第一篇:采暖供热系统节能改造的典型应用
采暖供热系统节能改造的典型应用
2008-06-12 13:05:01 作者:
来源:建筑环境与设备 第16期
采用了天然气锅炉“采暖供暖系统节能”新技术后,解决了目前燃气锅炉供暖系统耗能大、能源有效利用率低、供暖质量差的问题,显著地降低了天然气、电、水等能源的耗量。同时缓解了我省天然气供不应求的矛盾,冬季耗气量峰谷差过大的问题,若对全陕西省70%天然气锅炉进行节能改造,则冬季平均每天就可节约天然气50万立方米,同时优化了管网运行工艺,在目前供不应求的现状下,可以让有限的资源得到更充分有效的利用。
关键字:改造[91篇]
□陕西成明环保科技有限公司李琦李成明
采暖供热系统节能改造的意义(一级)
采用了天然气锅炉“采暖供暖系统节能”新技术后,解决了目前燃气锅炉供暖系统耗能大、能源有效利用率低、供暖质量差的问题,显著地降低了天然气、电、水等能源的耗量。同时缓解了我省天然气供不应求的矛盾,冬季耗气量峰谷差过大的问题,若对全陕西省70%天然气锅炉进行节能改造,则冬季平均每天就可节约天然气50万立方米,同时优化了管网运行工艺,在目前供不应求的现状下,可以让有限的资源得到更充分有效的利用。
供暖系统节能改造新技术(一级)
1、将原来的采暖供热单一的系统分为两个系统,供热部分为小系统,负责高效率的生产热能,外网的循环系统为大系统,用来定性定量的进行调控所需温度,用小系统控制整个大系统,提高了锅炉运行热效率,可节约能源20%以上。
2、供热系统在设计上采用小流量、变流速、大温差的方案,替代传统的大流量、大流速、小温差运行的方式,实现了低能耗、高效率的运行;采暖系统在设计上采用大流量、恒流速、小温差的方案,替代传统的小流量、小流速、大温差,达到了平稳恒定的采暖效果。
3、通过专家识别系统软件,实现了采暖供热的智能控制,达到了按需供热。智能供暖调控管理中心采用多个温度采集点,把当日当时室外气温、锅炉出水温度、管网损耗及温度、建筑结构的情况精确地采集,将温度变化信息传输到控制系统中,实时在线计算能耗、热量、室内温度理论值,并与测量的实际室内温度进行对比,综合建筑结构、管网效率等因素,由计算机给各种执行机构提供运行管理的最佳调控指令,实现动态调节,使锅炉按需供给热量。
原采暖供热系统为了达到同一目的,提高锅炉的温度,采用的是截流锅炉的高温出水,然后返回与锅炉的回水混合,再进入锅炉提升温度,部分水需要二次加热,锅炉运行效率低、能耗大。
理论上锅炉的高效率运行温度为:70℃~90℃(常压锅炉);90℃~130℃(带压锅炉),但在实际供热期,有75%以上的时间,锅炉供热温度低于以上温度,锅炉供热未达到高效率运行温度,即采用低温供暖,极易造成锅炉内部结露、锈蚀,使用寿命大大降低;若供暖期间,始终满足锅炉高效率运行,会导致外网温度过高,能源浪费严重的运行状态。
原锅炉为满足供暖要求,采用传统的采暖供热方式,使外网温度的时高时低,超供和欠供现象严重;为降低燃料的运行成本,采用间歇式供暖,造成外网水平热力失调和垂直热力失调,系统补水量大大增加。
传统的供暖运行方式,受人为因素影响较大。现有的锅炉操作人员相对知识水平和素质参差不齐,在锅炉运行管理中,责任心强、弱和技术水平高、低的差别,使供暖运行费用差别也很大。
典型案例(一级)
改造项目名称:西安文理学院采暖供热系统节能改造(二级标题)
西安文理学院采暖供热原有基本情况(二级标题)
1、6吨/小时采暖热水锅炉3台
2、供暖面积:14.11万平方米
3、循环水泵:共四台,两大两小(一大一小用,一大一小备用)
Q=280m3/hH=80mη=75千瓦
Q=180m3/hH=65mη=55千瓦
4、补水泵:两台(一用、一备)
Q=24m3H=79mη=11千瓦
5、间断式定时供暖。(供热约14~16小时/天)
6、西安市天然气价格:1.75元/m3(西安市天然气发热值8000大卡/M3)
西安文理学院供暖改造前存在的问题(二级标题)
1、锅炉的运行效率低,采暖费用高,改造前冬季采暖燃气量111万立方,燃气费用195万元。
2、全校供暖为分区、分时、分段、分温供暖,不必要的能耗损失大。
3、水力失调严重,供暖面积较大,水力失调问题较严重。上热下不热,前热后不热。
4、循环泵,补水泵配置不合理。水量小、扬程高与现有的供暖系统水泵的技术要求不匹配。
5、采暖供热系统结垢严重,有的支管阻塞严重,供暖热水都过不去,尤其是末端问题更为突出。
6,采暖系统管路问题较多。热管线较长,间断供热热损失较大。渗透水、地面水(浇花草、雨水)、管道漏水等,地沟被水淹,管线浸泡水中,管路阻塞,阀门损坏等等,热损失很大,系统补水量大。
7、传统的供暖运行方式,受人为因素影响较大,浪费较大。
针对性改造(二级标题)
根据西安文理学院采暖供热特点及改造前存在的问题,依照“热量随着学生走”的改造原则,对西安文理学院进行有针对性的节能改造。
对锅炉房内及外管网改造,解决采暖供热系统水力失调问题;安装智能型系统水力平衡控制系统,解决冬季采暖高层循环水气堵问题;更换循环泵,安装自动定压系统,解决循环系统和系统定压不稳问题;安装智能型调温节能控制系统,温度传感器无线数字传输网络系统,实现供暖区域内室内温度自动监测及控制;对该院采暖供热系统,实施分时分温分段自动化节能控制;采用专用水射器,同时实现采暖供热系统全自动控制、动态调节循环水力大小;对采暖供热系统进行清洗,清理系统结垢,提高整体供热效率。
改造前后采暖季耗气量、耗水量、耗电量统计(二级标题)
天然气节能情况统计(三级标题)
改造前冬季采暖耗气量:
120天燃气总量为:111(万m3)
改造后冬季采暖耗气量:
120天燃气总量为:78(万m3)
冬季采暖燃气比较,节约天然气:33(万m3)节约燃气费用:57.75(万元)
系统补水量情况统计(三级标题)
改造前:采暖季系统补水量为:80(吨/天)
改造后:采暖季系统补水量为:40(吨/天)
冬季采暖补水比较,节约水量:4800(吨)
采暖季耗电量情况统计(三级标题)
(1)循环泵改造后采暖季节约电能37200(KW).改造前:126000(KW),改造后:88800(KW)
(2)除氧泵解决了无功损耗问题,每天节约电:110KW,采暖季电:3960(KW)
(3)补水泵节约电量:6144(KW)
改造前:7200(KW),改造后:1056(KW)
冬季采暖用电量比较节约电量为:41496(KW)
改造效果(二级标题)
通过成明公司节能改造,西安文理学院采暖供热系统节能改造达到了以下效果:
1、增加了供暖时间,每天的供暖时间由16小时增加到20小时,提高了采暖质量,同时降低了采暖费用,经核算节能率达到近30%。
2、解决现有的采暖供热不均的情况下,水力失调问题得到了有效解决,采暖合格率得到提高。
3、原采暖需三台同时运转,改造后,运转两台就能保证供暖要求,提高了锅炉的运行热效率,增加锅炉供暖面积,延长了锅炉使用寿命。
4、系统补水量大大降低,降低了水、电及热能的损耗。
5、节能改造后劳动、环保条件得到改善,采暖的卫生、舒适度等均有所提高。
陕西成明环保科技有限公司
电话:029---88328759
第二篇:中央空调系统节能改造方案
中央空调系统水泵变频节能改造方案
一、概述
中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。
由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。
二、水泵节能改造的必要性
中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。
由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。
水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。
再因水泵采用的是Y-△起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。
采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。
其减少的功耗 △ P=P0 〔 1-(N1/N0)3 〕(1)式
减少的流量 △ Q=Q0 〔 1-(N1/N0)〕(2)式
其中N1为改变后的转速,N0为电机原来的转速,P0为原电机转速下的电机消耗功率,Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方成正比。如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由(2)式△ Q=Q0 〔 1-(N1/N0)〕 =100 *〔 1-(90/100)〕 =10可得出流量改变了10个单位,但功耗由(1)式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90/100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1%。
再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接的因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道的使用寿命。
三、中央空调系统构成及工作原理 图一所示:
1、冷冻机组:通往各个房间的循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。
2、冷冻水塔:用于为冷冻机组提供“冷却水”。
3、“外部热交换”系统:由两个循环水系统组成: ⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。
4、冷却风机
⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换; ⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
中央空调系统的四个部分都可以实施节电改造。但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。
四、中央空调变频系统改造方案
现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。1.中央空调原系统简介:
1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。均采用两用一备的方式运行。冷却塔2台,风扇电机11KW,并联运行。室内风机4台,5.5KW,并联运行。
1.2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化。另外由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常接到客人的投诉,处理这些投诉造成不少人力资源的浪费。
根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命。2.中央空调系统节能改造的具体方案
中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统)。根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造的成功范例进行考察,现在水泵系统节能改造的方案大都采用变频器来实现。
2.1、冷冻(媒)水泵系统的闭环控制
制冷模式下冷冻水泵系统的闭环控制
该方案在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调。
该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统的控制方案。同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。不同的是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到的冷冻水回水温越高,变频器的输出频率越低。
2.2、冷却水系统的闭环控制
目前,在冷却水系统进行改造的方案最为常见,节电效果也较为显著。该方案同样在保证冷却塔有一定的冷却水流出的情况下,通过控制变频器的输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作的前提下达到节能增效的目的。
现有的控制方式大都先确定一个冷却泵变频器工作的最小工作频率,将其设定为:
下限频率并锁定,变频冷却水泵的频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器的输出频率越高;进、出水温差越小,变频器的输出频率越低。
2.3该中央空调节能系统具体装机清单如表二:
机组名称 机型 品牌 数量
冷冻水泵 45KW变频柜 ABB ACS800 两套
冷却水泵 75KW变频柜 ABB ACS800 两套
风机组 11KW变频柜 ABB ACS800 两套
室内风机 5.5KW变频柜 ABB ACS800 四套
配件 PLC 西门子S7300 一台
人机界面 西门子 一台
温度传感器 丹佛斯 两个
温度模块 欧姆龙 两个
数字转换模块 欧姆龙 两个
2.4介绍变频节电原理:
变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。
根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。
图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。
2.5介绍系统电路设计和控制方式
根据中央空调系统冷却水系统的一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上加装改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为了达到节能目的提供了可靠的技术条件。如图四所示:
2.6系统主电路的控制设计
根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。
2.7系统功能控制方式
上位机监控系统主要通过人机界面完成对工艺参数的检测、各机组的协调控制以及数据的处理、分析等任务,下位机PLC主要完成数据采集,现场设备的控制及连锁等功能。具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号。送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭。保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。
2.8介绍系统节能改造原理
1、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;
2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。
冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。
3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。
4、室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且空调效果较佳。2.5系统流量、压力保障
本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4—20MA、0—10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制。变频器根据PLC发出的类比信号决定其输出频率,以达到改变水泵转速并调节流量的目的。冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系;在水泵的扬程随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵扬程的实际需求一样要降低;而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。
五、中央空调系统进行变频改造的优点
变频节能改造后除了可以节省大量的电能外还具有以下优点:、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上的B处),简单可靠。、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率。3、当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率。而采用冷却管进、出水温度差来调节很难达到这点。4、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确。、节能效果更为明显。当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上。
额定电流变化,减小了大电流对电机的冲击;
六、ABB ACS800系列一体化变频器的优点 1.采用独特的空间矢量(SVPWM)调制方式; 2.操作简单,具有键盘锁定功能,防止误操作; 3.内置PID功能,可接受多种给定、反遗信号;
4.具有节电、市电和停止三位锁定开关,便于转换及管理; 5.保护功能完善,可远程控制;
6.超静音优化设计,降低电机噪声;
7.安装比较方便,不用破坏原有的配电设施及环境; 8.稳定整个系统的正常运行,抗干扰能力强;
9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。
七、结束语
在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,我公司已将变频器的应用扩展到传统中央空调改造的领域,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。
第三篇:节能改造项目应用的主要节能技术
辽宁龙腾科技发展有限公司作为专业节能技术的生产者和推广者,尤其作为东北首席智能化节能增效专家,得到了广泛赞誉和业界的认可。辽宁龙腾科技发展有限公司是国家发改委、世界银行、全球环境基金、中国节能服务产业委员会(EMCA)授权的节能示范服务机构,享受世界银行节能专项资金的支持,获国家节能减排贡献奖项、优秀示范奖项。龙腾科技以此为荣,坚持以“专业科技、高效节能、创造价值”为企业理念,一如既往的把“低消耗、高收益、促和谐”作为企业发展的宗旨,为企业节能增效,回报社会。
一、产品概述
LTPS是辽宁龙腾科技发展有限公司研制开发的新型节能设备,获得国家实用新技术国家专利,具备国际同行业领先水平,特别是在变频器软件控制程序方面更进一步智能化,使节电率大大提高,同时提高了防护等级,执行IP44标准,是军工、化工、煤矿、石化等大型现代工业的最佳选择,获得中华人民共和国建设部颁发的送变电工程专业承装类二级资质、专业承修类二级资质和专业承试类二级资质,并与中国水利、电力部结成了战略伙伴关系。
LTPS在变频调速的基础上,依据计算机模糊控制理论,结合PID控制原理,利用PLC多元化控制功能,开发出具有独立专利技术的优化控制软件,其根据系统的实际运行适时优化控制,使三者运行曲线均达到最佳,确保在满足系统需求的前提下大幅度提高系统效率,尽可能的降低能耗。
节能原理:在变频调速的基础上,依据计算机模糊控制理论,结合PID控制原理,利用PLC多元化控制功能,开发出具有独立专利技术的优化控制软件,其根据系统的实际运行状况,结合系统最根本需求,使三者运行曲线均达到最佳,确保在满足系统需求的前提下大幅度提高系统效率,尽可能的降低能耗。
二、产品特点
1、智能化
龙腾自主开发生产的设备核心LTPS智能化软件包,采用计算机模糊控制理论,对系统进行实时监测,数据通过与设备内部设定的参数(按照客户要求设定)进行对比,比较值输入到设备软件控制模块,通过PID控制功能和PLC实时编程控制功能,结合变频器变频控制功能,运算出更合理的运行数据,在确保满足系统需求的前提下,使电机在最佳状态下运行,尽可能的提高节电率,使系统达到合理化控制、立体化监视、高效率节能之目的,全面满足不同的客户多元化和复合式的需求。
2、安全性
产品构件90%以上都采用进口品牌,并与原启动柜构成备用系统,有过压、过流、缺相等保护,工作高效率稳定,并可根据客户要求定制,进行网络化管理和报警监测,动态跟踪检测,实时控制电机输出,在数字化、智能化、多元化、多时段控制模式下,最大程度的降低能耗,并保证系统运行的稳定性和安全性。
3、方便性
拥有自动/手动切换,操作简单方便。
4、经济性
采用当前国际上最先进的专用变频器和专利控制软件,自动调节水泵电机、风机转动,使电机始终在最经济的状态下运行,最大限度节能,年节电率不低于20%-40%。
5、变频控制
电机启动电流小于满载电流,减少电流对电网的冲击;降低设备运行时产生的噪音,延长设备的使用寿命;自动能耗优化,电机过热保护,调制频率自动化减少噪音;电机无需降额,通电电机自动测试,接地故障及短路保护;多行液晶显示,并能随时打印运行参数。
三、LTPS中央空调节能系统的介绍
1、中央空调能耗概述
大部分建筑物一年中,只有几十天时间,中央空调处于最大负荷。中央空调冷负荷,始终处于动态变化之中,如每天早晚,每季交替,每年轮回,环境及人文,实时影响中央空调冷负荷。
一般,冷负荷在50-60%范围内波动,大多数建筑物每年至少70%是处于这种情况。而大多数中央空调,因系统设计多数以最大冷负荷为最大功率驱动。这样,造成实际需要冷负荷与最大功率输出之间的矛盾,实际造成巨大能源浪费,给公司造成巨额电缆支出,增加经营者的成本,降低企业竞争力。
2、中央空调智能节电系统工作原理及技术优势
中央空调节能系统不是一台定型的设备,而是一种根据用户现有空调设备和运行工况所“量身定做”的一套节有系统装置。节能系统是运用动态跟踪控制技术、计算机模糊控制技术和变频技术,根据空调末端负荷的变化和空调主机的运行工况,自动对中央空调水系统参数(温度、压力、流量等)进行完整的采样,并以每0.1秒的刷新速度进行数字处理,随时调控空调,使系统供冷(暖)量跟随负荷的变化而同步变化,从而在确保中央空调系统能够满足人体对舒适度的要求的前提下,保证空调系统的能效比(COP值)总是处在最优化的节能运行状态,以此大幅度的降低系统能源消耗。
3、功能特点
(1)高效节能:LTPS节电系统实现了对空调主机、冷冻(供暖)水泵、冷却水泵、冷却塔风机等设备的集中管理,从而使空调辅机系统节能30%-60%、主机系统节能20%-50%。
(2)安全可靠:设备完全运行是保障企业安全生产的首要条件,特别是军工、化工、煤矿、石化等大型现代化工业防护对设备安全提出了更高的要求。LTPS产品系统核心部件全部采用国内外名牌产品,并与原启动柜构成备用系统,系统软件和硬件设置了多级互锁,并具有丰富的自检功能和自动报警功能;此外,产品本身也设计了良好的防尘及通风系统,以确保系统安全运行。
(3)自动控制:由自主定制开发的计算机软件控制系统控制中央空调外围相关设备的启动、连动、停止、复位、报警等,可实现无人值守运行,节省运行管理人员,降低运行费用。
(4)保护功能齐全,电机过热、过压、欠压、过流、接地、短路等保护。故障时可自动切换至工频系统,确保设备的正常使用。
(5)主机与操作部分分离,通过信号线连接,使安装能够更加符合使用者的要求。
(6)RS485/232总线通讯接口,具备远程控制或与BA系统连接的能力减少了系统间配线的工作量,同时也大大提高了系统可靠性、抗干扰性。
(7)全中文液晶显示界面,简单易操作,更集中化管理,更立体化。可设计密码保护,防止其他人员随意更改。
(8)控制采用数字化控制,PID智能调节。系统的响应速度快,精度高、稳定性好;(在人机界面上调整设定),大大简化了现场调试,并结合PLC的功能,使设备长期保持稳定工作。
三、施工方案 方案设计思路
设计的思路是,将原有系统与预装LTPS中央空调智能控制系统并存,互为备用。通过电路设计实现相互切换使用。正常情况下使用LTPS节电系统,在故障或者维护时可切换至原来系统运行,以保证水泵和风机的正常使用。设计原则是以不改变原供电系统的线路和功能为前提,确保空调系统的正常使用并优化中央空调循环泵系统的工作环境,达到节电的目的,同时由于实现软启动和软停车,减少了大电流对电机的冲击,延长了电机的寿命。
四、供回水恒温差控制系统
控制原理:
通过以供回水温差为过程变量的闭环模糊控制。温度传感器将供回水温度信号传输到控制系统,将测量温差与设定温差进行比较,判定差值,并通过比例积分计算,将电网输入控制系统的50HZ的交流电逆变为符合水泵电机控制要求频率的交流电输入空调水泵。在夏季,当采样温差小于设定温差时频率下降,采样温差大于设定温差时频率上升。在此控制过程中实现供回水温差的恒定与空调水泵实际能耗的节约,冬季情况与夏季相反。
系统组成:
LTPS智能供回水恒温差控制系统包含:控制系统主机1台、LCD中文显示1台、温度传感变送器1套、压力传感变送器1套(可选)。配备可选传感变送器可实现空调供回水压力的监测,根据系统需要进行选择。
五、节能分析
1、中央空调系统运行时间;
2、未改造时的总耗能;
3、改造后节约能耗。
六、财务分析
1、收益;
2、投资成本投资回报率:
3、总节电收益:
七、施工及售后服务
1、施工方式:
由辽宁龙腾科技发展有限公司负责生产并组织专业人员进行安装施工,周期为60天。
2、售后服务:
对售出产品,自用户购买之日起,提供为期18个月的免费产品保修以及终身有偿维护服务。提供24小时热线保证服务;产品保修期过后,可与公司签订维保协议,由辽宁龙腾科技发展有限公司负责该产品的维护和保修;保修服务只限正常使用前提下有效,一切人为因素或者自然灾害引起的设备损坏不在保修范围内。
第四篇:粮油公司蒸汽系统节能改造
粮油公司蒸汽系统节能改造
某粮油公司是一家日处理油料700吨的食用油生产企业。2011年,新建日处理油料350吨的色拉油车间。在进行蒸汽系统设计时,与我们苏州瑞克阀门的工程师进行了多次讨论和项目论证后,决定采用瑞克25P先导式隔膜减压阀对压力进行控制,并选用了蒸汽流量计对车间蒸汽系统的使用效率进行监控。当年实际投产运行后,统计数据表明:减压阀和流量计达到了满意的效果。特别是蒸汽流量计有效帮助监控蒸汽流量,控制生产成本,节约了能源。
20103年,在对瑞克公司及其产品性能有直接认识后,该公司进行能量监管和成本控制,决定对蒸汽系统进行改造,具体内容包括:
1.蒸汽流量:新增三套蒸汽流量计,分别用于蒸汽总管、预处理车间及浸出车间。这样,就实现了对整个蒸汽系统流量进行了监控的目的。
2.疏水阀组:选用瑞克FT14浮球蒸汽疏水阀、波纹管密封截止阀及止回阀等对预处理车
间及浸出车间的疏水组进行了改造。
3.冷凝水回收:该公司原已进行冷凝水回收,所有冷凝水回收至一个埋在地下的储水罐,再由热水泵回收。这种回收方式导致了大量的二次蒸汽产生及热能损失,同时占地面积大、热泵需维修、管理。改造中他们选用了瑞克公司冷凝水回收泵组合,直接将冷凝水自动送回锅炉给水箱。不再有大量二次蒸汽产生及热能损失。整套装置占地不到2立方米,同时无需维修和管理。
经过上述改造后,公司整个蒸汽系统的效率有明显的改进。各个车间的用汽量得到了有效的监控和管理;采用浮球式疏水阀和截止阀后,车间的设备换热效率提高,阀门无泄漏问题,用汽量显著减少;凝结水回收泵回收了高温冷凝水,使锅炉给水箱温度显著上升。
经统计,仅预轧和浸出车间,改造前的用汽量是14吨/小时;改造后两车间的用汽量下降为10吨/小时;按我公司生产每吨蒸汽成本100元计算,每年生产300天,仅一年蒸汽节约就达288万元之多!总之,经过改造后,该公司的蒸汽系统节能效果十分明显,节省了大量的能源和金钱!
第五篇:中央空调系统变频节能改造方案
中央空调系统变频节能改造方案
点击数: 465
刘佳畅
摘要 在我国经济快速发展的大背景下,能源(水、电、油)的消耗在企业中所占的比重越来越高,也受到愈来愈大的重视。同时由于房地产的快速发展需求,中央空调的市场需求呈现强劲的增长趋势。在市场容量不断增大的吸引下,越来越多的厂家加入到商用中央空调的领域。变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。
关键字 中央空调系统;水泵;风机;变频器
Abstract
Keywords 概述
中央空调系统在现代企业及生活环境改善方面极为普遍,而且是某些生活环境或生产工序中所必须配备的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。之所以要求配置中央空调系统,目的在于提高产品质量,提高人的舒适度,而且集中供冷供热效率高,便于管理,节省投资等。为此,几乎所有企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调,它是现代大型建筑物不可缺少的配套设施之一,但由于它的电能消耗非常之大,是用电大户,几乎占了用电量的50%以上,因此其日常开支费用很大。
中央空调系统都是按最大负载并增加一定余量设计的,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,绝大部分时间负载都在70%以下运行。通常,中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、D/A转换模块、温度传感器、温度模块等部件的有机结合,可构成温差闭环自动控制系统,自动调节水泵的输出流量。采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。中央空调系统构成及工作原理
如图1所示,中央空调系统主要由以下几个部分组成。2.1 冷冻机组
通往各个房间的循环水经由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。2.2 冷冻水塔
用于为冷冻机组提供“冷却水”。2.3 “外部热交换”系统
此系统由两个循环水系统组成:
1)冷冻水循环系统由冷冻泵及冷冻管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降;
2)冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,促使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组所释放的热量。
2.4 冷却风机
1)室内风机安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换。2)冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
中央空调系统的四个部分都可以实施节电改造,但冷冻水机组和冷却水机组改造后的节电效果最为理想。因此我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造,次要说明冷却风机的变频调速技术改造。3 中央空调系统变频改造的具体方案
现将淅江省嘉兴市某集团公司办公楼的中央空调系统的变频节能改造方案做一具体介绍。3.1 中央空调原系统存在的问题
该集团中央空调系统改造前的主要设备和控制方式:
1)450 t冷气主机2台,型号为特灵二极式离心机,两台并联运行; 2)冷冻水泵2台,扬程28 m,配用功率45 kW;
3)冷却水泵有2台,扬程35m,配用功率75 kW,冷冻水泵与冷却水泵均采用一用一备的方式运行; 4)冷却塔2台,风扇电机11 kW,并联运行,室内风机4台,5.5 kW,并联运行。
该集团是一家合资企业,为了给员工营造一个良好的工作环境,办公楼大部分空间采用全封密的模式,因此公司大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。除了一些节假日外,其它时间中央空调都是全开的。由于中央空调系统设计时按天气最热、负荷最大时设计,且留有10%~20%的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。原系统中冷冻、冷却水泵采用的均是Y-△起动方式,电机的起动电流均为其额定电流的3~4 倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械部件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用,设备也容易老化。
另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,结果只能是用大流量获得小温差。这样,不仅浪费能量,也恶化了系统的运行环
境与运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。
针对上述实际情况,对该集团的中央空调系统实施了利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统的方案。主要对冷冻、冷却水泵进行了变频调速技术改造,达到节约电能、稳定系统、延长设备寿命,提高环境舒适度的目的。3.2 中央空调系统节能改造的具体方案
对该中央空调节能系统进行变频节能改造的具体装机清单如表1所列。
3.2.1 变频节电原理
由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比;而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的
三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看得见的。特别是调节范围大、启动电流大的系统及设备,通过图2 可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,此特点使得使用变频器进行调速成为一种趋势,而且不断深入并应用于各行各业的调速领域。根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。
图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所消耗的功率差。3.2.2 系统电路设计和控制方式
根据中央空调系统冷却水系统的一般装机形式,建议在冷却水系统和冷冻水系统各装两套传动之星SD-YP 系列一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为达到节能的目的提供了可靠的技术条件。如图3所示,给出了主电路具体的改造方案。
3.2.3 系统主电路的控制设计
根据具体情况,同时考虑到成本控制,尽可能地利用原有的电器设备。冷冻水泵及冷却水泵均采用一用一备的运行方式,因备用泵转换时间与空调主机转换时间一致,切换频率不高,所以冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。3.2.4 系统功能控制方式
上位机监控系统主要通过人机界面完成对工艺参数的检测,各机组的协调控制以及数据的处理、分析等任务;下位机PLC主要完成数据采集,现场设备的控制及联锁等功能。具体工作过程中,开机时,开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由控制冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感
器信号自动选择开启台数;当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号;送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机时,关闭制冷机,冷水及冷却水泵以及冷却塔延时15 min 后自动关闭。保护时,由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。
3.3 系统节能改造原理
变频节能系统示意图如图4所示。
1)对冷冻泵进行变频改造PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调
节出水的流量,控制热交换的速度。温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度,加大流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度,减小流量,降低热交换的速度以节约电能。
2)对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。
3)冷却塔风机变频控制通过检测冷却塔水的温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。
4)室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且使空调效果更佳。
3.4 系统流量、压力保障
本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号
与设定值进行比较运算后输出一模拟信号(一般为4~20 mA、0~10 V等)给PLC,由PLC、D/A转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传送到上位机人机界面实行监视控制。变频器根据PLC 发出的模拟信号决定其输出频率,以达到改变水泵转速并调节流量的目的。
冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系。在水泵的扬程随转速的降低而降低的同时管道损失也在降 低,因此,系统对水泵扬程的实际需求一样要降低; 而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0 Hz时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。中央空调系统进行变频改造的优点
变频节能改造后除了可以节省大量的电能外还具有以下优点:
1)电机起动是软起动,电流从0 A到额定电流变化,减小了大电流对电机的冲击; 2)电机软起动转速从0 开始缓慢升速,可以有效减少水泵或风机的机械磨损;
3)变频器是高性能的电力电子设备,具有较强的电机保护功能,能延长系统各部件的使用寿命; 4)使室温维持恒定,让人感到舒适;
5)经过改造后,可以使系统具有较高的可靠性,减少了环境噪音,减少了维修维护工作量。5 传动之星SD-YP系列一体化变频器的优点 1)采用独特的空间矢量(SVPWM)调制方式; 2)操作简单,具有键盘锁定功能,防止误操作; 3)内置PID功能,可接受多种给定、反馈信号;
4)具有节电、市电和停止三位锁定开关,便于转换及管理; 5)保护功能完善,可远程控制; 6)超静音优化设计,降低电机噪声;
7)安装比较方便,不用改变原有的配电设施及环境; 8)稳定整个系统的正常运行,抗干扰能力强;
9)具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。6 结语
在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益,对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济
运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。