第一篇:2017年考研英语阅读材料之谷歌无人驾驶汽车
凯程考研,为学员服务,为学生引路!
2017年考研英语阅读材料之谷歌无人驾
驶汽车
MOUNTAIN VIEW, Calif.— Google, a leader in effortsto create driverless cars, has run into an odd safety conundrum: humans.加利福尼亚州山景城——作为无人驾驶汽车研发领域的领头羊,谷歌(Google)遇到了一个奇怪的安全难题:人类。
Last month, as one of Google’s self-driving cars approached a crosswalk, it did what it wassupposed to do when it slowed to allow a pedestrian to cross, prompting its “safety driver” toapply the brakes.The pedestrian was fine, but not so much Google’s car, which was hit frombehind by a human-driven sedan.上月,当谷歌的一辆自动驾驶汽车来到人行横道前时,它像设想的那样放慢速度让一名行人先行,促使“安全驾驶员”启动刹车。那个行人没事,但谷歌那辆车却没那么幸运。它被后面的一辆由人驾驶的轿车追尾了。
Google’s fleet of autonomous test cars is programmed to follow the letter of the law.But it canbe tough to get around if you are a stickler for the rules.One Google car, in a test in 2009,couldn’t get through a four-way stop because its sensors kept waiting for other(human)drivers to stop completely and let it go.The human drivers kept inching forward, looking for theadvantage — paralyzing Google’s robot.按照设计,谷歌的自动测试车会严格遵守法律条文。但如果拘泥于规则,上路可能都会变得困难。在2009年的一次测试中,谷歌的车没能通过一个十字路口,因为它的传感器一直在等着其他(人类)司机彻底停下来,让它过去。但其他司机一直在向前蹭,寻找有利时机。这种情况让谷歌的机器人陷入了瘫痪。
It is not just a Google issue.Researchers in the fledgling field of autonomous vehicles say thatone of the biggest challenges facing automated cars is blending them into a world in whichhumans don’t behave by the book.“The real problem is that the car is too safe,” said DonaldNorman, director of the Design Lab at the University of California, San Diego, who studiesautonomous vehicles.这不仅仅是谷歌面临的问题。自动化车辆这一新兴领域的研究人员称,自动车面临的最大挑战之一是让它们融入一个人类不照章行事的世界。“真正的问题是,这些车太追求安全了,”研究自动车辆的加州大学圣迭戈分校设计实验室(Design Lab at the University of California, San Diego)主任唐纳德·诺曼(Donald Norman)说。
“They have to learn to be aggressive in the right amount, and the right amount depends onthe culture.”
“它们得学会适度强硬,而什么叫做适度则取决于不同的文化。”
Traffic wrecks and deaths could well plummet in a world without any drivers, as someresearchers predict.But wide use of self-driving cars is still many years away, and testers
凯程考研,为学员服务,为学生引路!
arestill sorting out hypothetical risks — like hackers — and real world challenges, like whathappens when an autonomous car breaks down on the highway.正如一些研究人员预言的那样,世界上如果没有驾驶员,交通事故造成的伤亡会大大减少。然而,广泛使用自动驾驶汽车仍是多年后的事,测试人员仍在应对像黑客这种假设的风险和现实世界里的挑战,比如自动驾驶车辆在公路上出故障了应该怎么办。
For now, there is the nearer-term problem of blending robots and humans.Already, cars fromseveral automakers have technology that can warn or even take over for a driver, whetherthrough advanced cruise control or brakes that apply themselves.Uber is working on the self-driving car technology, and Google expanded its tests in July to Austin, Tex.目前,让机器人和人类同时上路这个问题更紧迫。多家汽车生产商的车辆已经掌握了警告或是代替驾驶员的技术,不管是通过先进的巡航控制,还是可以自行启动的刹车。Uber正在研发自动驾驶汽车技术,谷歌也于今年7月把测试扩展到了德克萨斯州的奥斯汀。
Google cars regularly take quick, evasive maneuvers or exercise caution in ways that are atonce the most cautious approach, but also out of step with the other vehicles on the road.谷歌汽车通常会迅速采取回避操作,或是谨慎行事。后者立即会变成最谨慎的应对方式,但同时也将导致与路上其他车辆格格不入。
“It’s always going to follow the rules, I mean, almost to a point where human drivers who get inthe car and are like ‘Why is the car doing that?’” said Tom Supple, a Google safety driver duringa recent test drive on the streets near Google’s Silicon Valley headquarters.“它永远都会遵守规则,我是说,几乎到了坐在车里的人类驾驶员会想‘这车干嘛那么做?’的地步,”汤姆·苏普莱(Tom Supple)说。最近,谷歌在其位于硅谷的总部附近的街道上进行了一次试驾,而苏普莱正是当时的安全驾驶员。
Since 2009, Google cars have been in 16 crashes, mostly fender-benders, and in every singlecase, the company says, a human was at fault.This includes the rear-ender crash on Aug.20,and reported this morning by Google.The Google car slowed for a pedestrian, then the Googleemployee manually applied the brakes.The car was hit from behind, sending the employee tothe emergency room for mild whiplash.自2009年以来,谷歌汽车发生了16次撞车事故,大部分是轻微碰撞。谷歌称,每次碰撞都是人的错,包括公司今天上午通报的发生在8月20日的那起追尾。当时,谷歌的车因为行人放慢了速度,安全驾驶员随后手动刹车。接下来,车子被追尾,导致此人因颈椎轻微受伤而进了急诊室。
Google’s report on the incident adds another twist: While the safety driver did the right thingby applying the brakes, if the autonomous car had been left alone, it might have braked lesshard and traveled closer to the crosswalk, giving the car behind a little more room to stop.Would that have prevented the collision? Google says it’s impossible to say.谷歌有关这起事故的报告揭示了另一个问题:尽管安全驾驶员启动刹车的行为是正确的,但如果让自动汽车独自行驶,它的刹车力度可能不会那么强,因此会行驶到离人行横道更近的地方,给后车留出稍微多一点的刹车空间。这样能避免撞车吗?谷歌表示无从得知。
There was a single case in which Google says the company was responsible for a crash.Ithappened in August 2011, when one of its Google cars collided with another moving vehicle.But, remarkably, the Google car was being piloted at the time by an employee.Another humanat fault.谷歌称,只有一次撞车事故责任在自己身上。那是2011年8月,谷歌的一辆车与另一辆正在行驶中的车相撞。但需要注意的是,当时谷歌的车是由一名工作人员操控的。所以,2页共2页
凯程考研,为学员服务,为学生引路!
错还是在人。
On a recent outing with New York Times journalists, the Google driverless car took twoevasive maneuvers that simultaneously displayed how the car errs on the cautious side, butalso how jarring that experience can be.In one maneuver, it swerved sharply in a residentialneighborhood to avoid a car that was poorly parked, so much so that the Google sensorscouldn’t tell if it might pull into traffic.前不久载着《纽约时报》的记者出行时,谷歌的无人驾驶车采取的两次避让操作,既显示出了它因过于谨慎而出错的情形,也表明了那种经历会令人多么恼火。一个操作是,它为了避开一辆车而在一个住宅区急转弯。那辆车停得很糟糕,以致于谷歌的传感器无法识别它会不会开到车道上来。
More jarring for human passengers was a maneuver that the Google car took as it approacheda red light in moderate traffic.The laser system mounted on top of the driverless car sensedthat a vehicle coming the other direction was approaching the red light at higher-than-safespeeds.The Google car immediately jerked to the right in case it had to avoid a collision.Inthe end, the oncoming car was just doing what human drivers so often do: not approach a redlight cautiously enough, though the driver did stop well in time.对车里的乘客来说,车子行驶到一处红灯前时采取的操作更是令人气恼。当时,车流量属中等。安装在那辆无人驾驶车顶部的激光系统检测到,反方向的一辆车正在以高于安全水平的车速朝着红灯开来。于是,谷歌的车猛地右拐,以防撞车。但其实,那辆车的行为不过是人类驾驶员通常会做的:遇到红灯时不够小心,但司机还是很及时地停了下来。
Courtney Hohne, a spokeswoman for the Google project, said current testing was devoted to“smoothing out” the relationship between the car’s software and humans.For instance, at four-way stops, the program lets the car inch forward, as the rest of us might, asserting its turnwhile looking for signs that it is being allowed to go.谷歌无人驾驶车项目的发言人考特妮·霍恩(Courtney Hohne)说,当前的测试是为了“理顺”车的软件和人之间的关系。比如,在十字路口,程序允许车像我们其他人可能会做的那样,慢慢向前蹭,在寻找其他车让自己过的迹象时果断转弯。
The way humans often deal with these situations is that “they make eye contact.On the fly,they make agreements about who has the right of way,” said John Lee, a professor of industrialand systems engineering and expert in driver safety and automation at the University ofWisconsin.威斯康星大学(University of Wisconsin)的工业与系统工程教授、驾驶员安全与自动化问题专家约翰·李(John Lee)说,遇到这种情况时,人类通常会“进行眼神交流。在行进中,他们会对谁有先行权达成协议”。
“Where are the eyes in an autonomous vehicle?” he added.“那么自动车辆的眼睛在哪里呢?”他接下来问道。
3页共3页
第二篇:2018年考研英语阅读材料之日本汽车制造商
凯程考研,为学员服务,为学生引路!
2018年考研英语阅读材料之日本汽车制
造商
Japanese carmakers
日本汽车制造商
Lots of oomph
活力无穷
Japan's small-car firms are defying the industry'sget-big-or-die imperative
日本的小厂商们正在与“要么大,要么死”这一条金科玉律抗争
ONE of the conundrums of the car business is thatfive smaller Japanese firms continue to prosper alongside three giants, Toyota, Nissan andHonda.In theory, those in the second division—Mazda, Mitsubishi, Suzuki and Subaru—shouldlong ago have merged with rivals at home or abroad, or fallen by the wayside.Daihatsu isalready controlled by Toyota, which has a 51% stake in the firm.They all sell 1m-2m vehicles ayear.Sergio Marchionne, boss of Fiat Chrysler, once said that 6m was the minimum required forcarmakers to have a hope of turning a profit.目前,汽车产业里有着这样一个费解的情况:在三大巨头(丰田Toyota、日产Nissan和本田Honda)的身旁,五家较小的日本公司能够持续地取得出色业绩。理论上来说,这些
凯程考研,为学员服务,为学生引路!
prospect.马自达汽车,作为一家与铃木相比规模更小的公司,欣然地脱离了福特汽车(Ford)的怀抱。为了筹措现金和避免破产,福特汽车公司在2008年开始逐步抛售所拥有的马自达汽车股份。这两家公司从1979年开始就成为了合作伙伴。而与此同时据报道称,作为富士重工(Fuji Heavy Industries)集团的一份子,斯巴鲁汽车正对丰田公司(全球最大的制造商)所拥有的该公司16.5%的股份表示不满。对于与三大巨头联合的小规模制造商来说,那个“显而易见”的脱困方案,现在反倒成了一份“遥远的期待”。
It helps that all are making generous profits after years of losses.A weaker currency meansthey are well-nigh printing money, notes Max Warburton of Sanford C.Bernstein, an equity-research firm.Subaru and Mazda, the biggest exporters among the five, are enjoying recordsales in North America.Subaru now outsells VW there.The Japanese small-fry are also moreprofitable than most firms in the industry.在长年累月的亏损期过后,目前这些制造商正赚着十分可观的利润,而这确实能让他们缓一口气。来自证券分析公司斯坦福·伯恩斯坦(Sanford C.Bernstein)的Max Warburton表示,日元的走弱差不多等同于日本车商正全力发动马达印制钞票。斯巴鲁和马自达是五家公司里出口贸易量最大的两家,他们在北美市场的销售量取得了纪录新高。现在斯巴鲁在当地的销量还超过了德国大众。同时,这些日本
凯程考研,为学员服务,为学生引路!
产销售方面享受到了长期的税收减免优惠。“轻型”车受到广大女性群体和长者们的欢迎,目前这些迷你轿车和迷你货车的销售量已经占了日本新车市场的五分之二。虽然日产和本田也在生产“轻型”车,但那较小的三家制造商要比两大巨头更为依赖“轻型”车。
The government now seems to have heeded the warnings of the largest carmakers, that makingkei cars diverts attention and funds from the development of models with export potential.Adecision earlier this year to raise taxes on the category bodes ill for their manufacturers.WhileSubaru and Mazda are successful outside Japan, and Suzuki is envied for making big profitsselling small cars, the weakest of the second tier may soon face fresh difficulties.现在,日本政府似乎已经注意到了汽车巨头们的警告,后者认为大力制造“轻型”车,会减少在其他具有出口潜力车型的开发方面所需的精力和资金投入。今年早些时候日本政府决定提高“轻型”车的税率,这也预示着生产该车型的厂商前景趋于黯淡。当斯巴鲁和马自达在海外市场大获成功之时,铃木汽车旗下“轻型”车的巨额利润也同样令人眼红。然而,这
第三篇:考研英语之自我介绍
考研英语复试之英语自我介绍
pesonel statement(introduction)
good morning,my dear teachers,my dear professors.i am very glad to be here for your interview.my name is song yonghao,i am 22 years old.i come from luoyang,a very beautiful aicent city.my undergratuade period will be accomplished in chang'an university in july ,2004;and now,i am trying my best for obtaining a key to tongji university.generally speaking ,i am a hard working student especially do the thing i am interested in.i will try my best to finish it no matter how difficult it is.when i was sophomore, i found web design very interesting, so i learned it very hard.to weaver a homepage for myself, i stayed with my pesonel computer for half a month.,and i am the first one in my class who own his homepage.forthermore,i am a person with great perserverence.during the days preparing for the first examination,i insist on running every day, no matter what the weather was like.and just owning to this,i could concentrate on my study and succeeded in the end.well ,in my spare time ,i like basketball, tennis and chinese chess.also english is my favorate.i often go to english corner to practise my oral english on every thursday,and write compositions to improve my witten ability.but i know my english is not good enough ,i will continue studying.ok, that is all,thank you for your attention.my hometown------luoyang
i am from luoyang,a beautiful city in henan province.it is famous as the “capital of nine dynasties ” and enjoy yhe honer that luoyang peony is the best in the world.luoyang played a very important role in chinese history.so it has a profound cultural background and many great heritagesites have been well reverved.such as longmen grotto, one of the three grottoes in china ang white horse temple, being regarded as the cradle of chnese buddhism.luoyang peony is world-famous.every year, many tourists travel to luoyang to see the beauty of peony.the people in my hometown are friendly, they welcome the travellers from all over the world.i like my hometown very much.考研面试英语口语自我介绍
good morning, my name is jack, it is really a great honor to have this opportunity for a interview, i would like to answer whatever you may raise, and i hope i can make a good performance today, eventually enroll in this prestigious university in september.now i will introduce myself briefly,i am 21 years old,born in heilongjiang province ,northeast of china,and i am curruently a senior student at beijing XX uni.my major is packaging engineering.and i will receive my bachelor degree after my graduation in june.in the past 4 years,i spend most of my time on study,i have passed CET4/6 with a ease.and i have acquired basic knowledge of packaging and publishing both in theory and in practice.besides, i have attend
several packaging exhibition hold in Beijing, this is our advantage study here, i have taken a tour to some big factory and company.through these i have a deeply understanding of domestic packaging industry.compared to developed countries such
as us, unfortunately, although we have made extraordinary progress since 1978,our packaging industry are still underdeveloped, mess, unstable, the situation of employees in this field are awkard.but i have full confidence in a bright future
if only our economy can keep the growth pace still.i guess you maybe interested in the reason itch to law, and what is my plan during graduate study life, i would like to tell you that pursue law is one of my lifelong goal,i like my major packaging and i won't give up,if i can pursue my master degree here i will combine law with my former education.i will work hard in thesefields ,patent ,trademark, copyright, on the base of my years study in department of p&p, my character? i cannot describe it well, but i know i am optimistic and confident.sometimes i prefer to stay alone, reading, listening to music, but i am not lonely, i like to chat with my classmates, almost talk everything ,my favorite
pastime is valleyball,playing cards or surf online.through college life,i learn how to balance between study and entertainment.by the way, i was a actor of our amazing drama club.i had a few glorious memory on stage.that is my pride
英文自我介绍三
General Introduction*
I am a third year master major in automation at Shanghai Jiao Tong University, P.R.China.With tremendous interest in Industrial Engineering, I am writing to apply for acceptance into your Ph.D.graduate program.Education backgroundIn 1995, I entered the Nanjing University of Science & Technology(NUST)--widely considered one of the China’s best engineering schools.During the following undergraduate study, my academic records kept distinguished among the whole department.I was granted First Class Prize every semester, and my overall GPA(89.5/100)ranked No.1 among 113 students.In 1999, I got the privilege to enter the graduate program waived of the admission test.I selected the Shanghai Jiao Tong University to continue my study for its best reputation on
Combinatorial Optimization and Network Scheduling where my research interest lies.At the period of my graduate study, my overall GPA(3.77/4.0)ranked top 5% in the department.In the second semester, I became teacher assistant that is given to talented and matured students only.This year, I won the Acer Scholarship as the one and only candidate in my department, which is the ultimate accolade for distinguished students endowed by my university.Presently, I am preparing my graduation thesis and trying for the honor of Excellent Graduation Thesis.Research experience and academic activity
When a sophomore, I joined the Association of AI Enthusiast and began to narrow down my interest for my future research.In 1997, I participated in simulation tool development for the scheduling system in Prof.Wang’s lab.With the tool of OpenGL and Matlab, I designed a simulation program for transportation scheduling system.It is now widely used by different research groups in NUST.In 1998, I assumed and fulfilled a sewage analysis & dispose project for Nanjing sewage treatment plant.This was my first practice to convert a laboratory idea to a commercial product.In 1999, I joined the distinguished Professor Yu-Geng Xi's research group aiming at Network flow problem solving and Heuristic algorithm research.Soon I was engaged in the FuDan Gene Database Design.My duty was to pick up the useful information among different kinds of gene matching format.Through the comparison and analysis for many heuristic algorithms, I introduced an improved evolutionary algorithm--Multi-population Genetic Algorithm.By dividing a whole population into several sub-populations, this improved algorithm can effectively prevent GA from local convergence and promote various evolutionary orientations.It proved more efficiently than SGA in experiments, too.In the second semester, I joined the workshop-scheduling research in Shanghai Heavy Duty Tyre plant.The scheduling was designed for the rubber-making process that covered not only discrete but also continuous circumstances.To make a balance point between optimization quality and time cost, I proposed a Dynamic Layered Scheduling method based on hybrid Petri Nets.The practical application showed that the average makespan was shortened by a large scale.I also publicized two papers in core journals with this idea.Recently, I am doing research in the Composite Predict of the Electrical Power system assisted with the technology of Data Mining for Bao Steel.I try to combine the Decision Tree with Receding Optimization to provide a new solution for the Composite Predictive Problem.This project is now under construction.Besides, In July 2000, I got the opportunity to give a lecture in English in Asia Control Conference(ASCC)which is one of the top-level conferences among the world in the area of control and automation.In my senior year, I met Prof.Xiao-Song Lin, a visiting professor of mathematics from University of California-Riverside, I learned graph theory from him for my network research.These experiences all rapidly expanded my knowledge of English and the understanding of western culture.I hope to study in depth
In retrospect, I find myself standing on a solid basis in both theory and experience, which has prepared me for the Ph.D.program.My future research interests include: Network Scheduling Problem, Heuristic Algorithm research(especially in GA and Neural network), Supply chain network research, Hybrid system performance analysis with Petri nets and Data Mining.Please give my application materials a serious consideration.Thank you very much
第四篇:自动控制综合设计-无人驾驶汽车计算机控制系统
自动控制综合设计
——无人驾驶汽车计算机控制系统
指导老师:
学校:
姓名:
目 录
一 设计的目的及意义
二 智能无人驾驶汽车计算机控制系统背景知识
三 系统的控制对象
四 系统总体方案及思路 系统总体结构 2 控制机构与执行机构 3 控制规律 系统各模块的主要功能 5 系统的开发平台 6 系统的主要特色
五 具体设计 系统的硬件设计 2 系统的软件设计
六 系统设计总结及心得体会
一 设计目的及意义
随着社会的快速发展,汽车已经进入千家万户。汽车的普及造成了交通供需矛盾的日益严重,道路交通安全形势日趋恶化,造成交通事故频发,但专家往往在分析交通事故的时候,会更加侧重于人与道路的因素,而对车辆性能的提高并不十分关注。如果存在一种高性能的汽车,它可以自动发现前方障碍物,自动导航引路,甚至自动驾驶,那将会使道路安全性能得到极大提高与改善。本系统即为实现这样一种高性能汽车而设计。
二 智能无人驾驶汽车计算机控制系统背景知识
智能无人驾驶汽车是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。目前对智能汽车的研究主要致力于提高汽车的安全性、舒适性,以及提供优良的人车交互界面。近年来,智能车辆已经成为世界车辆工程领域研究的热点和汽车工业增长的新动力,很多发达国家都将其纳入到各自重点发展的智能交通系统当中。
通过对车辆智能化技术的研究与开发,可以提高车辆的控制与驾驶水平,保障车辆行驶的安全通畅、高效。对智能化的车辆控制系统的不断研究完善,相当于延伸扩展了驾驶员的控制、视觉和感官功能,能极大地促进道路交通的安全性。智能车辆的主要特点是以技术弥补人为因素的缺陷,使得即便在很复杂的道路情况下,也能自动地操纵和驾驶车辆绕开障碍物,沿着预定的道路轨迹行驶。
三 系统的控制对象
(1)系统中心控制部件(单片机)可靠性高,抗干扰能力强,工作频率最高可达到25MHz,能保障系统的实时性。
(2)系统在软硬件方面均应采用抗干扰技术,包括光电隔离技术、电磁兼容性分析、数字滤波技术等。
(3)系统具有电源实时监控、欠压状态自动断电功能。(4)系统具有故障自诊断功能。
(5)系统具有良好的人性化显示模块,可以将系统当前状态的重要参数(如智能车速度、电源电压)显示在LCD上。
(6)系统中汽车驱动力为500N时,汽车将在5秒内达到10m/s的最大速度。
四 系统总体方案及思路 系统总体结构
整个系统主要由车模、模型车控制系统及辅助开发系统构成。
智能车系统的功能模块主要包括:控制核心模块、电源管理模块、路径识别模块、后轮电机驱动模块、转向舵机控制模块、速度检测模块、电池监控模块、小车故障诊断模块、LCD数据显示模块及调试辅助模块。每个模块都包括硬件和软件两部分。硬件为系统工作提供硬件实体,软件为系统提供各种算法。控制机构与执行机构
智能车主要通过自制小车来模拟执行机构,自制小车长为34.6cm,宽为24.5cm,重为1.2kg,采样周期为3ms,检测精度为4mm。
控制机构中,主控制核心采用freescale16位单片机MC9S12DG128B。系统在CodeWarrior软件平台基础上设计完成,采用C语言和汇编语言混合编程,提供强大的辅助模块,包括电池检测模块、小车故障诊断模块、LCD数据显示模块以及调试辅助模块。在路径识别模块,系统利用了freescaleS12系列单片机提供的模糊推理机。控制规律
因为系统电机控制模块控制小车的运动状态,其在不同阶段特性参数变化很大,故采用数字PID控制器,该控制器技术成熟,结构简单,参数容易调整,不一定需要系统的确切数字模型。系统各模块的主要功能
控制核心模块:使用freescale16位单片机MC9S12DG128B,主要功能是完成采集信号的处理和控制信号的输出。
电源管理模块:对电池进行电压调节,为各模块正常工作提供可靠的电压。路径识别模块:完成跑道信息的采集、预处理以及数据识别。后轮电机驱动模块:为电机提供可靠的驱动电路和控制算法。转向舵机控制模块:为舵机提供可靠的控制电路和控制算法。速度检测模块:为电机控制提供准确的速度反馈。
电池监控模块:对电池电量进行实时监控,以便科学的利用,保护电池。小车故障诊断模块:对小车故障进行快速、准确的诊断。LCD数据显示模块:显示系统当前状态的重要参数。调试辅助模块:使得小车调试更加方便。系统的开发平台
系统软件开发平台采用CodeWarrior for S12,CodeWarrior是Metrowerks公司的,专门面向Freescale所有的MCU与DSP嵌入式应用开发的软件工具,CodeWarrior for S12是面向以HC12或S12为CPU的单片机嵌入式应用开发的软件包。包括集成开发环境IDE、处理器专家库、全芯片仿真、可视化参数显示工具、项目工程管理器、C交叉编译器、汇编器、链接器以及调试器。系统的主要特色
(1)系统中引用了模糊推理机
模糊推理机是freescaleS12单片机一个重要的内部资源,利用模糊推理的三个步骤——模糊化、模糊逻辑推理、反模糊化,可以从路径传感信号,推理出精确的控制量。
(2)系统中采用了数字滤波技术
数字滤波技术可靠性高、稳定性好、具有很强的灵活性、可以根据不同的干扰情况,随时修改滤波程序和滤波方法。
五 具体设计 系统的硬件设计
系统硬件系统框图如下:
以下按各模块来分别设计本硬件电路:(1)电源管理模块
电源管理模块的功能对电池进行电压调节,为各个模块正常工作提供可靠的工作电压。电源管理模块采用7.2V、2000mAh镍镉电池以及LM2576(5V),LM317(6V)稳压芯片构成。
(2)微处理器
微处理器是freescale公司推出的S12系列增强型的16位单片机MC9S12DG128,该系列单片机在汽车电子领域有着广泛的应用。
(3)路径识别模块
路径识别模块是智能车系统的关键模块之一,其设计的好坏直接影响到智能车控制系统的性能。目前能够用于智能车辆路径识别的传感器主要有光电传感器和CCD/CMOS传感器。本设计红外发射管和红外接收管以及达林顿管ULN2803A作为路径识别的传感器。采用双排传感器的策略,第一排传感器专门用于识别路径以及记忆路径的各种特征点,第二排传感器专门用于识别起始位置与十字交叉路口,由于不同传感器的功能不一样,因此它们的布置与安装位置也是不同。传感器的设计主要包括传感器布局,传感器间隔距离,径向探出距离,信号的采集几部分构成。
(4)后轮驱动和速度检测模块
智能车前进的动力是通过直流电机来驱动的,本设计的驱动直流电机的型号为RS—380SH,输出功率为0.9W—40W。在实际生活中,我们可能遇到弯道,为了能使模型车在过弯道的时候能快速地把速度减下来,电机驱动部分采用了两块MC33886组成的全桥式驱动电路,可以控制电机的反转以达到制动的目的。
在闭环控制系统中,速度指令值通过微控制器变换到驱动器,驱动器再为电机提供能量。速度传感器再把测量的小车的速度量的实际值回馈给微控制器。以便微控制器进行控制。因此要对控制系统实行闭环控制,必须要有感应速度量的速度传感器。常用的有轴编码器,它主要用来测量旋转轴的位置和转速。
(5)转向舵机模块
凡是需要操作性动作时都可以用舵机来实现。本设计采用的舵机型号为HS—925(SANWA),尺寸为39.4*37.8*27.8,重量56kg,工作速度0.11sec/60(4.8V),0.07sec/60(6.0V),堵转力矩6.1kg。一般来讲,舵机主要由以下基本分组成:舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路板等。其中,直流马达提供了原始动力,带动减速齿轮组,产生高扭力的输出,齿轮组的变速比愈大,输出扭力也愈大,越能承受更大的重量,但转动的速度也愈低。在设计中,为了提高舵机的响应速度和工作力矩,采用6.0V工作电压。
(6)电源电压检测模块
智能车采用镍镉电池供电,由于镍镉电池具有记忆效应,对电池的不完全放电会认为降低电池的电容量,同时深度放电又会导致电池内部结构变化,造成对电池的永久损害,因此,在智能车控制系统中加入电源监控模块,当电池电压低于6V时及时自动报警,并切断电路,用来保护电池。本模块用到的主要器件为光电耦合芯片TLP521—2以及运算放大器LM324。
(7)液晶显示模块
为了完善智能车控制系统的功能,使其更加人性化,同时为了方便测试,在设计中,加入液晶显示模块,把智能车系统当前状态的一些重要参数显示出来。本模块用到的器件为LCD控制器HD44780。
(8)辅助调试模块(红外遥控)
在智能车调试阶段,小车经常出现启停的情况,例如高速行驶的小车有时因为异常情况冲出跑道,以这样的速度碰到周围的障碍物上,势必损坏小车的部件,这个时候就需要小车立刻停下来。为此,在智能车系统上添加红外遥控模块,当想启动小车或者想让小车停止时,只需要按下遥控器上的按键,就可以很方便实现小车的启停。本模块主要用红外接收器HS0038A和红外遥控器来进行遥控控制。
(9)故障诊断模块
小车的故障诊断模块原理很简单,就是利用单片机的SCIO口,通过RS—232接口与上位机连接起来,通过软件编程,小车不断的向上位机发送代码,通过故障代码就可以马上诊断出故障源。系统的软件设计
在智能车系统中,软件系统主要有以下几个部分:路径识别算法、后轮驱动电机控制算法、转向舵机控制算法、速度检测等。单片机系统需要接收路径识别电路的信号、车速传感器的信号,采用某种路径搜索算法进行巡线判断,进而控制转向伺服电机和直流驱动电机。控制策略的选择对于小车的行驶性能是非常重要的,控制小车的最终目的就是要使小车在平稳行驶的前提下,尽可能地以最快速度和最短的路线行驶。下面简要介绍各模块的软件算法。
(1)后轮驱动电机控制算法
电机控制算法的作用是接受指令速度值,通过运算向电机提供适当的驱动电压,尽快尽量平稳地使电机转速达到速度值,并维持这个速度值。换言之,一旦电机转速达到了指令速度值,即使遇到各种不利因素的干扰下,也应保持速度值不变。
因此我们采用数字控制器的连续化设计技术PID控制算法来控制本部分电路。
① 数学模型的设定
我们设定系统中汽车车轮的转动惯量可以忽略不计,并且认为汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动方向相反。这样,我们就可以用以下模型来仿真之。
根据牛顿运动定律,该系统的动态数学模型可表示为:
mabvuyu
我们对系统的参数进行设定,设汽车质量m=1000kg,比例系数b=50N*s/m,汽车驱动力u=500N。
根据系统的设计要求,系统中汽车驱动力为500N时,汽车将在5秒内达到10m/s的最大速度。同时我们可以将系统的最大超调量设计为10%,静态误差设计为2%。
② 系统的开环阶跃函数表示
为了得到系统的传递函数,我们进行拉普拉斯变换。假定系统的初始条件为零,则:
msV(s)bV(s)U(s)Y(s)V(s)
所以系统的传递函数为:
Y(s)1 U(s)msb运用MATLAB编程实现该传递函数模型: m=1000 b=50 u=500 num=[1] den=[m b] sys=tf(num,den)step(u*sys)title('系统开环节跃响应曲线')
从图上我们看出,系统不符合5秒的上升时间要求,故需要加上合适的控制器。
③ PID控制器的设计 PID控制器的传递函数为:
KDs2KpsKIKIU(s)1 D(s)Kp(1TDs)KpKDsE(s)TIsss我们运用凑试法来确定PID的各参数。
首先我们确定采样周期。采样周期的选择既不能过大也不能过小,过小会使采样频率较高,一方面会加重单片机的负担,另一方面两次采样值的偏差变化太小,数字控制器的输出值变化不大。同时采样周期也不能太大,太大会降低PID控制器的准确性,从而不能正常发挥PID控制器的功能。综上所述,我们首先选择T=0.2s来进行实验,如果效果不好,我们在对其进行微调。
然后我们进行比例控制器的设计。比例控制器一般将加快系统的响应,在有静差的情况下有利于减小静差。我们首先设定Kp=100,则程序与仿真图为:
nc=100;dc=1;dd=tf(nc,dc)dz=c2d(dd,0.1,'tustin')np=1;dp=[1000 50] g=tf(np,dp)gd=c2d(g,0.1,'tustin')sysold=dz*gd;syscld=feedback(sysold,1)step(500*syscld);title('比例控制器作用下的阶跃响应(驱动力为500N)')
从图中可以看出,系统静态值太高,而且上升时间也远远不能满足设计要求。我们改变汽车驱动力为10N,再次进行仿真,仿真结果如下(程序中只需改动step语句为step(10* syscld)即可):
我们看到系统静态值虽然产生了较大幅度的下降,但仍然不能满足要求。我们再将Kp从100逐步增加,直至改为1500进行测试(程序改动为nc=1500),我们发现此时仿真静态值与静态误差以及上升时间已基本满足系统需求,从而我们完全可以通过继续增加比例系数来调节系统特性,进而理论上可以省去积分环节。但是随着比例系数的增加动态过程将让人不满意,其动态变化将过快,从而给驾驶人员带来身体上的不适(图二为比例系数增至5000时的仿真波形,我们发现在0.1s的时间内,汽车速度将从2m/s骤增至5m/s),所以我们从人性化角度考虑,增加积分环节:
图二 积分环节的加入可以调节系统的静态误差。我们设定Kp=1000,Ki=10,此时程序和仿真图形如下:
nc=[1000 10] dc=[1 0] dd=tf(nc,dc);dz=c2d(dd,0.1,'tustin')np=1;dp=[1000 50] g=tf(np,dp)gd=c2d(g,0.1,'tustin');sysold=dz*gd;syscld=feedback(sysold,1);step(10*syscld,10);title('比例积分控制器作用下的阶跃响应')
我们可以看到,此时静态误差过大,我们调节积分系数为50(改变程序为nc=[1000 50]),再次仿真:
我们看到系统已基本实现设计要求,实际设计中可以不加入微分环节。鉴于此次设计为课程设计,为保证设计完整性,我们在加入微分环节来观察一下微分环节对系统性能的影响。
设Kd=10,则程序为: nc=[10 1000 50] dc=[1 0] dd=tf(nc,dc);dz=c2d(dd,0.1,'tustin')np=1;dp=[1000 50] g=tf(np,dp)gd=c2d(g,0.1,'tustin');sysold=dz*gd;syscld=feedback(sysold,1);step(10*syscld,10);title('比例积分微分控制器作用下的阶跃响应')
我们发现此图与上图区别不明显,即微分作用不明显,我们将微分系数更改为500(程序更改为nc=[500 1000 50]):
我们清楚的发现,系统初始值明显变大,即微分作用可以加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。
当采样周期改为T=1s时,系统程序与仿真波形为: nc=[500 1000 50] dc=[1 0] dd=tf(nc,dc);dz=c2d(dd,1,'tustin')np=1;dp=[1000 50] g=tf(np,dp)gd=c2d(g,1,'tustin');sysold=dz*gd;syscld=feedback(sysold,1);step(10*syscld,10);title('比例积分微分控制器作用下的阶跃响应 T=1s')
我们可以看到效果远远不如T=0.1s时的情况。所以综上所述,我们设计的PID控制器的传递函数为:
D(s)U(s)1000s50,采样周期为T=0.1s。E(s)s然后,我们利用数字控制器的离散化设计步骤来设计本系统。通过前面的分
Y(s)1析,我们知道被控对象的连续传递函数为:。其中,m=1000,b=50。U(s)msb1eTs因为零阶保持器的传递函数为:H(s)。所以得到广义对象的脉冲传递
S函数为:
1eTs11G(z)Z[*](1z1)Z[]
s1000s50s(1000s50)11111
(1z1)Z[*]*(1z1)*20*Z[]
1000s(s1)1000ss120201(1e)z110.0488z1]*
[ 11505010.9512z1e20z1120对单位脉冲输入信号的十倍,R(z)下:
10,选择 (z)z1。仿真程序如11zG=tf([0,0.0488,0],[50,47.56,0],1,'variable','z^-1')H=tf([0,1,0],[1],1,'variable','z^-1')R=tf([10,0,0],[1,-1,0],1,'variable','z^-1')Y=R*H figure(1)impulse(Y)He=1-H E=He*R D=H/(G*(1-H))U=E*D figure(2)impulse(U)
从图中可以看出,在十倍的单位阶跃信号,采样周期为1s时,只需一拍输出就能跟踪输入,误差为零,非常好的达到了系统的设计要求。
然后,我们再看一下增量型PID控制器的效果: 当比例积分微分系数不变时,程序如下: kp=1000 ki=50 kd=500 G=tf(1,[0,1000,50])Gd=c2d(G,0.1,'z')[num,den]=tfdata(Gd,'v')u_1=0 u_2=0 y_1=0 y_2=0 e_1=0 e_2=0 q0=kp+ki*0.1+kd/0.1A q1=-kp-2*kd/0.1 q2=kd/0.1 for k=1:1:1000 t(k)=k*0.1 r(k)=10 y(k)=1-den(2)*y_1+num(2)*u_1 e(k)=r(k)-y(k)u(k)=q0*e(k)+q1*e_1+q2*e_2 u(k)=u_1+u(k)u_2=u_1 u_1=u(k)y_2=y_1 y_1=y(k)e_2=e_1 e_1=e(k)end plot(t,y)程序运行结果为:
我们可以清楚地看到,除超调量超过系统要求外,其余要求均符合系统初始条件,我们可以通过增加微分系数来减小超调,直至使其满足系统要求。
(2)路径识别模块的软件设计 路径识别模块的工作框图见下页。
智能车路径识别算法是智能车软件设计中最关键的一部分,智能车设计的大部分工作都是围绕它来展开的。路径识别算法概括起来有两种:一种是静态识别,所谓静态识别就是只根据小车的当前时刻的输入量来识别小车的位置;另一种是动态识别,所谓动态识别就是根据小车的当前时刻以及前面的N个时刻的信号输入量来识别小车的运动趋势。
路径识别主要运用MC9S12DG128B内部的模糊推理机运用模糊逻辑的基本知识来实现。
本模块也可以用数字PID控制算法来实现,鉴于后轮驱动电机控制算法已详细的运用了PID来讲述之,此处不再赘述。此处运用PID的思想即通过与数字地图比较偏差,从而不断调整小车路线,达到路径识别的功能。
(3)数字滤波技术
在电动机数字闭环控制系统中,测量值yk是通过系统的输出量进行采样而得到的。它与给定值r(t)之差形成偏差信号ek,所以,测量值yk是决定偏差大小的重要数据。测量值如果不能真实地反映系统的输出,那么这个控制系统就会失去它的作用。在实际中,对电动机输出的测量值常混有干扰噪声,用混有干扰的测量值作为控制信号,将引起误动作,在有微分控制环节的系统中还会引起系统震荡,危害极大。
在本系统设计中,采用了移动平均滤波法。移动平均滤波法没计算一次测量值,只需采样一次,所以大大加快了数据处理速度,非常适合于实时控制。
移动平均滤波法是将采样后的数据按采样时刻的先后顺序存放在RAM中,在每次计算前先顺序移动数据,将队列前的最先采样的数据移出,然后将最新采样的数据补充到队列的尾部,以保证数据缓冲区里总有n个数据,并且数据仍按采样的先后顺序排列。这时计算队列中各数据的算术平均值,这个算术平均值就是测量值yk,它实现了每采样一次,就计算一个yk。
(4)转向舵机控制算法
舵机控制是智能车系统中很重要的一个环节,舵机控制的好坏也直接影响了小车的控制效果,舵机的控制信号为20ms的脉宽调制信号,其中脉冲宽度从0.5ms—2.5ms,相对应舵盘的位置为0—180度,呈线性变化。也就是说,给它一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。
(5)速度检测软件设计
速度传感器采用红外对射式传感器,传感器感应出与速度相关的脉冲后,接下来就要识别这些脉冲。有两种方法可以识别,一种是通过测量脉冲的宽度来识别小车的速度,另一种是通过计算一定时间内的脉冲的个数来识别小车的速度。本设计采用后一种方法。在本设计中利用了MC9S12DG128B内部的两个资源,分别是RTI中断和输入捕捉中断:通过RTI中断,可以控制一定的时间,这段时间是固定的;通过输入捕捉中断,来计算捕获脉冲的个数,最后通过在这段时间内捕获的脉冲个数来反映小车速度的大小。
六 系统设计总结及心得体会
该智能车控制系统智能化程度较高,使用操作简单,性能可靠;采用专用单片机控制系统,提高系统工作可靠性;智能化程度较高,在一定程度下,基本不用人工操作;采用LCD液晶显示,人机交互化程度较高。总体而言,为一质量较高的设计。这次控制器的设计,引发了我的很多思考。对控制对象施以控制的要求,以及具体实现后,在现实生活中的可以用具体事物实现。这次设计让我在理论与实际之间的概念转换上得到很大的启发。还有就是任何一项设计的具体实现是需要我们的耐心和细心。
第五篇:2018考研英语高频句型之比较句型
东莞中公教育
2018考研英语高频句型之比较句型
考研英语长难句中常见10种结构句型,考生若是能够熟练掌握,相信分析起来会轻松不少。中公考研准备了“2018考研英语高频句型之比较句型”,希望对大家有所帮助!
一、理论常识 比较结构
1.no/not...other than 2.the 比较级„„,the 比较级„„ 3.rather...than...4.more than / no more than 5.less than / no less than 6.more A than B / no more A than B 7.less A than B / no less A than B 8.nothing else than 10.as much as 11.not as...as...12.not so much...as...二、真题举例
They may teach very well , and more than earn their salaries , but most of them make little or no independent reflections on human problems which involve moral judgment.(2006,50)【重点词汇解析】reflection,n.反射、沉思;involve,n.涉及、包含
【参考翻译】他们可能擅长教书,而且不仅仅专注于赚钱,但是这些人大部分对涉及人类道德判断的问题很少或没有进行独立的思考。