定轴对称图形的对称轴。
2、会在方格纸上按要求画出轴对称图形的另一半。
3、主动参与画图形的活美。动,感受图形的对称 教学重点:进一步认识轴对称图形。教学难点:确定轴对称图形的对称轴。教学具准备:多媒体幻灯片 教学过程:
一、创设情境,导入新课
1、展示刚刚结束的伦敦奥运会上中国国旗冉冉升起的那一刻的一幅图片,引起学生的兴趣。
师:这些美丽图片上的旗帜代表着我们中国的骄傲。(课件出示情境图)
2、老师再展示一些其他国家的国旗图片,学生通过欣赏感受旗帜的美丽,并初步感知这些图形的特征,并激发了学生的爱国热情。(这样设计的目的既让学生感受了图形的特征,又激发了学生的爱国热情。)
二、自主学习,小组探究
1、师:这些图形有什么特点呢?谁愿意说说自己的发现? 学生通过观察、讨论,说出自己对这些图形特征的认识。
2、你能找出这些图形的对称轴吗?选择一个你喜欢的图形,找出它的对称轴,说给你的同位听。
同位活动,互相交流,互相帮助。(这样设计的目的是鼓励学生从更多的角度去观察图形并且让各个层次的学生能准确地找到对称轴。)
师:看到澳门区旗,老师有些心里话要和同学们说,我们伟大的祖**亲,因为某种原因,丢失了他心爱的三个孩子,经过母亲的努力,已经有两个孩子回到了母亲的怀抱,那就是香港和澳门,但她的第三个孩子却还没有回到她的怀抱,你们知道是谁吗?让学生知道祖国统一是我们每个中华儿女的心愿。(结合澳门区旗对学生进行爱国主义教育。)
3、师:那么下面的平面图形中,哪些图形是轴对称图形呢?
小组合作,学生先猜出哪些图形是轴对称图形,然后通过对折来验证自己的结论,培养学生的猜想能力、动手操作能力、合作交流能力,学生根据经验大胆猜想。结合手中的学具,小组合作,共同验证猜想。大胆进行交流,着重引导学生说清判断的依据。从而得出:长方形、正方形、等腰三角形、等腰梯形都是轴对称图形。另外我还给学生增加了等边三角形和圆来猜测和验证,目的是让学生知道没有学过的图形怎么能验证它是不是轴对称图形,培养学生敢于挑战、勇于探索的精神。(这样设计是为了加强学生的判断能力,及时了解情况。)
4、师:下面,你们在方格纸上画出一个长方形,让它的长和宽分别是6个格和4个格,不用折纸的办法,你还能找出它的对称轴吗?(引导学生用数方格的方法找出它们的对称轴)
师:如果不能对折又不在方格纸上或不好数方格的话,你怎么找出轴对称图形的对称轴呢?(引导学生说出用测量的方法找出它们的对称轴)
师:你能画出这些平面图形的对称轴吗?任选一个你喜欢的轴对称图形画出它的对称轴。
学生独立尝试,然后进行交流。(这样设计的目的是训练对称轴的画法。)
三、汇报交流,解决问题
1、课件演示对称轴的画法
师:画对称轴时一般用点来画线。通过对折和画图,你有什么新发现? 学生得出:长方形有两条对称轴,正方形有四条对称轴,等腰三角形有一条对称轴。等边三角形有三条对称轴,等腰梯形有一条对称轴,圆有无数条对称轴。
2、师:通过我们的学习,你知道了什么是轴对称图形吗?
学生讨论、交流、完善、表达:将图形沿一条直线对折,两侧的部分能够完全重合,这样的图形就是轴对称图形。折痕所在的直线叫做它的对称轴。(这样设计的目的是看学生能不能抓住轴对称图形的基本特征。)
四、应用知识,自主练习
1、师:判断下面哪些图形是轴对称图形?(课件出示自主练习
1、)学生独立完成。(这样设计的目的是看学生能不能准确地判断出轴对称图形。)
2、师:刚才我们认识了轴对称图形。你能画出下面第一个图形的另一半,使它成为轴对称图形吗?
学生独立完成并交流画图方法。(通过画图训练学生找到画图的简便方法,能不能根据轴对称点找到相应的对称点。)
师:谁来展示一下自己的作品?
学生展示自己的作品,交流画图方法,从而进一步加深对轴对称图形的认识。师:用自己喜欢的方法画出第二个图形的另一半。
学生继续画图,培养画图能力,感受对称美。(关注暂时有困难的学生,注意有针对性地指导。)
3、师:你想不想当一个小小设计师,自己设计一个轴对称图形,并画出它的对称轴呢?
激发学生创作的欲望,进一步加深对轴对称图形的认识。(这个问题根据时间情况而定,如果有时间就在课堂上解决,如果没时间,就把它延伸到课外,这样设计主要是关注学生能不能运用所学知识解决遇到的问题。)
师:谁来展示一下自己的作品呢? 学生汇报、交流。
4、课件出示练习题:你知道吗?
近似轴对称图形的数字有:0、()、()、()……近似轴对称图形的汉字有:口、()、()、()……
总结新课之前,和学生一起做关于轴对称图形的游戏。
大家一起来:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 游戏规则: 每人轮流按顺序报一个字母。如果,你认为你所报字母的形状是一个轴对称图形,你就迅速站起来报出;如果,你认为你报的字母形状不是轴对称图形,那么,你只需坐在座位上报就可以了。其他同学仔细听,如果这位同学报对了,就随后击掌一次;如果,这位同学报错了,就击掌三次。(最后给学生一种轻松的感觉。)
五、总结
师:这节课你有哪些收获?(学生谈感受、谈收获,看学生能否有条理地回顾所学知识。)
第四篇:2017八年级数学轴对称教案.doc
轴对称
(一)教学目标:
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念. 教学重点:
轴对称图形的概念. 教学难点
能够识别轴对称图形并找出它的对称轴. 教具准备: 三角尺 教学过程
一.创设情境,引入新课
1.举实例说明对称的重要性和生活充满着对称。
2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
二.导入新课
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
2.观察: 如图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?
3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.
4.动手操作: 取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意 刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三.随堂练习
1、课本30练习
2、P31练习
四.课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.
五.课后作业
习题12.1─1、2、6题.
轴对称
(二)教学目标
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质. 教学重点:
轴对称的性质,线段垂直平分线的性质 教学难点 :
1.轴对称的性质. 2.线段垂直平分线的性质.3.体验轴对称的特征. 教具准备:圆规、三角尺、教学过程
一.创设情境,引入新课
1.什么样的图形是轴对称图形呢?
2.轴对称图形有哪些性质,从图形中能得到结论? 二.导入新课 1.如下图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、•B、C对称点,线段AA′、BB′、CC′与直线MN有什么关系?为什么?(学生思考并做小范围讨论)
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
2.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,•那么对称轴是任的垂直平分线.类似地,轴对称图形的对称轴是任何一对平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,„是L 上的点,•分别量一量点P1,P2,P3,„到A与B的距离,你有什么发现?
证法一:利用判定两个三角形全等.
如下图,在△APC和△BPC中,PCAPCBACBCPCPCRt何一对对称点所连线段对称点所连线段的垂直
△APC≌△BPC PA=PB.证法二:利用轴对称性质.
由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,•因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2] 如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么? 探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合. 三.随堂练习
课本P34练习
1.如下图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什么关系?
2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗? 四.课时小结:
这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
五.课后作业课本习题12.1 3、4、9题.
轴对称
(三)教学目标:
1. 探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.
2.在探索的过程中,培养学生分析、归纳的能力. 教学重点:
轴对称图形对称轴的作法. 教学难点:
探索轴对称图形对称轴的作法. 教具准备:圆规、三角尺 教学过程
一.提出问题,引入新课
1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,•你能比较准备地作出轴对称图形的对称轴吗?
2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.
3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.
4.问题:如何作出线段的垂直平分线? 二.导入新课
1.要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.
[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?
已知:线段AB[如图(1)].
求作:线段AB的垂直平分线.
作法:如图(2)
(1).分别以点A、B为圆心,以大于(2).作直线CD.
直线CD就是线段AB的垂直平分线.
2.[例]图中的五角星有几条对称轴?作出这些对称轴.
作法:
1.找出五角星的一对对应点A和A′,连结AA′.
2.作出线段AA′的垂直平分线L.
则L就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴. 三.随堂练习
(一)课本35练习1、2、3
如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.
1AB的长为半径作弧,两弧相交于C和D两点;
2答案:与A成轴对称的是图形D(或B). 四.课时小结
本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,•作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴. 五.课后作业
课本P36-37习题12.1 5、10、11、12题.
第五篇:五年级数学轴对称图形教案
五年级数学轴对称图形教案
来源:学大教育教育资源网日期:2015年02月12日
红桥学习中心
在小学数学的学习中同学们所学习的是很简单的图形,同学们要在小学数学的学习中取得好成绩,提高自己的信心。下面学大为大家提供的是五年级数学轴对称图形教案,希望同学们能够在数学的学习中取得进步。
一、教学分析
1、教学内容分析
本课内容是北师大版三年级下册第二单元《轴对称图形》。
轴对称图形是一种常见的平面图形,在日常生活中有着广泛的应用。它是在学生学习了一些平面图形的特征,形成了一定空间观念的基础上,学习轴对称图形的相关知识的。
新课程理念一直强调发挥学生的主观能动性,激发学生的学习兴趣,让学生在动手操作、猜测、验证中自己寻找解决问题的方法,本节课正是很好地利用了学生的求知欲和动手操作能力,体现学生主体、教师主导的教学地位。
通过对轴对称图形的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习习近平移、旋转、图形变换等知识打好基础。
2、教学对象分析
本节课要求学生感知现实世界中普遍存在的轴对称现象,这种现象是学生所熟知的,在此基础上,让他们体会其特征并掌握判断轴对称图形的方法。
轴对称图形的定义是在活动中学习,主要是通过直观演示,动手操作使学生感知并了解轴对称图形的基本特征。因此,让学生初步认识轴对称图形的基本特征是重要的;以此掌握判断轴对称图形的方法是有难度的。
3、教学环境分析
教室有电脑、投影仪等多媒体教学工具。
二、教学目标 知识与技能
感知现实世界中普遍存在的轴对称现象,体会轴对称图形特征,能够准确判断哪些图形是轴对称图形。
数学思考
通过折纸、剪纸、画图、图形分类等操作活动,使学生能够准确找出轴对称图形的对称轴。解决问题
运用“轴对称图形”的知识于解决实际问题。情感与态度
感受数学与生活息息相关,培养学生的学习兴趣和热爱生活的情感。
三、教学重难点
由于教材并没有给轴对称图形下一个准确的定义,主要是通过直观演示,动手操作使学生感知并了解轴对称图形的基本特征,因此“初步认识轴对称图形的基本特征”就成为本节课的教学重点;在找图形对称轴的过程中,主要是依靠感知来理解其中许多的概念,因此“掌握判断轴对称图形的方法”是本节课的难点。
四、教法、学法
如何突出重点,突破难点,完成上述三维目标呢?根据教材的特点,本节课我将采用多媒体为主要教学手段,以分组合作学习为主要方式进行教学。在教学中创设情境,为学生提供丰富、生动、直观的观察材料,激发学生学习的积极性和主动性。教师适时地演示,并让学生亲自动手进行操作,发现和掌握轴对称图形的特征,准确找出对称轴。从培养学生主体参与和创新意识的角度出发,以学生分组合作学习的方式,分如下四个环节完成本节课的教学。
(一)创设情境,激发兴趣。(二)指导观察,认识特点。(三)演示导学,动手操作。(四)综合练习,发展思维。
五、教学过程
(一)创设情境,激发兴趣。
在这片美丽的花丛里,飞来了一只小蝴蝶和一只小蜻蜓。请同学们仔细观察,你发现了什么?学生可能会说,“小蝴蝶在采花粉”,也可能会说,“小蝴蝶和小蜻蜓在说话”。那我们来听听它们说些什么呢?“我是最美的。”“我才是最美的。”原来它们在争论谁更美,而且争得不相上下。一朵小花听见了,就给它们出了个主意,“既然你们都认为自己很美,不如这样吧,我们来设计一个一人一半的图形,那样的图形才是最美的吧?”
(出示合成图形)引导学生观察比较:“你们觉得,和小蝴蝶小蜻蜓的图案相比,哪一幅图比较美?”通过观察,学生可能会说,“小蝴蝶和小蜻蜓的图案比较美,”也可能有小部分学生会说,“一人一半的图案好看。”对此,我不打算作任何结论,只是想通过学生的认知冲突引发学生的求知欲。“为什么大多数同学认为这幅图没有那么美?”“因为这幅图的左右两边大小不一样。”学生的回答是自然的,也正是我所需要的。于是我追问:“那象小蝴蝶小蜻蜓这种两边大小一样的图形,我们叫它什么呢?”预习的同学可能会说,“对称图形。”甚至说得更完整,“轴对称图形”。待学生回答后我进行如下小结:“轴对称图形在日常生活中随处可见,它与我们的生活息息相关,今天老师和大家一起认识美丽的轴对称图形。”
(通过让学生观察情境导入新课,既激发了学生浓厚的学习兴趣,又为后面的新知内容作好铺垫)(二)指导观察、认识特点。
“生活中还有没有这样的图形呢?”“请同学们认真观察,看看这些图形有什么特点,把你的想法和小组里的成员说一说,然后向全班同学汇报。”引导学生观察脸谱、剪纸、旗子的图形特点,通过观察、思考和交流,在全班汇报时,有的学生可能会说,“这些图形都很美”,有的可能会说,“这些图形的两边分别对应相同。”
(通过观察,学生对轴对称图形有了初步的感知。这两个环节的设计,使学生切实感受到自然界和生活中具有轴对称性质的事物有很多,初步体会到这些图形的两边分别对应相同。接下来,将由老师演示导学,指导学生动手操作)(三)演示导学,动手操作。
“同学们想不想亲自动手制作这样的轴对称图形。请大家拿出一张长方形纸,先把长方形纸对折,在折好的一侧画一个你喜欢的图形,把它剪下,再把纸打开,你有什么发现?”引导学生观察得出:折痕两侧的图形完全重合。“和前面看到的图形有没有什么共同的特点?”从而引导学生概括出轴对称图形的概念和认识对称轴。
(通过前两个环节的感性认识,电脑形象的演示,教师适时的引导,学生动手操作,从而引导学生得出轴对称图形的概念,这些都有利于培养学生的观察和概括能力。)当学生了解了轴对称图形和对称轴后,让学生观察日常生活中常见的物体,通过观察学生很容易发现这些图形沿着一条直线、甚至多条直线分别对折,两侧图形能够完全重合,这些图形都是轴对称图形。通过观察判断,进一步加深了对轴对称图形的认识。
(为了让学生充分体验到轴对称图形的这一特征,这个环节安排了折一折,画一画,剪一剪等一系列活动,让学生多种感官参与教学活动。让学生通过观察平面图形的特征,动手操作进行实践,找出判断轴对称图形的方法。)(四)综合练习、发展思维。
1、游戏:全体起立,每人做一个姿势,从正面看左右两边是对称的。再请三人上台表演。
2、抢答:观察周围哪些事物的形状是轴对称图形。
(这样设计、不仅活跃了课堂气氛,而且检查了学生掌握新知的情况;既激发了学生学习兴趣,又让学生感到数学就在自己身边。)“生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。”
3、判断:
(1)下面的数字,哪些是轴对称图形,它们各有几条对称轴? 0123456789(2)下面的字母,哪些是轴对称图形,它们各有几条对称轴? ABCDEFGH(3)像这样写法的汉字,哪些是轴对称图形? 口 工 用 中 日 直 水 甲
“通过这道题的练习,可以看出中国的汉字是非常美的,谁还能举例说一些这样的汉字?”(师生共同品位中国文字的对称美,从而宏扬中国文化,做到知识性、技能性和艺术性溶为一体。)
4、拓展练习
5、推理
回顾全课,归纳小结: 今天学了什么? 什么叫轴对称图形? 怎样判断轴对称图形? 什么叫对称轴? 怎样找出轴对称图形的对称轴? 通过新课后的总结,帮助学生理清知识结构,形成完整的认识。
课的结尾,让学生欣赏生活中的轴对称图形,根据学生的认知特点,把切合教学,有民族文化特色的题材渗透在数学学科中,配上轻音乐,拉近了生活与数学的距离。
最后是布置一个“小小设计师”的作业。
本节课我为学生创设了一个小蝴蝶和小蜻蜓比美的情境,教师只是设计一些问题,让学生在操作中发现问题并解决问题,这样教学,学生的思维空间很大。在教学过程中指导学生观察、思考、操作并引导概括,获取新知;在练习中让学生感受到数学知识就在我们身边,日常生活中经常会碰到,也经常要用到。通过这样的教学设计,让学生带着思考走出课堂,在生活中继续体验数学的乐趣。在小学数学的学习中同学们要打好学习的基础,增加自己的信心,上文学大为大家提供的是五年级数学轴对称图形教案,希望大家了解。
最后阅读完本文(五年级数学轴对称图形教案)之后,学大教育的小编将为大家推荐更多的相关文章,内
容相当精彩,一定不要错过。