航空材料技术进展(精选五篇)

时间:2019-05-13 12:16:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《航空材料技术进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《航空材料技术进展》。

第一篇:航空材料技术进展

2.2航空材料技术进展

陈亚莉

(中国航空工业发展研究中心)

益小苏

(北京肮空材料研究院)

航空材料泛指用于制造航空飞行器的材料。一架军用飞机包括机体、发动机、几载电子和火力控制四大部分,一架民用客机包括机体、发动机、机载电子和机舱四大部分。机体材料和发动机材料是航空材料中最重耍的结构材料,而电子信息材料是航空机载装置中最重要的功能性材料,但它一般不直接算作航空材料。出于航室飞行及其安全性的考虑,航空结构材料的特点是轻质、高强、高可靠。飞行器作白一个整体,还用到少量非结构性材料,如阻尼、减振、降噪、密封材料等。

在现代材料科学与技术的发展历程中,航空材料一直扮演着先导和基础作用,几体材料的进步不仅推动飞行器本身的发展,而且带动了地面交通工具及空间飞行器的进步,发动机材料的发展则推动着动力产业和能源行业的推陈出新。“一代材料,一代飞行器”是航空工业发展的生动写照,也是航空材料带动相关领域发展的真实描述。可以说,航空材料反映结构材料发展的前沿,航空材料代表了一个国家结构材料技术的最高水平。

-、航空材料的研究与发展

1.机体材料

机体材料主要包括铝合金、钛合金和树脂基复合材料等,发展重点集中在低成本、高性能的树脂基复合材料技术。图1是欧洲空中客车飞机的主要用材示例,其中最显著的先进材料包括铝合金-玻璃纤维混杂复合材料GLARE,碳纤维复合材料GFRP,芳纶纤维复合材料AFRP,玻璃纤维复合材料GFRP以及韧性环氧树脂、双马来醚亚胺树脂和聚酚亚胺树脂基复合材料等,它们覆盖了航空飞行器机体的主要面积。

国际上航空先进树脂基复合材料的主要性能要求是,较高的耐温度使用性、尽可能高的抗损伤容限和尽可能低的湿热环境效应。就民用飞机上用量最大的碳纤维环氧树脂复合材料而言,近年的趋势是发展液态成型纺织复合材料和非热压罐成型技术如电子束辐照交联技术等,即“用得起”的制造技术(Affordable Proccessing))。而对更高的温度要求,双马来酚亚胺、特别是可以液态成型的聚酚亚胺树脂基复合材料(如PETI系列)的前景看好。

由于制造成本在复合材料构件总成本中所占份额最大,因此低成本成型制造工艺

技术是目前发展的重点,主要包括纺织复合材料和树脂传递模塑(RTM或近似的RFI)液态成型技术等。通过编织、经编、针织、机织、缝纫等制造顶成型体,以及液态成型如树脂浸渗(RI)和树脂转移模塑(RTM,使整体制造的成本降低,层间增强,并达到减重目标(图2)。其中,RTM技术在美国军用战斗机F-35垂尾及F/A18-E/F襟翼整流罩上的应用是使用该项技术制造的最大尺寸的零部件,前者长3.6m,重约90kg。我国在液态成型复合材料技术正在取得进展,图3为北京航空材料研究院制备的中机身液态成型树脂基复合材料剪切梁。

为了进一步迎接先进复合材料更高性能-价格比的挑战,欧洲空中客车公司提出的目标是更多地应用碳纤维复合材料CFRP以减重至30%,从而降低整个飞行成本40%。但是,CFRP技术在减重的同时,制造成本比金属焊接结构高。应用目前空中客车公司已储备的技术水平,可以达到减重15%、降低成本15%的目标;而采用新型金属焊接结构制作机身,减重10%却降低成本20%,可见在发展低成本、高性能复合材料方面还大有潜力。图4是空中客车公司正在研制的全碳纤维复合材料机翼的静力实验。美国也有“高速民航机研究计划”,其中心任务是开发聚醚亚胺复合材料和钛/石墨纤维混杂复合材料等。

各国都非常重视扩展先进复合材料应用的技术平台建设。目前,美国正在执行“汽车复合材料技术向航空转移计划”和“复合材料用得起计划”。

2.发动机材料

目前最先进的军用航空发动机主要材料有钛合金、高温合金以及各类高温和超高温复合材料等。在21世纪前10年的叶片材料中,单晶叶片材料仍占主导地位。叶片材料经历了铸造合金、定向凝固合金和单晶合金的发展历程,国外现役发动机叶片材料主要采用第二代和第三代单晶合金。这些单晶合金由于富铼易产生脆性相,近年来研究加入钌或铱以减少脆性倾向,开发出第四代单晶。叶片技术发展的趋势是将结构一材料-工艺统一考虑,即开发lamiloy技术,采用铸造及激光打孔工艺直按制造发散冷却孔道。

除提高叶片材料的耐温等级外,将金属间化合物与韧性金属组成的微叠层复合材料作为叶片的“热障涂层”受到重视。该技术依靠耐高温金属间化合物提供高温强度和蠕变抗力,利用高温金属作韧化元素,从而很好地克服了金属间化合物的脆性。目前采用真空热压箔、物理气相沉积、铸造和固态反应等方法已研制出几种微米层次的微叠层复合材料,包括Nb-Cr2Nb、NB-Nb5Si3以及Nb-MoSi2等。微叠层纳米热障涂层可望将叶片的耐温能力提高260℃。除用于叶片外,微叠层复合材料在无疲劳合金涂层、抗砂蚀树脂基复合材料风扇叶片涂层等方面也有应用机遇。

我国发动机叶片材料发展态势良好,仅铸造涡轮叶片材料就超过20种,并开展了单晶镍基高温合金、金属间化合物、陶瓷和C/C复合材料的研制。我国低密变、低成本的第一代单晶合金DD3性能与国外同代合金相当,已用于直升机小发动凯涡轮叶片;第二代单晶高温合金DD6正在推广应用于先进的涡轮发动机叶片,其承温能力相当于国外同代合金,而成本更低。就涡轮盘材料而论,除广泛使用的粉末盘及其发展型的双性能粉末盘、三性指粉末盘外,细晶变形盘由于成本低也被看好。俄罗斯就坚恃认为采用传统熔铸变形盘,完全可满足第四、五代发动机的需要。作为一种新的涡轮盘方案,近年丕开发了无夹杂的喷射盘。该技术与粉末冶金工艺相比具有工序简化、成本降低的优势,其快凝组织特性又奠定了其性能优势,包括远优于铸锻工艺、相当或高F粉末冶金工艺的强度与持久寿命,优于粉末冶金工艺的塑性、韧性及低周疲劳寿命,因晶粒细化而改善的热加工性能等。由于传统变形盘的工艺设备均能使蔼用,且材料利用率高,成本明显低于粉末盘,因此,喷射盘有可能成为粉末盘的强劲对手。

二、航空材料发展趋势

航空材料的发展趋势是种类增多,成本降低,性能提高。具体体现为:传统材料大有可为,新型材料亟待应用,新兴材料层出不穷;材料的通用化、标准化势在必行,可靠性、可维修性、低成本和环保性要求日趋严格。

1.传统材料大有可为

传统航空材料凝结了大量的研究成果,也积累了可贡的使用经验,轻易放弃这些传统材料划不来。正如美国“先进民用飞机新材料专业委员会”、“国家材料咨询局”、“航空航天工程局”、“工程和技术系统专业委员会”和“国家研究委员会”等五大单位在《用于下一代民用运输机的新材料》的联合研究报告中所指出的,即“目前影响民航业、制造商和材料工业的动荡不定的经济气候,己经使先进材料的应用准则发生了重大的变化,从而使材料性能不再是选材的首要标准。飞机制造商对民航业降低总成本(包括采购和维修成本)的耍求也正在做出反应,要求材料的变化方式是逐步改善,即渐进演化式的,而不是革命性的”。

这种渐进演化式发展反映为,在复合材料改进、传统金属材料超纯熔炼,以及铸、锻件的研制、试验和生产过程中,抛弃了试凑的传统方法,代之以材料性能和产品制造一体化的可设计和可预测的全新概念,广泛引人仿真及人工智能技术,特别是在制蚤制造技术方面不断取得进展和开拓创新。这种高技术含量、高附加值的航空材料的发展以信息技术、自动化技术和先进制造技术的高速发展为依托,将对航空材料的发展产生着深远的影响。

2.新型材料亟待应用

冷战时期的积累和长期的超前研究储备了相当数量的新材料,但它们至今仍在候选名单上等待应用,典型例子有高性能的双马来醚亚胺树脂基复合材料、热塑性树脂基复合材料和各种金属基复合材料等。暂时不应用这些材料的原因很复杂,其中之一是新材料过高的成本-效益比,包括采购、制造、取证和全寿命等。对先进的高性能复合材料及其结构而言,至今仍对其基本的失效机理及其相互间的作用缺乏深刻而本质的认识,因此,工业界出于技术和安全风险的考虑,缺乏了解先进材料的热情,也没有使用先进材料的经验,更没有等待先进材料发展成熟的耐心。世界范围内的激烈竞争使材料主管部门很难为中长期的发展计划做出长期的财务承诺,结果是很难建立起精干而专业性的材料研究、发展和供应基地。

3.新兴材料层出不穷

新技术特别是纳米技术为航空材料的发展开拓了新的思路,人们充满热情地研究由片状纳米黏土改性的环氧树脂、双马来醚亚胺树脂和聚醚亚胺树脂芯磕擅赘男缘穆梁辖穑谕谛阅苌匣竦孟灾岣摺Sⅰ⒌碌裙杂商寄擅坠茉銮康氖髦春喜牧峡沽诵矶嘌芯抗ぷ鳎峁砻鳎蘼哿ρ阅芑故堑绱判阅芫懈慕D擅准际醯姆⒄够褂辛Φ卮撕娇詹牧系姆⒄梗缋状镎帜擅追烙晖坎阋约耙聿牧系哪擅谆取?

4.材料标准化、通用化势在必行

随着国际经济的一体化,航空材料在国际材料市场上的流通以标准化、通用化为前提。目前,国际航空材料的发展趋势是在国内取消军用标准,而代之以军民两用标准。在国际范围内实施国际化标准,有利于国际合作与交流及市场开拓,如俄罗斯在铝锂合金和钦合金的出口问题上,以往因未与国际标准接轨,使上述材料出口受阻。为扩大出口,俄罗斯己逐步改用国际标准。中国已经进人WTO,但我国航空材料的体系建设以及航空材料的通用化、标准化现状却很落后。原因主要在于我国航空材料多是在跟踪和引进的基础上发展而来,形成了各国航空材料在我国并存的混乱局面。国防工业科学技术委员会和中国航空工业正着手开展中国航空材料体系的建设工作,这将为我国航空材料的健康发展创造更好的发展前提。

5.低成本和可维修性成为趋势

航空材料的高技术特征必然带来高成本。目前环氧树脂的价格大约是每磅7美元,钛为每磅10美元,先进复合材料为每磅60美元。降低航空产品采购成本的主要途径是改变设计概念、采用低成本材料和成形加工技术等,降低航空产品使用成本或全寿本成本的主耍途径是提高材料的可靠性和寿命。航空产品在选材时不仅要考虑使用性能,而且还必须考虑可维修性。如果航空产品的全寿命成本及维修费用为采购成本的两倍时,就需重新考虑选材问题,发展高可靠性、维修性能好的航空材料,以延长结构使命寿命和简化维修越来越受到重视。

三、发展我国航空材料的建议

我国航空材料工业存在的主要问题可以总结为“五多五少”∶仿制材料多而创斤材料少,低水乎材料多而高水乎材料少,立项研制的材料多而改进改型的材料少,获奖励的材料多而真正用上的材料少,和单一用途的材料多而一材多用的材料少。此外,部门之间的协调机制也不够健全,低水乎重复、各自为政和无序竞争严重困扰着我国航空材料科研和生产的健康发展。根据“有限目标,突出重点”的原则,我国航空材料界对关键技术的筛选进辆〔深人讨论,普遍认同的三大关键技术是复合材料技术、涡轮盘材料技术和涡轮叫≠材料技术。目前正在实施的“十五”科技发展汁划将针对这些问题,集中力量攻关,以开创我国航空材料发展的崭新局面。

铝、镁、钛等金属的密度小,分别为2.7g/cm3、1.7g/cm3、和4.5g/cm3、,因此,这几种金属通常被称为轻金属,其相应的铝合金、镁合金、钛合金则称为轻合金[1,2]。铝合金具有比重小、导热性好、易于成形、价格低廉等优点,已广泛应用于航空航天、交通运输、轻工建材等部门,是轻合金中应用最广、用量最多的合金[3~5]。镁合金具有比重小,比强度、比刚度高,阻尼性、切削加工性、导热性好,电磁屏蔽能力强,尺寸稳定,资源丰富,易回收,无污染等优点,因此,在汽车工业、通信电子工业和航空航天工业等领域正得到日益广泛的应用,近年来全世界镁合金产量的年增长率高达20%,显示出了极为广泛的应用前景[1,15]。钛合金比重小、耐蚀性好、耐热性高、比刚度和比强度高,是航天航空、石油化工、生物医学等领域的理想材料;同时,钛的无磁性、钛铌合金的超导性、钛铁合金的储氢能力等特性,使得钛合金在尖端科学和高技术方面发挥着重要作用[1,32]。

本文简要综述目前国内外在轻合金方面的研究开发、应用现状及最新进展,分析了我国在轻合金材料发展及其应用方面存在的问题,提出了今后一段时间我国在轻合金材料研究、开发

与应用方面的对策。

-、铝合金

1.铝合金的发展

铝合金是一种较年轻的金属材料,在20世纪初才开始工业应用。第二次世界大战期间,铝材主要用于制造军用飞机。战后,由于军事工业对铝材的需求量骤减,铝工业界便着手开发民用铝合金,使其应用范围由航空工业扩展到建筑业、容器包装业、交通运输业、电力和电子工业、机械制造业和石油化工等国民经济各部门,应用到人们的日常生活当中。现在,铝材的用量之多,范围之广,仅次于钢铁,成为第二大金属材料。铝材应用的迅速发展是世界铝工业界不断开发新的铝合金材料的结果[3~5]。表1列出了铝合金的特性及主要应用领域[2]。

铝合金的发展可追溯到1906年时效强化现象在柏林被Alfred Wilm偶然发现,硬铝Duralumin、随之研制成功并用于飞机结构件上[7]。在此基础上随后开发出的Al-Cu-Mg系合金,如2014和2024,其抗拉强度为350~480MPa',至今仍在使用。第二次世界大战期间,由于军用航空材料的需要,抗拉强度超过500MP'的Al-Zn_Mg_Cu.合金发展起来,其中最著名的合金是7075[6]。第二次世界大战后,-系列新合金(尤其是7000系),如7050、7010、7475和7055等研制成功。这些铝合金的研制,在不断提高强度的同时,更加注重改善其抗应力腐蚀性能和断裂韧性,以提高构件的工作可靠性[1]。目前,高强、高韧是铝合金发展的主要方向。

2.铝合金的新进展

(1)Al-Cu-Mg合金系(2000)。

为提高2024的断裂韧性,通过控制合金中的Fe、Si杂质量并调整溶质元素的量,美国研制出了2124、2048和2524等合金[1,10]。其中新合金2524已广泛用于B777机身,在强度相当的条件下,其断裂韧性和抗疲劳能力明显优于2024[7]。

2000系合金的高温蠕变强度很高,典型合金有2618和2219。其中2219合金是一种焊接性、耐热性、韧性都很好的合金,主要用作航空油箱材料。进一步降低2219合金中的Fe、Si杂质量,提高Cu含量使之超过固溶极限以上,开发了韧性更高的2419、2021及2004合金,而且2004合金超塑性能良好[10]。

研究发现,微量Ag(~0.1at.%)可促进所有含Mg铝合金的时效强化。由此开发出的典型合金有Al-4Cu-0.3Mg-0.4Ag和Al-6.3Cu-0.4Mg-0.4Ag-0.3Mn-0.2Zr。与其他2000系合金相比,前者具有优良的蠕变性能;后者既具有较高的室温强度,又提高了高温和蠕变性能[1]。最近,法国也发明了一种高蠕变强度的含Ag铝合金(芙国专利No.5738735)[12]。

(2)Al-Zn-Mg-(Cu)合金系(7000)。

对于7000系合金,长期困扰的问题是7079-T6和7075-T6等合金抗应力腐蚀开裂性差,为此开发了T73热处理工艺。T73热处理对防止应力腐蚀很有效,但与T6处理相比,材料强度降低了15%[1]。

因此,很多研究都围绕着如何既获得T6的强度又具有T73的抗应力腐蚀性能。通过调整成分和工艺,出现了7049、7050、7150和7033等合金;添加Zr代替Cr,开发了7010和7012合金;在T73之前对合金进行热变形;采用T77处理工艺的合金,如7055-T7751,用于B-777客机以承受压缩载荷为主的上机翼翼面,使其重量减少了635kg[1,6,10];英国开发、1999年6月在美国注册的7034合金,则具有优秀的损伤容限[13]。

(3)Al-Li合金系。

铝锂合金作为一种低密度、高弹性模量、高比强度和高比刚度的铝合金,在航空航天领域显示出了广阔的应用前景。例如,美国1998年用2195铝锂合金代替2219合金,制造奋进号航天飞机的液氢液氧外推进剂贮箱,减轻重量约3500kg,获得巨大效益[6~8]。

按时间顺序和性能特点可将铝锤合金划分为三代。第一代以1957年美国Alcoa公司研究成功的2020合金为代表,但其塑韧性水乎太低。第二代为20世纪70~80年代发展起来的铝锂合金,其中具有代表性的合金有.苏联的1420,美国的2090,英国的8090和8091,法国的2091等,这些合金具有密度低、弹性模量高等优点,都已获得了一定的应用,其中1420是目前最为成熟的铝锂合金[8,11]。进入20世纪90年代以后,人们针对第二代铝锂合金本身存在的各向异性、不可焊、塑韧性及强度水平较低等问题,开发出了一些具有特殊优势的第三代新型铝锂合金。如高强可焊的1460和Weldalite系列合金,低各向异性的AF/C489和AF/C458台金,高韧的2097和2197合金,高抗疲劳裂纹的C-155合金,及经特殊真空的XT系列合金,超轻的8024Al-Li_zr合金(1999年注册)等[10,13]。其中对高强可焊合金和低各向异性合金的研究最多,是第三代铝锂合金的发展方向。表2为第三代主要铝锂合金的典型性能[8,13]。

(4)铸造铝合金。

开发能够替代部分变形铝合金的高强韧铸造铝合金可以缩短制造周期,降低成本。国外最著名的高强韧铸造铝合金有法国的A-U5GT,美国的201.0,这些合金都具有很好的力学性能。我国的ZL205A,抗拉强度为510MPa,延伸率可达13%。最近;北京航空材料研究院研制出一种与ZL205A成分相近、韧性特别好的铸造铝合金,其延伸率达19%~23%,冲击韧性为ak181~304kJ/m2[9]。

近年来,铸造铝基复合材料发展较为迅速,例如,铸造Al-Si基SiC颗粒增强复合材料,提高了合金的性能,尤其是刚性和耐磨性,并已应用到航空、航天、汽车等领域。此外,一些新型的具有特种功能的铸造铝合金材料也处于研究应用阶段。

(5)快速凝固/粉末冶金铝合金和喷射沉积铝合金。

在快速凝固/粉末冶金(RS/PM)铝合金方面,国内外已出现了几种典型的合金,如高强耐蚀的Al-Zn_Mg_Cu(7090、7091和X7093)系铝合金,耐热的Al-Fe(8009、X8019和LG5)、Al-Cr.和Al-Ti系铝合金,低密度高模量的Al-Li-Cu-Mg-Zr铝合金,高硅耐磨铝合金等[3]。

近几年来,喷射沉积铝合金工艺受到英国、法国、瑞士和日本等国家的高度重已用于生产2000系、7000系、AL-Li系、AL-Si系等合金,碳化硅颗粒增强铝合金复合材料[3]。(6)其他新型铝合金及技术。其他近年来发展成功或正在研制的具有发展前景的新型铝合金及技术如表3所示[13].二、镁合金

1.镁合金的发展

镁合金是实际应用中最轻的金属结构材料,但与铝合金相比,镁合金的研究和发展还很不充分,镁合金的应用也还很有限。目前,镁合金的产量只有铝合金的1%。镁合金作为结构应用的最大用途是铸件,其中90%以上是压铸件[14]。

限制镁合金广泛应用的主要问题是:由于镁元素极为活泼,镁合金在熔炼和加工过程中极容易氧化燃烧,因此,镁合金的生产难度很大;镁合金的生产技术还不成熟和完善,特别是镁合金成形技术有待进一步发展;镁合金的耐蚀性较差;现有工业镁合金的高温强度、蠕变性能较低,限制了镁合金在高温(150~350℃)场合的应用;镁合金的常温力学性能,特别是强度和塑韧性有待进一步提高;镁合金的合金系列相对很少,变形镁合金的研究开发严重滞后,不能适应不同应用场合的要求[14~19]。

镁合金可分为铸造镁合金和变形镁合金。镁合金按合金组元不同主要有Mg-Al-Zn-Mn系(Az)、Mg-Al-Mn系(AM)和Mg-Al-Si-Mn系(As)、Mg-Al-RE系(AE)、Mg-Zn-Zr n(ZK)、Mg-Zn-RE系(zE)等合金。常用铸造镁合金的牌号及性能见表4[2,14]。表5为常见变形镁合金的化学成分及基本特性[2,20]。

我国具有丰富的镁资源,原镁产能、产量和出口均居世界首位。在镁和镁合金的研究和应用领域,我国与欧美等发达国家之间的差距还相当大'一方面,我国的原镁质量差,镁合金锭的质量也不尽如人意,出口缺乏竞争力,作为结构材料应用 的镁在国内的消耗量又很少,只能作为初级原料低价出口,属典型的资源出口型工业,目前,国内的镁冶金企业大都处于亏损或面临倒闭;另一方面,我国对镁合金的研究和应用更显薄弱。因此,如何利用我国的镁资源优势,将镁的资源优势转变为技术、经济优势,促进国民经济发展、增强我国镁衍业的国际竞争力,是摆在我们面前的迫切任务[24]。

2.镁合金的新进展

(1)耐热镁合金。

耐热性差是阻碍镁合金广泛应用的主要原因之一,当温度升高时,它的强度和抗蠕变性能大幅度下降,使它难以作为关键零件(如发动机零件)材料在汽车等工业中得到更广泛的应用。

己开发的耐热镁合金中所采用的合金元素主要有稀土元素(RE)和硅(Si)。稀土是用来提高镁合金耐热性能的重要元素。含稀土的镁合金QE22和WE54具有与铝合金相当的高温强度,但是稀土合金的高成本是其被广泛应用的一大阻碍[18]。

Mg-Al-Si(AS)系合金是德国大众汽车公司开发的压铸镁合金。175℃时,AS41合金的蠕变强度明显高于AZ91和AM60合金。但是,AS系镁合金由于在凝固过程中会形成粗大的汉字状Mg2Si相,损害了铸造性能和机械性能。研究发现,微量Ca的添加能够改善汉字状Mg2si相的形态,细化Mg2si颗粒,握高AS系列镁合金的组织和性能[18]。

从20世纪80年代以来,国外致力于利用C·来提高镁合金的高温抗拉强度和蠕变性能。最近美国开发的ZAC8506(Mg-8Zn-5Al-0.6Ca),以及加拿大研究的Mg-5Al-0.8Ca等镁合金,其抗拉强度和蠕变性能都较好。

2001年,日本东北大学井上明久等采用快速凝固法制成的具有100~200nm晶粒尺寸的高强镁合金Mg-2at% Y-1at% Zn,其强度为超级铝合金的3倍,还具有超塑性、高耐热性和高耐蚀性。

(2)耐蚀镁合金。

镁合金的耐蚀性问题可通过两个方面来解决:①严格限制镁合金中的Fe、Cu、Ni等杂质元素的含量。例如,高纯AZ91HP镁合金在盐雾试验中的耐蚀性大约是AZ91C的100倍,超过了压铸铝合金A380,比低碳钢还好得多。②对镁合金进行表面处理。根据不同的耐蚀性要求,可选择化学表面处理、阳极氧化处理、有机物涂覆、电镀、化学镀、热喷涂等方法处理。例如,经化学镀的镁合金,其耐蚀性超过了不锈钢[2]。

(3)阻燃镁合金。

镁合金在熔炼浇铸过程中容易发生剧烈的氧化燃烷。实践证明,熔剂保护法和SF6、SO2、CO2、Ar等气体保护法是行之有效的阻燃方法,但它们在应用中会产生严重的环境污染,并使得合金性能降低,设备投资增大。

纯镁中加钙能够大大提高镁液的抗氧化燃烧能力,但是由于添加大量钙会严重恶化镁合金的机械性能,使这一方法无法应用于生产实践。铰可以阻止镁合金进一步氧化,但是铰含量过高时,会引起晶粒粗化和增大热裂倾向。

最近,上海交通大学轻合金精密成型国家工程研究中心通过同时加人几种元素,开发了一种阻燃性能和力学性能均良好的轿车用阻燃镁合金,成功地进行了轿车变速箱壳盖的工业试验,并生产出了手机壳体、MP3壳体等电子产品外壳[15]。

(4)高强高韧镁合金。

现有镁合金的常温强度和塑韧性均有待进一步提高。在Mg-Zn和Mg-Y合金中加人Ca、Zr可显著细化晶粒,提高其抗拉强度和屈服强度[1];加人Ag和Th能够提高Mg-RE-Zr合金的力学性能,如含Ag的QE22A合金具有高室温拉伸性能和抗蠕变性能,已广泛用作飞机、导弹的优质铸件;通过快速凝固粉末冶金、高挤压比及等通道角挤(ECAE)等方法,可使镁合金的晶粒处理得很细,从而获得高强度、高塑性甚至超塑性[16,19]。

(5)变形镁合金。

虽然目前铸造镁合金产品用量大于变形镁合金,但经变形的镁合金材料可获得更高的强度,更好的延展性及更多样化的力学性能,可以满足不同场合结构件的使用要求。因此,开发变形合金,是其未来更长远的发展趋势[20]。

新型变形镁合金及其成型工艺的开发,已受到国内外材料工作者的高度重视。美国成功研制了各种系列的变形镁合金产品,如通过挤压+热处理后的ZK60高强变形镁合金,其强度及断裂韧性可相当于时效状态的Al7075或Al7475合金,而采用快速凝固(RS)+粉末冶金(PM)+热挤压工艺开发的Mg-Al-Zn系EA55RS变形镁合金,成为迄今报道的性能最佳的镁合金,其性能不但大大超过常规镁合金,比强度甚至超过7075铝合金,且具有超塑性(300℃,436%),腐蚀速率与2024-T6铝合金相当,还可同时加人SiCp等增强相,成为先进镁合金材料的典范。日本1999年开发出超高强度的IM Mg-Y系变形镁合金材料,以及可以冷压加工的镁合金板材。英国开发出Mg-Al-B挤压镁合金,用于Magnox核反应堆燃料罐。以色列最近也研制出用于航天飞行器上的兼具优良力学性能和耐蚀性能的变形镁合金,法国和俄罗斯开发了鱼雷动力源变形镁合金阳极薄板材料。

(6)镁合金成形技术。

镁合金成形分为变形和铸造两种方法[21,22],当前主要使用铸造成形工艺。压铸是应用最广的镁合金成形方法。近年来发展起来的镁合金压铸新技术有真空压铸和充氧压铸,前者已成功生产出AM60B镁合金汽车轮毅和方向盘,后者也己开始用于生产汽车上的镁合金零件。

镁合金半固态触变铸造(Thixo-Molding)成形新技术,近年来受到美国、日本和加拿大等国家的重视。与传统的压铸相比,触变铸造法无需熔炼、浇注及气体保护,生产过程更加清洁、安全和节能。目前已研制出镁合金半固态触变铸造用压铸机,到1998年底,全世界已有超过100台机器投人运行,约有40种标准镁合金半固态产品用于汽车、电子和其他消费品。但相对来说,半固态铸造镁合金材料的选择性小,目前应用的只有AZ91D合金,需要进一步发展适用于半固态铸造的镁合金系。

其他正在发展的镁合金铸造成形新技术有镁合金消失模铸造、挤压铸造-低压铸造结合法、挤压铸造-流变铸造结合法和真空倾转法差压铸造等。

三、钛合金

1.钛合金的发展

钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到锨合金材料的重要性,相继对其进行研究开发,并得到了实际应用。

第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。其他许多钛合金都可以看做是Ti-6Al-4V合金的改型。

20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。

另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。

目前,世界上已研制出的钛合金有数百种,最著名的合金有20~30种,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-1023、Ti-10-5-

3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。

钛合金可以分为α、α+β、β型合金及钛铝金属间化合物(TixAl,此处x=1)四类。表6列出了四类典型钛合金及特点[2,4]。

2.钛合金的新进展

近年来,各国正在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领域阳。国内外钛合金材料的研究新进展主要体现在以下几方面。(1)高温钛合金。

世界上第一个研制成功的高温钛合金是Ti-6Al-4V,使用温度为300-350℃。随后相继研制出使用温度达400℃的IMI550、BT3-1等合金,以及使用温度为450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。目前已成功地应用在军用和民用飞机发动机中的新型高温钛合金有.英国的IMI8

29、IMI834合金;美国的Ti-1100合金;俄罗斯的BT18Y、BT36合金等。表7为部分国家新型高温钛合金的最高使用温度[26]。

近几年国外把采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料研制钛合金作为高温钛合金的发展方向,使钛合金的使用温度可提高到650℃以上[1,27,29,31]。美国麦道公司采用快速凝固/粉末冶金技术戚功地研制出一种高纯度、高致密性钛合金,在760℃下其强度相当于目前室温下使用的钛合金强度[26]。

(2)钛铝化合物为基的钛合金。

与一般钛合金相比,钛铝化合物为基钠Ti3Al(α2)和TiAl(γ)金属间化合物的最大优点是高温性能好(最高使用温度分别为816和982℃)、抗氧化能力强、抗蠕变性能好和重量轻(密度仅为镍基高温合金的1/2),这些优点使其成为未来航空发动机及飞机结构件最具竞争力的材料[26]。

目前,已有两个Ti3Al为基的钛合金Ti-21Nb-14Al和Ti-24Al-14Nb-#v-0.5Mo在美国开始批量生产。其他近年来发展的Ti3Al为基的钛合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)为基的钛合金受关注的成分范围为Ti-(46-52)Al-(1-10)M(at.%),此处M为v、Cr、Mn、Nb、Mn、Mo和W中的至少一种元素。最近,TiAl3为基的钛合金开始引起注意,如Ti-65Al-10Ni合金[1]。

(3)高强高韧β型钛合金。

β型钛合金最早是20世纪50年代中期由美国Crucible公司研制出的B120VCA合金(Ti-13v-11Cr-3Al)。β型钛合金具有良好的冷热加工性能,易锻造,可轧制、焊接,可通过固溶-时效处理获得较高的机械性能、良好的环境抗力及强度与断裂韧性的很好配合。新型高强高韧β型钛合金最具代表性的有以下几种[26,30]:

Ti1023(Ti-10v-2Fe-#al),该合金与飞机结构件中常用的30CrMnSiA高强度结构钢性能相当,具有优异的锻造性能;

Ti153(Ti-15V-3Cr-3Al-3Sn),该合金冷加工性能比工业纯钛还好,时效后的室温抗拉强度可达1000MPa以上;

β21S(Ti-15Mo-3Al-2.7Nb-0.2Si),该合金是由美国钛金属公司Timet分部研制的一种新型抗氧化、超高强钛合金,具有良好的抗氧化性能,冷热加工性能优良,可制成厚度为0.064mm的箔材;

日本钢管公司(NKK)研制成功的SP-700(Ti-4.5Al-3V-2Mo-2Fe)钛合金,该合金强度高,超塑性延伸率高达2000%,且超塑成形温度比Ti-6Al-4V低140℃,可取代Ti-6Al-4V合金用超塑成型-扩散连接(SPF/DB)技术制造各种航空航天构件;

俄罗斯研制出的BT-22(TI-5v-5Mo-1Cr-5Al),其抗拉强度可达1105MPA以上

(4)阻燃钛合金。常规钛合金在特定的条件下有燃烷的倾向,这在很大程度上限制了其应用。针对这种情况,各国都展开了对阻燃钛合金的研究并取得一定突破。羌国研制出的Alloy c(也称为Ti-1720),名义成分为50Ti-35v-15Cr(质量分数),是一种对持续燃烧不敏感的阻燃钛合金,己用于F119发动机。BTT-1和BTT-3为俄罗斯研制的阻燃钛合金,均为Ti-Cu-Al系合金,具有相当好的热变形工艺性能,可用其制成复杂的零件[26]。

(5)医用钛合金。

钛无毒、质轻、强度高且具有优良的生物相容性,是非常理想的医用金属材料,可用作植人人体的植人物等。目前,在医学领域中广泛使用的仍是Ti-6Al-4v ELI合金。但后者会析出极微量的钒和铝离子,降低了其细胞适应性且有可能对人体造成危害,这一问题早已引起医学界的广泛关注。羌国早在20世纪80年代中期便开始研制无铝、无钒、具有生物相容性的钛合金,将其用于矫形术。日本、英国等也在该方面做了大量的研究工作,并取得一些新的进展。例如,日本已开发出一系列具有优良生物相容性的α+β钛合金,包括Ti-15Zr-4Nb_4ta-0.2Pd、Ti-15Zr-4Nb-aTa-0.2Pd-0.20~0.05N、Ti-15Sn-4Nb-2Ta-0.2Pd和Ti-15Sn-4nb-2Ta-0.2Pd-0.20,这些合金的腐蚀强度、疲劳强度和抗腐蚀性能均优于Ti-6Al-4v ELI。与α+β钛合金相比,β钛合金具有更高的强度水乎,以及更好的切口性能和韧性,更适于作为植入物植入人体。在美国,已有5种β钛合金被推荐至医学领域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx(TI-15Mo-2.5Nb-0.2Si)、Tiadyne 1610(Ti-16Nb-9.5Hf)和Ti-15Mo。估计在不久的将来,此类具有高强度、低弹性模量以及优异成形性和抗腐蚀性能的庐钛合金很有可能取代目前医学领域中广泛使用的Ti-6Al-4V ELI合金[28,32]。

四、我国的对策

与先进国家相比,我国在轻合金研究、开发和应用等方面还存在很大差距,主要表现在:

(1)原材料质量低,冶金质量不稳定;合金品种少,规格不全。

(2)材料水平较低,实际应用量少,应用范围较窄。例如,虽然我国是镁资源大国,但高附加值终端产品开发应用远远落后于发达国家,目前只有上海桑塔纳变速箱壳体使用镁压铸件,年用量不足400t[24];国外600℃高温钛合金,强度级别为1300MPa的超高强度钛合金及阻燃钛合金等已进人应用阶段,而我国仍处在研究阶剧[27]。

(3)产业化水平低,与轻合金应用相关配套的技术研究进展缓慢,进人工程化尤其困难。往往研制期间的质量可以达到国外同类材料的水平,但转人批量生产的质量就不稳定。很多研制项目在实验条件下研究成功后,就束之高阁,而不再进行中试及工业应用试验。

(4)企业的规模经济效益低,不良品损失高,能耗物耗高,产品成本居高不下,缺乏竞争能力。

全世界轻合金材料的发展态势表明,21世纪初轻合金材料的发展及其产业化,将在更广泛、更高层次上取得新的重大突破,并将对一个国家的经济实力和综合国力产生日益深刻的影响[33,34]。为使我国的轻合金研究、开发和应用等方面的水平尽快赶上世界先进水平,努力使轻合金材料服务于国防和民用领域,迎接中国加入WTO带来的机遇和挑战,特此建议:

(1)尽快将“轻合金研究、开发和应用”作为国家重大科技攻关项目列人计划,加大投入力度,给予重点支持。

(2)在项目的目标和内容设置上,要突出重点,提倡基础研究与科技开发相结合,以产业化发展为主耍目标,同时开展相关的配套技术研究,重点突破或完善有关工艺技术,使基础研究的成果能真正转化为生产力。例如,对镁合金,可以选择镁行业最为活跃的压铸领域,以汽车、电子、通信等领域典型产品为切人点,突破镁合金产品开发与生产过程中的熔铸、成型、表面处理和废品回收等关键技术。

(3)建设规模较大、现代化的原材料生产基地,整顿国内小炼厂、小加工厂,以提高资源利用率,减少环境污染,保证产品质量,并消除无序竞争。

(4)充分发挥传统材料的应用潜力;完善、改进已经研制的新材料;探索和研究综合性能更好的新型材料,提倡独创性和自主性,努力形成适合我国国情的轻合金材料体系。

(5)充分利用现有优势力量与设施(如国家重点实验室、工程研究中心等),促进国内高校、研究机构开展跨部门、跨地区、跨学科的联合。开展深人的研究与应用前诳⒐ぷ鳎嘌⒍土兑恢Ц咚骄啥游椤U攵运杷=饩龅奈侍猓蛉斜辏允棺龀鼍哂凶灾髦恫ǖ拇葱鲁晒!?br>

(6)在组织管理与实施过程中,要采取灵活有效的运行机制与措施,建议组建高效的协凋指导小组,配合决策机构实施项目管理。

(7)广泛开展国际合作,提高产品应用的起步水平,实现跨越式发展目标。例如,德国在汽车压铸件的理论研究和应用方面、日本在表面处理与涂装技术方面、美国在军事领域和汽车行业均具有世界一流水平的先进技术,可以组织国内对口单位开展多种形式的合作,缩短差距.

第二篇:口腔医学技术进展

口腔医学技术前景分析

口腔医学技术专业是培养掌握口腔医学的基本理论和口腔治疗技术与工艺技术的基本操作技能,从事口腔疾病的治疗以及牙齿整复和整形技术工作的高级技术应用性专门人才的专业。此类人才毕业后一部分于义齿加工厂中从事义齿加工;另一部分则于医院从事口腔助手等工作。

随着经济的发展,人们日益重视口腔的健康和美观,对齿科的需求也越来越高,因此也带动了齿科行业的发展。技工士和牙医是口腔行业的两大支柱,技工士从事的是严谨和精密的修复工作,作出一颗或一付成型而且有益于健康的牙齿,因此义齿加工厂和技工士在齿科行业中是极其重要的一个环节。

现在国内已有些义齿加工厂技术水准和其他综合指标已能得到国外口腔界的认可,已能承接国外的义齿加工件。在宏观的大环境下,随着中国加入WTO以及全球经济一体化进程的加速,同时自身的行业规范程度不断提高,有理由相信中国能成为世界的烤瓷义齿加工中心。

随着加工行业在中国的不断发展,这个行业对技工的需求不断加大。随着人们对口腔健康和美观的日益重视,对义齿质量的要求不断提高,这就对技工的制作水平及整体素质提出了更高的要求。中国早期的技工一般以“师傅带徒弟”的传统带教方式成长,所以总体技术水平也普遍偏低。所以,高等院校毕业的专科人才无论是在技术上还是整体素质上要普遍比没有系统学习过口腔知识的技工的竞争力强。

国内义齿加工的市场化运作从九十代初的华南率先开始,至今已发展了十多年。目前沿海的义齿加工行业较内地的义齿加工发达,技术熟练程度也相对较高,所以国内的义齿加工厂主要密集的集中在华东和华南。在中国东部沿海地区,医院一般已不承接义齿加工了,而是转而将其外包给专门的义齿加工厂制作,这是义齿加工行业发展的必然趋势。因此,义齿加工行业的发展前景广阔,也可说这是一个发展迅速的新兴行业。随着,材料和技术的不断发展更新加上义齿加工行业的整体发展,谁又能否认口腔医学技术专业人才不会成为下一个抢手的“香饽饽”呢?

每年口腔医学技术专业的毕业生中有很大一部分人选择在医院工作,充当医生助理或口腔护士的角色。按照卫生部要求,我国医院的医生和护士的比例是1:2,重要科室医生和护士的比例应是1:4。而目前全国1:0.61的医护比例远远达不到卫生部的要求,与1:2.7的国际水平相差很大,与发达国家1:8.5的比例相差更远。因此,口腔助理和护士的需求量是很大的。

口腔医疗服务效益状况 随着农村经济的发展和乡村城镇化,城市口腔诊所、综合医院口腔科、专业口腔医院这几年发展快,分布广。随着人们对口腔健康的重视程度日益提高,口腔医院接诊的病人数量的不断增加,接诊的病患的病情分类得日趋多样化,这对医院运行的效率提出了更高的要求。结合目前口腔科护理人才的短缺情况分析,这一行业的发展前景是乐观的。

口腔科的助手和护士都必须具备熟练的专业技能和良好的沟通能力。现代的医患关系是复杂的,我们充当病人与医生之间沟通的桥梁,这是我们的职责之一。口腔科与其他科室的区别之一就是口腔科每天接诊病人多且复杂,病人流通性强。这就在无意中加强了我们的工作量,这另一方面也反映了沟通工作的重要性。

做一个合格的口腔科助手(护士)还要具备一定的专业技能;

口腔科护士(助手)职责

一、在门诊护士长的领导下进行工作。

二、负责口腔科开诊治疗前后的准备工作。

三、协助医生进行口腔手术、洗牙、处置等。

四、负责口腔科整洁、安静,维持就诊秩序,在诊疗期间,做好口腔科的卫生宣教。

五、按要求做好口腔科消毒隔离工作,防止院内感染的发生。

六、认真执行各项规章制度和技术操作常规,严格查对制度,做好交接班,严防差错事故。

七、负责领取、保管科内药物,器械保养口腔治疗椅及其他物品。

经常观察口腔科内就诊病人,发现异常要立即报告当班医生,配合处理。

当然其中最重要的是要能配合医生完成四手操作,准备器械等。

现在,口腔技术的发展日新月异,无论是设备还是材料、药品的更新换代的速度都是很快的,这就要求我们必须保持信息的高度畅通,及时查漏补漏,俗话说的好,活到老,学到老。例如,纳米技术在口腔领域的应用:麻醉剂给药方式的改变、纳米技术与人工牙、纳米技术与充填材料、纳米DNA探针等。总之,纳米生物技术的兴起,提高了人们对“纳米医学”、“纳米牙医学”等新理念的理解和认知,也为口腔疾病的诊断、治疗及材料选用逐步实现纳米化展现了广阔的美好前景。又如,种植牙技术的不断发展与应用。

口腔科的设备也在不断发展更新,例如:无线口腔内窥镜,SD卡口腔内窥镜等。近年来,随着人们对美观要求的提高,口腔牙体美容发展迅速。常见的口腔美容手术包括:牙齿正畸,牙齿矫正,洁牙洗牙,牙齿美白等。

总而言之,无论是技工方向还是临床方向,最关键的是要提高自身的专业素养。口腔行业的发展前景是光明的,只要把握机遇,准确定位,那么就业不是问题,更好的发展只是时间问题。

09口腔1班 41号叶淑燕

第三篇:口腔医学技术进展论文

新材料新技术带着口腔往前冲

众所周知,牙体、牙列缺损、牙列缺失和畸形是人类的常见病、多发病,其主要病因是由龋病、牙周病、外伤、肿瘤和先天畸形引起的。尤其龋病,是危害人类健康的三大疾病之一,也是形成牙体、牙列缺损和缺失的主要原因。据有关统计,我国患龋者龋均为2.47颗牙,总平均龋患率为37.3%。需要治疗的人数甚多。因为各种原因引起的牙列缺损,需要义齿修复者众多。尤其随着我国人口老龄化,牙体、牙列缺损和缺失病人的比例将日趋增多。所以,口腔修复工作者面临着越来越艰巨的任务,要尽快培养大批具有一定专业水平和业务能力的口腔修复工作人员,以满足社会的需要。

口腔医学技术是近年来发展迅速的学科,随着现代科技的发展而迅速发展,涉及到众多学科,与口腔组织学、解剖生理学、口腔生物力学、材料学等密切关联,由此产生了新的修复方法和技术。二十一世纪的修复技术发生了很大的变化,许多新技术,新方法,新材料都逐步登台。如计算机辅助设计与辅助制作完成修复体技术(CAD/CAM);人工种植技术;激光在修复的应用;铸钛技术;精密铸造技术;烤瓷在、铸瓷技术、全瓷技术等。这些都深刻的影响到口腔医学技术的发展。

随着科技的进步,无论是塑料、不锈钢的出现,还是铸造技术、微波技术、激光技术及计算机科学的出现,不仅极大改变了人们的社会生活,也同样促进了口腔医学技术的发展。随着人们物质文化水平的提高及科学技术的发展进一步,与信息科学、材料科学、计算机学、机械学及生物医学紧密结合,口腔医学技术的发展将更为迅速,高科技已广泛促进了口腔医学技术的发展,特别是人工种植牙技术的发展以及计算机辅助(CAD)与计算机辅助制作(CAM)及复合材料的出现与应用,从根本上改变了人们的常规的修复观念与修复方法,从这些技术的进一步完善,还将进一步促进口腔医学技术的发展。

口腔医学技术的发展与高科技的发展紧密相关,铸造支架及铸造冠技术改变了锻造丝及锤造冠的修复技术。其后各种技术的涌现,如金属烤瓷技术以及延伸的全瓷技术使修复效果发生了很大的变革。精精密附着体技术,如套筒冠技术,栓道技术,球帽技术,磁附着体技术的应用,提高了修复质量,为口腔医学技术向社会化,工业化发展创造了条件,而人工种植牙技术则从根本上改变了修复方式与观念,又极大的促进了以各种修复技术的发展,使各种修复附着体技术的应用更加规范化,也更为普遍。

激光在口腔医学技术领域中的应用,从最开始牙龈软组织的手术,押题脱敏,发展到激光焊机的成功应用,并逐渐向口内直接焊接以及激光预备基牙及激光测量获取共同就位道,在口腔医学技术领域显示了广泛前景。随着研究的进一步深入,激光在口腔医学技术的广泛应用也必将影响和促进口腔医学技术的飞速发展。

当然口腔材料的发展也将极大地促进口腔医学技术的发展。

材料学是对口腔医学技术发展影响最大的学科之一,无论是从钛材的应用时种植技术的成功及钛支架义齿的应用,还是从甲基丙烯酸甲酯到复合树脂的应用,以及从烤瓷材料的应用到可铸造陶瓷材料及可切割陶瓷的应用,口腔应用材料学的发展对口腔医学技术修复质量的提高起到过不可取代的作用。而纳米陶瓷的发展,特别是纳米材料在口腔修复的应用,将使材料的生物相容性、强度、韧性、以致重量、耐腐蚀性都极大的该善,必将极大的推动口腔修复的发展,有望

成为理想的口腔修复材料。而金属材料表面氧化膜的生物改性则增强材料的生物相容性,能获得更多的生物性修复材料,将使仿生修复成为可能。

钛在口腔医学技术中的应用①固定义齿:纯钛的力学性能接近Ⅲ型金合金,适合冠桥修复。钛冠的加工方法可以用铸造方法也可用锻造的方法。有报道铸造钛冠的适合性高于镍基合金全冠。钛冠桥锻造的方法是用电火花蚀刻机械加工。②可摘局部义齿:纯钛及钛合金制作局部可摘义齿支架时铸造后线性收缩率为

1.8%-2.0%,比钴铬合金小,因此具有更好的适应性。纯钛的力学性能较目前常用的钴铬合金低,因此在局部义齿支架时,其厚度要高于钴铬合金才能达到支架的性能要求,③钛烤瓷修复:钛底层冠加工方法有:机床加工、电火花蚀刻、CAD/CAM和铸造加工。前三种属于冷加工,对钛及钛合金的理化性能影响较小。④牙颌畸形矫治: 钛合金正牙丝弹性模量低,强度适中,具有良好的回弹性,可多次产生温和、持久的矫正力,这种矫正力适合生理要求。钛合金是制作正牙丝较为理想的材料。另外还可用植入颅面骨中的纯钛种植体作颌外支抗,矫正颌骨错位畸形。纯钛具有优良的生物学性能,由于其强度高,韧性好,比重仅是不锈钢的一半等优点,优于金合金、钴铬合金,更适合制作支架。钛支架义齿质轻而强度好,其生物相容性好,与口腔软硬组织均无反应,支架在口内无味,不变色,不过敏,无毒。与采用传统的钴铬合金比较,纯钛支架(托)义齿更加坚固、更薄,重量明显减轻,金属对粘膜组织无刺激,患者感觉更舒适,也更有利于咀嚼功能的恢复和口腔组织的保健。特别是全口义齿中应用更是优点突出,患者戴义齿后没有沉重感。

钛及钛合金的铸造传统失蜡铸造技术制作钛修复体不易取得成功,因为钛非常活泼,高温下极易与大气中或包埋料中的多种元素反应。所以,钛的铸造需要有特殊的热源、专用的 模型材料以及防止钛表面污染的仪器设备。牙科专用铸钛机的溶解氛围有:真空方式和惰性气体保护法。惰性气体分别是氩气和氦气。熔解方式有:高频感应方式和弧熔解法。铸造方法有:差压式铸造法、加压铸造法及离心铸造法。差压式铸造法是利用熔金室和铸造室的压差使钛及钛合金铸入铸型腔内的方法。加压铸造法是在较低压力的惰性气体的保护下熔解钛料,当熔化的液体钛及钛合金流到铸道口时,从液体钛及钛合金的表面加以较高的压力,使液体钛铸入铸型腔内。此外,铸钛使用的金属坩埚、氧化铝坩埚和高密度石墨坩埚。金属坩埚多为铜制坩埚,且多用弧熔解方式。铸钛需铸钛用包埋料。在铸钛过程中还注意: 熔模的厚度不宜少于0.7cm,排气道的设置、铸道的设置、铸型的形式、铸型烘烤焙烧的温度及铸造时铸型的温度要求、铸型的冷却方式,铸件的表面处理方法等也与钴铬、镍基等合金相同。

从以上的一系列的新技术新材料中不难发现口腔医学技术的前进离不开新的技术新的材料的不断突破。所以有了新的技术,新的材料口腔医学技术想不进步,想不发展都难啊。

第四篇:航空眼锻炼技术

航空眼锻炼技术简介

航天员在高空长时间作业,视野内可谓空无一物,所看到的只有机舱内的环境。当完成作业着陆后,航天员的眼睛往往很难适应地面的景物,科学上称为“高空空虚被动近视”。针对这一问题,国家航空视觉研究所发明了“航空眼锻炼技术”。经航空实验证明:该方法能消除空虚近视,提高航天员的目视距离。

航空眼锻炼技术背景

航天员在高空作业,不管观察视野中照明是强还是弱,是明还是暗,只要视野中没有足以吸引视觉产生锐利集焦的目标细节存在,两眼就会发生不自主性调节,即睫状肌的痉挛紧张程度不自觉加重。处于这种状态的两眼,不但有轻度的调节障碍,还合并轻度内集,从而导致空虚被动近视的发生。眼睛在没有参照物体存在的高空中可引起近视,如果在完全无目标的视野中进行观察搜索,不但会产生轻度调节和集合,而且还会因失去了两眼可视的参照物,引起负面的心理反应,严重者出现恶心、眩晕和酒醉的感觉。在航天员高空作业完毕后,为消除这种“空虚被动近视” 航天员需进行视觉训练,以便恢复正常裸眼视力。基于裸眼视力训练项目的必要性,航空眼锻炼技术应运而生。

航空眼锻炼技术原理

“调节”是指一个人转眼注视不同距离的东西时,每只眼内调节焦点的过程。眼解剖学公认的事实是,这种调节是通过睫状肌配合晶状体改变形状来完成的。睫状肌的调节晶状体的能力增加,眼睛的调节能力就会增强。航空眼锻炼技术在糅合传统裸眼视力训练方法的基础上,通过对睫状肌运动规律、视网膜成像原理、以及双眼裸眼视力不均衡的综合考量,发掘出标准模拟成像距离、标准光标灯运动成像时间的裸眼视力训练方法。

第五篇:化工技术进展论文

0.0 前言

一个学期的化工技术进展学完了,在这门课程里,各个研究室的老师以讲座的形式像我们介绍了他们从事的研究,包括智能粘弹性胶体束及应用、氢能技术、超临界流体技术应用进展、高性能碳纤维的研发与应用进展、单分子膜及其应用等。这门课程使我对最新的化工技术,以及这些新技术在实际生活生产中的应用有了一个全新的了解。比如方波老师做的智能粘弹性胶体,研究的就是胶体在特定作用下能够反应出规律,在医疗方面有一定的应用。再比如说高性能的碳纤维,研究的就是新材料,这种材料比一般的碳纤维材料的韧性更强。总的来说这些化工新技术主要围绕节约能源和提高能源利用率。近年来,随着人们环保意识不断增强,绿色化工技术得到了广泛应用。目前保护环境是我国一项基本国策,化工业作为我国国民的经济基础和先导产业,首当其冲该投入环境保护中来,如今绿色化工产品随处可见,开发绿色化工技术与生产的应用前景越来越广阔。化学工业对环境的污染越来越引起人们的关注,人们已经深刻认识到,化工生产造成环境污染的根本原因在于人们的环境社会意识和化工工艺的落后。在这种形势下,人类要求得自身的生存与可持续发展,就必须综合考虑环保、经济、社会以及化学工业本身发展的要求。

绿色化工技术的应用正在不断增多,这些应用包括原料、溶剂、催化剂、多元醇等,及使用低能耗的工艺。发展环保型产品,采用先进技术,实现清洁生产,最大限度地降低三废排放量。逐步淘汰落后的生产工业,降低原材料消耗,增加节水措施,提高水的重复利用率等。加快化工废水处理设备、药剂、废气处理设备、排烟设备的系列化、成套化,以提高化工环保产业技术和装备水平。人类的自然资源是有限的,但智慧是无限,在生产化工产品时要考虑产品是否能够具有可回收利用性、可处理性或可重新加工性能。例如近年来的有色涂料产品:传统的涂料产品含有大量挥发性有机化合物(VOC),污染环境,危害人身健康。这些化工新技术的应用能够使化学工业经济效益更高,环境污染更少,为社会科技进步做出了贡献。

碳酸二甲酯的合成工艺

摘要:本文简要介绍了碳酸二甲酯的基本性质,综述了碳酸二甲酯的最新合成方法及其应用进展,并概述了碳酸二甲酯的资源化利用空间。

关键词:碳酸二甲酯、合成、应用

1碳酸二甲酯的基本性质

碳酸二甲酯Dimethyl carbonate或 DMC分子式CO(COCH3)相对分子量为90.08, 熔点4 ℃ 沸点90.11℃ 在常温下是一种无色透明液体可燃微溶于水且能与水形成共沸物 可与醇 醚 酮等几乎所有的有机溶剂混溶对金属腐蚀很小由于DMC分子结构中含有CH3O——、——CO——、——COOCH3等官能团,化学性质非常活泼具有较好的化学反应活性。DMC毒性很低是一种符合现代清洁工艺要求的环保型有机化工原料,是重要的有机合成中间体。通常情况,在甲基化和羰基化这一化工生产过程中采用的是硫酸二甲脂,(DSC)和光气(COCl2)作为首选试剂在医药食品添加剂、农药 聚氨酯以及有机化工等行业具有广泛用途但这两种产品都有一定的毒性。在这种情况下,碳酸二甲酯的产生及应用解决了这一问题。另外碳酸二甲酯曾在欧洲被登记为非毒性化学品,是近年来受到世界各国广泛关注的绿色环保型化工产品,DMC在涂料、医药、农药、有机化工原料食品添加剂、抗氧化剂、汽油添加剂以及电子化学品等领域都有广泛的应用。DMC市场前景广阔应用潜能巨大,是化工领域有机合成的又一新突破[2]。碳酸二甲酯的制备方法

碳酸二甲酯的制备方法通常有光气甲醇法、甲醇氧化羰基化法、二氧化碳直接氧化法、电化学合成法、酯交换法以及尿素醇解法。目前合成碳酸二甲酯主要有酯交换法和甲醇氧化羰基合成法等。

2.1 酯交换法

酯交换法是采用环氧乙烷C2H4O或环氧丙烷C3H6O与CO2发生反应生成碳酸乙烯酯C3H4O或碳酸丙烯酯C4H6O3,后与甲醇发生酯交换,得DMC与乙二醇或丙二醇。这种方法DMC收率较高,而且反应条件温和,腐蚀性较低,反应过程几乎无毒,易于工业化。可是,这一反应为逆反应平衡趋向于环状二醇酯一侧,故反应转化率低。并存在单位容积的生产能力低,设备费用高以及能耗高等问题。因此在国内应用生产规模较小。目前国内许多企业采用催化反应精馏来完成这样工艺,发现单程转化率显著提高,酯交换法过程中一般采用固体催化剂,均相反应体系内采用的催化剂是可溶性碱金属氢氧化物、醇盐、草酸盐和有机碱等,如氢氧化钠、氢氧化钾等。非均相反应体系内采用的催化剂主要有碱土金属硅酸盐、分子筛以及离子交换树脂等。

此外,酯交换法在当前的研究是采用甲醇CO

2、环氧烷烃为原料,直接合成 DMC,环氧烷烃在催化剂作用下开环生成中间产物,后经 CO2插入反应生成环状碳酸酯,在催化剂作用下与甲醇酯交换生成 DMC。反应一步完成 该过程中催化剂的选择与分离精制塔构型和萃取剂的筛选也是一个重要的研究方向,旨在提高转化率[7]。

2.2 光气甲醇法

光气甲醇法这一制备方法是DMC最早的合成方法,分如下两步反应:

→ClCOOCH3 十 HCl

ClCOOCH3 十CH3OH →CH3OCOOCH3 十 HCI COCl2十CH3OH

光气甲醇法是工业规模生产的主要方法,但原料光气有剧毒,产品含有氯以及大量的氯化氢,工艺复杂,操作周期长,污染环境,因此限制发展及使用,除了一些生产光气的企业,也需在安全措施保证条件下才可采用这一工艺[3]。

2.3 甲醇氧化羰基化法

该技术以甲醇、CO和O2为原料,原料价廉易得,理论上甲醇全部转化为碳酸二甲酯(DMC),无其他有机物生成,主要有液相、气相和常压非均相法三种。甲醇氧化羰基化法有液相法和气相法两种工艺路线,20世纪时期开发的液相法是在铜催化剂体系,氯化亚铜 作用下,在液相甲醇中通入氧气或空气和CO气,含有催化剂的液相甲醇生成。

CuOCH3 C1,然后生成DMC和CuCl。2CuCl+2CH3OH+

1O22→2CuOCH3C1+H2O2 CuOCH3Cl+CO

→(CH3O)2CO+2CuCl 这一工艺成熟可靠,安全性较高,排出物不用严格的处理,且无剧毒化学品,设备简单,投资较少,原料费用低。但缺点是设备腐蚀严重,产物催化剂分离困难 催化剂易失活等。

气相法可分为甲醇间接氧化羰基化法和甲醇直接氧化羰基化法,其中间接法以钯为催化剂,以亚硝酸甲酯为循环溶剂和中间体。1CO+O2+2CH3OH2→ DMC+H2O

这一方法成本低,产品质量好,流程简单,设备腐蚀问题得到一定程度的解决,而且催化剂的再生也得到了解决,单位容积生产能力是液相法的3倍。整个过程无固体原料,容易大型化。再生过程中生成的水可排放,水分和氧不会进入反应器中,避免了一系列副反应的发生和催化剂的氧化,产品产品的收率高,但是亚硝酸甲酯有毒,副产物中的草酸二甲酯易堵塞管道[6]。2.3.1 液相氧化羰基化法

该技术由意大利Ugo Romano等人在长期研究羰基化基础上于1979年开发成功。1983年,由意大利Enichem Synthesis公司首先在Ravenna实现工业化,初始装置规模5000吨/年,1988年扩产到8000吨/年,1993年进一步扩大到12000吨/年。1988年日本Dacail公司也采用此技术建成了6000吨/年的工业化装置。除意大利埃尼公司外,世界上其他几大化学公司如ICI、Texaco和Dow化学公司等也在竞相开发此技术。我国化工部西南化工研究院在上世纪80年代中期也进行了液相法甲醇氧化羰基化技术的开发,并取得阶段性成果。液相工艺以意大利埃尼公司为代表,典型工艺包括甲醇氧化羰基化、DMC与甲醇的分离。该技术以氧化亚铜为催化剂,甲醇既为反应物又为溶剂,在淤浆反应器中反应,反应温度100℃~130℃、压力2.0~3.0MPa,甲醇、氧气和氯化亚铜反应生成甲氧基氯 化亚铜,再与一氧化碳反应生成碳酸二甲酯(DMC)。其反应式如下: 2CH3OH+CO+1/2O2 ——→(CH3O)2CO+H2O

该工艺是在一系列连续搅拌反应釜中进行的,氧气和一氧化碳压缩至反应压力后进入反应釜,同时向反应釜送入甲醇和催化剂,进行催化反应得到粗碳酸二甲酯,再经过蒸馏可以得到工业级碳酸二甲酯。该方法甲醇的单程转化率在32%左右,选择性按甲醇计近100%,按CO计不稳定,最高达到92%,最低仅60%。然而,该法设备腐蚀性大,催化剂寿命短。液相反应采用的催化剂有氯化亚铜、硒和钯催化体系,其中以氯化亚铜催化体系实现了工业化[5]。2.3.2 气相氧化羰基化法

由于液相氧化羰基化法存在设备腐蚀,催化剂易失活等缺点,1986年美国Dow化学公司开发了甲醇气相氧化羰基化法技术,其化学原理与液相法相同。该技术采用浸渍过甲氧基酮/吡啶络合物的活性炭作催化剂,并加入KCl等助催化剂,含甲醇、CO和O2的气态物流在通过装填该催化剂的固定床反应器时合成碳酸二甲酯(DMC)。反应条件为100℃~150℃,压力2.0MPa,气相法避免了液相法的催化剂对设备腐蚀,而且具有催化剂易再生等优点。另外,由于采用固定床反应器,在大型装置上采用该技术比其他羰基化法有一定的优势[4]。2.4尿素和甲醇醇解法

采用尿素醇解法制备DMC是最近几年开发的,一种新的工艺路线,用来源广泛、价格低廉的尿素和甲醇做基本原料,采取催化精馏工艺在尿素醇解制备DMC的反应中,能够有效地移去DMC,减少DMC在反应器中的聚集,副反应少,DMC产率高。从尿素和甲醇出发合成碳酸二甲酯的尿素醇解法一般可以分为间接法和直接法两种路线。总反应如下: NH2CONH2+2CH3OH→DMC+2NH3 尿素醇解法制备DMC工艺生产过程中无水生成,避免了甲醇-水-DMC共沸物的形成,后续分离提纯更加简单化。同时此生产过程为均相反应,所需催化剂活性高,选择性高,寿命长,DMC的选择性几乎可以达到100%。反应后的催化剂可以再生,所得副产物氨气,若和尿素联产,亦可循环使用,易实现工业化,降低生产成本,是一种可持续发展的环境友好型绿色化工合成工艺。该合成路线反应原料价廉易得而且无三废产生,整个过程不使用或产生剧毒或强腐蚀性物质。这种制备方法受到研究人士的广泛关注并成为碳酸二甲酯合成技术新的研究焦点 是一种很有潜力的方法[15]。

2.5 二氧化碳和甲醇直接合成法

二氧化碳与甲醇直接合成制备DMC这一方法虽研究广泛,但并未达到工业化所要求的程度。主要是由于CO2的活化较困难,反应的热力学难以控制,催化剂易中毒。CO2和甲醇直接合成DMC反应中根据甲醇相态变化可以分为以下两种:

2CH3OH(l)+CO2(g)→DMC(l)+H2O(l)2CH3OH(g)+CO2(g)→DMC(g)+H2O(g)在CO2和甲醇合成DMC的反应中,平衡常数和CO2的平衡转化率都很小,设计催化工艺技术就是为了打破反应的化学平衡限制,使反应得以顺利进行从而提高DMC收率。在近临界或超临界CO2压力使得CO2既做溶剂,又直接参与反应。由CO2出发合成 DMC,可为化工及石化行业提供绿色产品,在合成化学、碳资源循环利用和环境保护方面都具有重要意义;可使生产过程简化,生产成本降低,将成为合成碳酸二甲酯的一条新的路径。该路线尚处于实验研究探索阶段,主要集中在催化剂及工艺路线等方面,是一条经济绿色的工艺路线[12]。

3.碳酸二甲酯的应用

DMC作为一种重要的清洁有机化学试剂使用一方面可替代光气、硫酸二甲酯、氯甲烷及氯甲酸甲酯等剧毒或致癌物进行羰基化、甲氧基化、甲酯化及酯交换等反应生成多种重要化工产品;一方面以DMC为原料可以开发制备多种高附加值的精细化学品,在医药、农药、合成材料、燃料、润滑油、添加剂、食品增香剂、电子化学品等领域都有广泛的应用;更为重要的是,由于氧含量高、相容性好,可用作低毒溶剂和燃油添加剂[7]。3.1 农药产品的合成

国内农药生产中,常用的甲基化试剂是硫酸二甲酯(dimeth y lsulfate,DMS)和卤代甲烷;羰基化试剂是光气。DMS和光气都是剧毒、致癌性的物质,严重威胁生存环境。磺草灵是以碳酸二甲酯为原料生产合成的重要农药产品,它具有良好的杀虫效果,也是我国农药出口市场上的主要产品之一。以碳酸二甲酯为原料生产的具有广泛杀虫效应的低毒农药产品-西维因,在我国已投资试验生产,既安全又清洁,将逐步取代被淘汰的光气法和异氰酸酯法。3.2 聚碳酸酯

聚碳酸酯是重要的工程塑料,其应用开发是向高复合、高功能、专用化、系列化方向发展,目前已推出了光盘、箱体、包装、医药、汽车、办公设备、照明、薄膜等多种产品。实现工程塑料的绿色合成,已成为大幅提升碳酸二甲酯产品链竞争力的关键。一般的方法是以甲基氯为溶剂,使丙二酚与光气进行反应,改进后的工艺是碳酸二甲酯与苯酚生成碳酸二苯酯,再与丙二酚在熔融状态下进行酯交换,经脱酚得到聚碳酸酯,避免了光气的污染问题。3.3 提高汽油的辛烷值

近年来油价逐级攀升,急需开发增大辛烷值的添加剂,由于DMC具有高辛烷值在汽油中有良好的可溶性及抗水性,且具有低蒸汽压及混合分配系数,分子含氧量高达53% 是品质极好的汽油添加剂。此外,DMC是更为有效的高含氧化合物,同摩尔的DMC比甲基叔丁基醚的含氧量高35%,且CO排放量较小。MTBE是用异丁烯为原料制造的,但是随着 MTBE的大量使用,原料异丁烯将不能满足供应。DMC少量添加于汽油中可明显提高汽车排气中的氧浓度,而且绿色环保,是一种可持续发展的环境友好型的有机产品,作为汽油添加 剂而日益受到重视[8]。

参考文献

[1]张学清.碳酸二甲酯绿色合成催化剂的设计、合成及催化性能研究[D].湖北大学,2011.[2]尹延超,赵学琴,辛春玲,连丕勇.合成碳酸二甲酯的催化剂研究进展[J].化工科技,2011,02:74-77.[3]赵云鹏,荆涛,贾丽华,孙德智,郑钟植.二氧化碳合成碳酸二甲酯催化剂的研究进展[J].现代化工,2011,05:16-20.[4]李波,宋淑群,汪志国.碳酸二甲酯发展现状及前景[J].精细石油化工进展,2011,06:38-41.[5]刘继泉,王宁.酯交换法生产碳酸二甲酯工艺节能研究[J].石油化工高等学校学报,2011,05:53-55.[6]赵丽娟,韩相恩,钱露露.甲基化试剂碳酸二甲酯的应用研究[J].化工中间体,2011,12:44-46.[7]李鹏,陶亮亮,张虹,丁敬敏.碳酸二甲酯的合成及应用进展[J].皮革与化工,2011,06:31-34.[8]刘玲娜,张强,李晓辉.碳酸二甲酯生产技术进展[J].化工中间体,2012,07:14-18.[9]Zhao, T.S.& Han, Y.Z.& Sun, Y.H.(2000).Novel reaction route for dimethyl carbonate synthesis from CO2 and methanol.Fuel processing technology,62,187-194 [10]Yuan, D.D.& Yan, C.H.& Lu, B.& Wang, H.X.& Zhong, C.M.&Cai, Q.H.(2008).Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid.Electrochimica Acta.,54,2912-2915.[11]Gao, Z.M.& Su, J.H.& Chen, X.Z.& Hu, C.W.(2006).New route for the catalytic synthesis of dimethyl carbonate.Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology,26,651-654 [12]Ju, H.Y.& Park, D.W.& Choe, Y.s.&Park, S.W.(2007).Performance of ionic liquid as catalysts in the synthesis of dimethyl carbonate from ethylene carbonate and methanol.Reaction Kinetics and Catalysis Letters,90,3-9 [13]Li, J.b.& Wang, T.(2011).On the deactivation of alkali solid catalysts for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate.Reaction Kinetics, Mechanisms and Catalysis,102,113-126 [14]Unnikrishnan, P.& Varhadi, P.& Srinivas, D.(2013).Efficient, direct synthesis of dimethyl carbonate from CO2 using a solid, calcined zirconium phenylphosphonate phosphite catalyst.RSC Advances,3,23993-23996 [15]Eta, V.& Leino, A.R.& Kordás, K.&Salmi, T.& Murzin, D.Y.&Mikkola, J.P.(2010).Synthesis of dimethyl carbonate from methanol and carbon dioxide: Circumventing thermodynamic limitations.Industrial and Engineering Chemistry Research,49,9609-9617

下载航空材料技术进展(精选五篇)word格式文档
下载航空材料技术进展(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    煤制油技术和产业化项目进展

    煤制油产业概述2014-02-10化化网煤化工在已经确定的5个新型煤化工路径中,煤制油争议最大。反对者认为:煤制油能耗高、水耗大、污染重、产品全生命周期能量转化效率低,项目的经......

    萤石选矿技术的进展

    萤石选矿技术的进展 萤石是冶金、化工、硅酸盐等工业的重要原料。萤石资源的综合利用与回收工艺的研究工作,在最近十几年里有了很大的发展,在萤石浮选药剂的研究方面有了较大......

    杜百川广播电视技术进展

    杜百川:广播电视技术进展 发布时间:2008-12-2------------------国家广电总局科技委副主任杜百川在第四届数字新媒体高峰论坛上的演讲 2008年11月7日我给大家介绍一下目前广播......

    稠油污泥处理技术进展

    稠油污泥处理技术进展 一、国内外含油污泥主要处理技术现状综述 对含油污泥进行无害化处理、清洁生产并回收其中资源的综合处理,一直是国内外环境保护和石油工业的重点工作之......

    高强度汽车板技术进展

    高强度汽车板技术进展 摘要:轻量化是汽车“减重节能”的需要,采用高强度钢板已被证明是最佳的材料技术解决方案。高强度钢板的大量应用不但可以降低汽车的重量,减少钢材的使用,......

    先进钢铁材料技术的进展

    先进钢铁材料技术的进展 钢铁研究总院先进钢铁材料技术国家工程研究中心董瀚 摘要:钢铁材料是不断发展的先进材料,它依然是本世纪的主要结构材料。先进钢铁材料具有环境友好、......

    新能源发电技术的进展

    新能源发电技术的进展1、引言自20世纪70年代以来,许多国家开展了对新型可再生能源的研究、开发和利用工作,到目前为止,除水电外,全世界可再生能源发生的总容量已经接近4×104MW......

    航空油化学品安全技术说明书(★)

    航空油化学品安全技术说明书 第一部分:化学品名称 航空煤油是石油产品之一。英文名称Jet fuel No.3,别名航空煤油。 第二部分:成分/组成信息 是由直馏馏分、加氢裂化和加氢精制......