锂离子电池负极材料的调研报告(精选)

时间:2019-05-13 12:24:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《锂离子电池负极材料的调研报告(精选)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《锂离子电池负极材料的调研报告(精选)》。

第一篇:锂离子电池负极材料的调研报告(精选)

锂离子电池负极材料的研究进展

摘要: 随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。

关键词:锂离子电池

负极材料

碳/硅复合材料

引 言: 电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。

1、锂离子负极材料的基本特性

锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件:

(1)应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命;

(2)锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压;

(3)首次不可逆放电比容量较小;

(4)安全性能好;

(5)与电解质溶剂相容性好;

(6)资源丰富、价格低廉;

(7)安全、不会污染环境。

现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。

2、选材要求

一般来说,锂离子电池负极材料的选择主要要遵循以下原则:

1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;

2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;

3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;

4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:

5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;

6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;

7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;

8、价格便宜,资源丰富 对环境无污染

3、负极材料的主要类型

用作锂离子电池负极材料的种类繁多,根据主体相的化学组成可以分为金属类负极材料、无机非金属类负极材料及金属-无机非金属复合负极材料。

(1)金属类负极材料:这类材料多具有超高的嵌锂容量。最早研究的负极材料是金属锂。由于电池的安全问题和循环性能不佳,金属锂在锂二次电池中并未得到应用。目前金属单质还不具有直接用作锂离子电池负极材料的可行性。锂合金的出现在一定程度上解决了金属锂负极可能存在的安全隐患,但是锂合金在反复的循环过程中经历了较大的体积变化,存储大量的锂时,体积可膨胀到原来的数倍,极大程度的造成电极粉化,电池容量迅速衰减,这使得锂合金并未成功用作锂离子二次电池的负极材料。

(2)无机非金属类负极材料:用作锂离子电池负极的无机非金属材料主要是碳材料、硅材料及其它不同非金属的复合材料

碳材料:碳材料主要包括石墨类碳材料和非石墨类碳材料。

4、锂离子负极材料的研究进展

目前对锂离子电池负极材料的研究主要集中在碳类材料、硅类材料及这两种材料的复合材料。

4.1 碳材料的研究

4.1.1 石墨

碳材料按其结构可分为石墨和无定形碳(软碳、硬碳)。石墨是最早用于锂离子电池的碳负极材料,其导电性好,结晶度高,具有完整的层状晶体结构,很适合锂离子的嵌入与脱出。石墨分为天然石墨和人造石墨。工业上多采用鳞片石墨作为碳负极的原材料。鳞片石墨晶面间距(d002)为 0.335 nm,主要有 ABAB 排列的 2H 型六方晶体结构和 ABCABC排列的 3R型菱形晶面排序结构,即石墨层按两种顺序排列。4.1.2 无定形碳

常见的无定形碳有有机聚合物热解碳、树脂碳和乙炔黑等,前两者前驱体有很多种,如聚氯乙烯、酚醛树脂、糠醛树脂、含有氧异原子的呋喃和含有氮异原子的丙烯腈树脂等。近年来,随着研究的深入,在改善无定形碳材料性能方面也取得了极大进展。研究发现,由晶体生长水热法制备的含微孔的无定形碳球(HCS1具有较好的球形形貌、可控的单分散粒子粒径和光滑的表面,其可逆容量高达 430 mAh/g,首次库仑效率达到 73%,动力学性能比中间相碳微球(MCMB)还好。在进一步的研究工作中,Hu 等发现,利用微乳液作媒介的晶体生长水热法制备的含微孔的无定形碳球(HCS2)具有比 HCS1 更小的微孔。HCS2 具有比 HCS1 还要高的嵌锂容量,其值达到 566 mAh/g,首次库仑效率也提高到83.2%,而且循环性能也非常好。吴宇平、尹鸽平、Schonfelder 等在无定形碳材料改性的研究中发现,在硬碳材料中掺磷,可使其嵌锂特性发生明显改变,有序化程度提高,是提高无定形碳球电极可逆容量和充放电效率的较好方法。4.1.3 中间相碳微球(MCMB)

目前,MCMB 是长寿命小型锂离子电池及动力电池所使用的主要负极材料之一,它存在的主要问题是比容量有些偏低,价格昂贵。除 MCMB外,还有其它形式的由可石墨化碳制得的人造石墨。如石墨纤维和其它复合石墨化碳。冯熙康等通过对可石墨化碳如石油焦等采取掺杂、结构调整或表面修饰并经高温石墨化处理等方法制得的人工石墨,比容量可达到 330~350 mAh/g,具有良好的循环性能和低于 MCMB 的价格。

4.2 硅基材料

锂与硅反应可得到不同的合金产物,如Li12Si17、Li13Si4、Li22Si5 等,其中锂嵌入硅形成的合金 Li4.4Si,其理论容量高达 4200 mAh/g。锂硅合金高的储锂容量引起了广大科研工作者的浓厚兴趣,但以锂硅合金为负极的锂电池并未进入商品市场。一个主要原因是:在充放电循环过程中,Li-Si 合金的可逆生成与分解伴随着巨大的体积变化,会引起合金的机械分裂,导致材料结构崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极材料循环性能的急剧下降,最后导致电极材料失效。人们主要通过向硅中添加氧化物、制备纳米级硅材料以及构建出活性/非活性复合体系来改善硅材料的性能。

4.2.1 硅单体

硅单体,有晶体和无定形两种形式。作为锂离子电池负极材料,以无定形结构硅的性能较好。S.Bourderau 等研究表明,非晶态或无定形态硅具有较好的充放电容量和循环寿命,他们采用化学气相沉积(Chemical Vapor Deposition,CVD)法于 650℃在泡沫镍表面沉积一层 1.2 μm 厚的无定形态硅膜。在 0.10~0.05 V 之间,以 C/2 倍率循环时,其最初三次的放电容量均为 900~1000 mAh/g。但随后容量开始明显下降,20 次循环后其容量降至 200 mAh/g,这可能与集电体发生机械分离有关。最近Hunjoon Jung 等用 CVD 法沉积了50 nm的无定形硅薄膜,在电压范围为0~3 V 时,最大容量为 4000 mAh/g,但 20 次循环后容量急剧下降。在较低的电压范围 0~0.2 V 下,则循环性能超过 400 次,但放电容量降为 400 m Ah/g。这可能是充电深度降低,材料的体积膨胀也降低,从而提高了循环性能。S.Ohara 等采用真空热蒸发镀膜的方法在金属镍基片上沉积一层 77 nm 的 Si 薄膜,在 2C 倍率充放电循环 750次仍能保持 1700 mAh/g 以上的容量,且与电解液的相容性好。T.Takamura 等进一步研究了更厚(达 1 μm)的硅薄膜的充放电性能,研究表明镍基底的表面粗糙度对其充放电性能有很大影响。

4.2.2 硅薄膜

Bourderau 等采用低压化学气相沉积法(LPcVD)以硅烷为前驱体在多孔镍箔表面制备硅薄膜,其初始比容量达 l000 mAh/g,但 10 次循环后,容量衰减为 400 mAh/g。Maranchi 等采用射频磁电管溅射法

(radio frequency magnetrons Puttering)在铜箔上制备 250 nm厚的非晶硅薄膜,并研究了膜厚度对电极性能的影响。结果表明,250 nm 厚的非晶硅膜具有更好的电化学性能,经过 30 次循环,其比容量接近3500 mAh/g。SEM观察显示,较薄的膜与铜箔接触更好,使得电极具有更小的内阻。Lee 等发现铜箔的表面形貌对电极性能影响显著:表面粗糙的铜箔上沉积的薄膜电极具有更好的性能,经过 30 次循环其比容量在 1500 mAh/g 以上,优于以平整表面的铜箔作为基底的电极。

4.2.3 纳米硅

用纳米 Si、碳黑、PVDF 按重量百分比为40:40:20 制得复合负极,其工作电压比较平稳,第 10 周的可逆容量仍保持在 1700 mAh/g,是碳材料的 5 倍,循环性远远优于普通硅,将充放电电流密度增大 8 倍后,循环性基本不受影响,表明了这种纳米复合电极优异的高倍率充放电性能。但是纳米材料容易团聚,团聚后的颗粒有可能失去电接触而失效。H.Li 等对几种纳米硅,包括球状纳米硅、线形纳米硅作为锂离子电池负极材料进行了研究,采用 X-射线衍射、拉曼光谱和扫描电镜等测试手段发现:常温下锂离子的嵌脱会破坏纳米硅的晶体结构,生成亚稳态的锂和硅的化合物,并观察到纳米硅颗粒发生团聚,导致电池循环性能下降。

4.2.4 硅的氧化物

由于 Li+与氧生成不可逆相 Li2O,Li2O 为惰性相,增加了材料的首次不可逆容量,但减缓材料的体积变化,使循环性能得到提高。S.H 等研究了几种硅氧化物,包括 SiO0.8、SiO、SiO1.1等作为锂离子电池负极材料,发现随着硅氧化物中氧含量的增加,电池比容量降低,但是循环性能提高。

4.2.5 硅合金

硅与金属复合形成合金存在两种情况:一是金属(如 Ni、Ti)或惰性物质在整个充放电过程中不具有嵌脱锂活性,纯粹起支撑结构作用;二是金属(如金属 Al、Sn、Mg)或惰性物质本身具有嵌脱锂活性,但与硅的电位不同,因此它们的复合将使材料的体积膨胀发生在不同电位下,缓解由此产生的内应力,从而提高材料的循环稳定性。利用高能球磨法制备了纳米 NiSi 合金,首次放电容量达到 1180 mAh/g,20 次循环后容量为 800 mAh/g 以上。嵌锂过程中 Si 与 Li 形成合金,Ni保持惰性维持结构的稳定,从而使 NiSi 合金的循环性能较 Mg2Si 有所改善,但纳米材料的剧烈团聚限制了 NiSi 循环性能的进一步提高。M.Yoshio等用气相沉积法制备了 Mg2Si 纳米合金,其首次嵌锂容量高达1370 mAh/g。

4.2.6 硅/碳复合材料

针对硅材料严重的体积效应,除采用合金化和其它形式的硅化物外,另一个有效的方法就是制成含硅的复合材料,利用复合材料各组分之间的协同效应,达到优势互补的目的,其中硅/碳复合材料就是一个重要的研究方向,它包括包覆型和嵌入型。王保峰等利用高温热解反应,使纳米硅和石墨微粒高度均匀地分散在 PVC 热解产生的碳中,形成一种新型的硅碳复合嵌锂材料。电化学测试表明:该复合材料首次充放电效率约为84%,可逆比容量为 700 mAh/g 左右,30 次循环后容量维持在90%以上。N.Dimov 等采用CVD 法在硅单质表面包覆了一层碳材料,得到平均尺寸为18μm 的颗粒,该材料的比容量(600 mAh/g 以上)比碳材料高,循环性能与碳材料相当,同单质硅相比有很大提高,但是硅在可逆充放电过程中结构还是发生了缓慢的破坏。吴国涛等[24]将硅与石墨或其他碳材料通过球磨方式形成纳米复合物 C1-xSix(x=0、0.1、0.2、0.25)。球磨将减弱石墨的结晶度,减小晶粒尺寸,由于团聚效应,颗粒可能变大。球磨后可逆容量从 437 mAh/g(球磨纯石墨)增加到1039 mAh/g(球磨制备C0.8Si0.2),增加的可逆容量位于约 0.4 V 附近,20次循环后,C0.8Si0.2 的容量仍保持在 794 mAh/g左右,其循环性能优于采用相同工艺方法制备的M/Si(M 为 Ni、Fe 等金属)。Z.S.Wen 等通过对填入石墨和单质硅的树脂进行高温分解,得到硅碳合成材料,比容量达到 800~900 mAh/g,循环 20次的比容量稳定在 600 mAh/g。该合成物同单质 硅相比,比容量提高,循环性能明显好于单质硅。

4.3.非碳负极材料

4.3.1 氮化物锂-碳材料有良好的可充电性能,锂嵌入时体积变化小,安全性能好,是一种良好的负极材料并早已工业应用,但比容量较低(LiC6为372mAh/g),碳材料解体会导致容量衰减。因而,人们便设法寻找一些其他的非碳负极材料以替代碳负极材料,从而解决此问题。近几年来,有许多科研工作者对氮化物体系进行了研究。氮化物的合成最早可追溯至20世纪 40~50年代,德国的R.Juza等对此展开了合成与结构方面的研究[1];而20世纪80年代对Li3N作为固体电解质的研究较多。Li3N有很好的离子导电性,但其分解电压很低(0.44V),显然不宜直接作为电极材料。而过渡金属氮化物则有好的化学稳定性和电子导电性,锂—过渡金属氮化物兼有两者性质,应适宜作为电极材料。氮化物体系属反萤石或Li3N结构的化合物,具有良好的离子导电性(Li3N电导率为10-3S226;cm-1),电极电位接近金属锂,有可能用作锂离子电池的负极。目前,人们已研究的氮化物体系材料有属于反萤石结构的Li7MnN4和Li3FeN2,和属于Li3N结构的 Li3-xCoxNoLi7MnN4和Li3FeN2都有良好的可逆性和高的比容量。

4.3.2 金属氧化物碳作为锂离子电池的负极,由于在有机电解质溶液中碳表面形成能让电子和锂离子自由通过的钝化层,这种钝化层保证了碳电极良好的循环性能。然而,也会引起严重的首次充放电不可逆容量的损失,有时甚至能引起碳电极内部的结构变化和电接触不良。另外,高温下也可能因保护层的分解而导致电池失效或产生安全问题,因此,几乎在研究碳负极的同时,寻找电位与Li+/Li电对相近的其他负极材料的工作一直受到重视,如目前主要研究的SnO、WO2、MoO2、VO2、TiO2、LixFe2O3、Li4Mn2O12、Li4Ti5O12等,而其中的SnO材料更是研究中的重点。这是由于锡基氧化物储锂材料有容量密度较高、清洁无污染、原料来源广泛、价格便宜等优点。1997年,Yoshio ldota[2]等报道了非晶态氧化亚锡基储锂材料,其可逆放电容量达到600mAh•g-1,嵌脱锂电位均较低,电极结构稳定,循环性能较好。Nam[3]等用电子束沉积1μm厚的SnO作为薄膜锂离子电池的负极材料,经充放电100次显示容量超出300mAh•g-1。SC Nam等[3]用化学气相沉积法制备出结晶态SnO2薄膜,经循环伏安试验表明,在第1次循环中存在不可逆容量,认为是无定形Li2O和金属锡的生成引起的,在以后的循环中,金属锡作为可逆电极,容量达到500mAh• g-1,并表现出良好的循环性能。4.3.3 金属间化合物锂与金属氧化物的电极反应与锂在碳材料中嵌人-脱出反应不同,前者是Li与其他金属的合金化和去合金化过程,以金属氧化物为负极时,充电过程首次形成的Li2O在负极中可起结构支撑体作用,但又存在较大的不可逆容量。所以,为了降低电极的不可逆容量,又能保持负极结构的稳定,可以采用金属间化合物来作为锂离子电池的负极。但也应注意到,Li-M合金的可逆生成与分解伴随着巨大的体积变化,引起合金分裂。而解决的方法,一是制备颗粒极细的活性材料,使之不能形成大的原子簇,其二是使用滑陛或非活性的复合合金。其中不与Li反应的惰性金属作为基体与导电成分容纳合金组分。在这方面,前人已作了大量的研究。MaoOu等 [4-6]合成了Sn-Fe-I粉末;M.M.Thackeray[7]及D. Larcher等[8]研究了Cu-Sn合金的储锂性质;J.O.Besenhard[9]用固相法合成了多晶Sn-Sb合金,用电解法合成了纳米晶形Sn-Sb合金;J.Yangt[10]、李泓[11]等人在水溶液中分别以NaBH4和Zn粉作还原剂,制得纳米Sn-Sb合金;C.M.Ehrilich[12]等以MM法合成了Sn-Ni合金。Fang•L[13]等研究了非晶形的Sn-Ca合金。结果发现,这些合金的初始储锂量都较大,但循环性能都不甚理想,详见表2。要获得较好的循环性能,则其容量就要降低较多(200mAh/g左右),且循环区间较为狭窄,使应用受到一定限制。Hirokil S等人[14]用机械合金法(MA)合成Mg2.0Ce。发现25h时MA结晶度为90%,首次容量为320mAh/g。100h时MA结晶度近似为0,首次容量为25mAh/g,但循环性能好。HansuK等[15]研究了Mg-Si合金,发现Mg2Si作负极容量约为 1370mAh/g,电压曲线平坦,但由于大的体积变化导致电极的脱落。Hansu K等人[16]还研究了Mg-N合金,发现Mg75N25在室温下与Li反应,循环性较纯Mg大大改善。Cao.G.S等[17]通过真空熔炼法制备 Zn4Sb3(-C7),首次容量为581mAh/g。10次循环后容量为402mAh/g。Huang.S.M等[18]制备SiAg合金。其中经50h磨的SiAg电极显示较好的循环性和较小的容量损失,在超过50次循环后,可逆容量为 280mAh/g。Zhang LT等[19]研制出CoFe3Sb12,首次可逆容量为490mAh/g,在10次循环后,可逆容量仍高于240mAh/g。而对Al的有关研究,近年来也有不少报道。根据A1-Li二元相图可知,Al和Li可以形成3种可能的金属间化合物A1Li、Al2Li3和Al4Li9。所以,Al电极的理论最大容锂值是平均每个灿原子吸收2.25个 Li原子,也就是对应着富Li相Al4Li9,其理论比容量为2234mAh/g,远远高于石墨的理论比容量372mAh/g。但以纯Al作负极时,同样存在容量损失大且循环性能差的问题[20]。Hamon等[20]认为纯A1作为锂离子电池负极具有高于1000mAh/g的比容量,是由于锂离子在嵌入、脱出的过程中与Al形成了非晶态的Li-Al合金。而其较差的循环性则是由于Al电极在充放电循环过程中所产生的巨大体积变化而造成的。

同时,Hamon等人也发现,A1箔试样越薄,经充放电循环后,电极的体积变化越小,从而其循环性也越好。这也证实了要解决Li-M合金在可逆生成与分解时所伴随的巨大体积变化而导致电极循环性较差的问题,我们可以制备颗粒极细的活性材料或超薄的薄膜材料。另外,我们也可以采用在能与Li反应的单质金属中添加惰性金属元素制备一些活性或非活性的复合合金以解决此问题。Machill等[21-22]为改善AI电极的循环性能,可以在Al电极中添加一些溶于Al的或者可以和Al形成金属间化合物的金属元素,例如Ni、Cu、Mg等,以改善Li在嵌入负极过程中的扩散速度,从而提高A1电极的循环性能。虽然在Al电极中添加其它的金属元素会导致其比容量和能量密度的减少,但由此带来的循环性能的提高却可以弥补此不足。因此,Al基金属间化合物作为锂离子电池负极材料具有广阔的发展前景。

5、结束语

低成本、高性能、大功率、高安全、环境友好是锂离子电池的发展方向。锂离子电池作为一种新型能源的典型代表,有十分明显的优势,同时有一些不足需要改进,可以预料,随着研究的深入,从分子水平上设计出来的各种规整结构或掺杂复合结构的正负极材料以及相配套的功能电解液将有力地推动锂离子电池的研究和应用。锂离子电池将会是継镍镉,镍氢电池之后,在今后相当长一段时间内,市场前景最好、发展最快的一种电池。随着信息产业和便携式电子产品的迅速发展,锂离子电池的需求量也在逐年快速增长,根据市场分析,锂离子电池未来几年内,在上述领域仍将以每年 10%左右的速度增长。此外,现在锂离子电池的负极研究还涉及锂合金、铝基合金、镁基合金、锑基合金、钛酸盐等方面,但总体说来,现在在这方面的研究还有很多工作要作,需要进一步的研究。

参考文献

[1] 吴宇平, 万春荣, 姜长印.锂离子二次电池.北京: 化学工业出版社, 2004.[2] 尹鸽平,周德瑞,夏保佳等.掺磷碳材料的制备及 其嵌锂行为.电池, 2000, 30(4):147~149.[3] 冯熙康.锂离子在石墨中的嵌入特性研究.电源技 术,1997, 21(40):139~142.[4] 李昌明,张仁元,李伟善.硅材料在锂离子电池中的 应用研究进展.材料导报, 2006, 20(9):34~37.[5] 王保峰, 杨军, 解晶莹等.锂离子电池用硅/碳复合 负极材料.化学学报.2003, 61(10):1572~1576 [6]冯启路,杜啸岚.锂离子电池负极材料的研究[J].2011.7 [7] 李明月,陈科峰.新型锂离子电池材料研究进展[J].化工生产与 术 2010 4.[8] 黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].化学 业出版社 2008.[9] 郑红河.锂离子电池电解质[M].化学工业出版社 2007.

第二篇:锂电行业资料-【浓缩】锂离子电池负极材料报告

PART 1:锂离子电池负电极材料介绍

目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。

一、碳负极材料

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,因此而使锂离子电池的比能量大大增加。

目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。

1、石墨

石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1 以上,充放电效率在90%以上,不可逆容量低于50mAh.g-1。锂在石墨中脱嵌反应在0~0.25V 左右,具有良好的充放电平台,可与提供锂源的正极材料钴酸锂、锰酸锂、镍酸锂等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。石墨包括人工石墨和天然石墨两大类。

2、软碳

软碳即易石墨化碳,是指在2500℃以上的高温下能石墨化的无定形碳。

软碳的结晶度(即石墨化度)低,晶粒尺寸小,晶面间距较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平台电位。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。

3、硬碳

硬碳是指难石墨化碳,是高分子聚合物的热解碳。这类碳在2500℃以上的高温也难以石墨化,常见的硬碳有树脂碳(酚醛树脂、环氧树脂、聚糠醇PFA-C等)、有机聚合物热解碳(PVA、PVC、PVDF、PAN 等)、碳黑(乙炔黑)。

硬碳的偖锂容量很大(500~1000mAh.g-1),但它们也有明显的缺点,如首次充、放电效率低,无明显的充放电平台以及因含杂质原子H 而引起的很大的电位滞后等。

二、非碳负极材料

1、锂过渡金属氮化物

锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V 以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。此类材料目前还需深入研究。

2、锡基负极材料(1)锡氧化物

锡的氧化物包括氧化亚锡、氧化锡和其混合物,都具有一定的可逆偖锂能力,偖锂能力比石墨材料高,可达500mAh/g 以上,但首次不可逆容量也较大。

SnO/SnO2 用作负极具有比容量高、放电电位比较低(在0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2 因制备方法不同电化学性能有很大不同。

在SnO(SnO2)中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe等并进行热处理,可提高其可逆容量可达600mAh/g 以上,体积比容量大于2200mAh/cm3,是目前碳材料负极(500~1200mAh/cm3)的二倍以上,显示出应用前景。该材料目前的问题是首次不可逆容量较高,充放电循环性能也有待进一步改进。

(2)锡复合氧化物

与锡的氧化物(SnO/SnO2)相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。

(3)锡合金

某些金属如Sn、Si、Al 等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn 的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10 倍。为了降低电极的不可逆容量,又能保持负极结构的稳定,可以采用锡合金作锂离子电极负极。

这种锡合金的体积比容量是石墨材料的两倍。同时拥有较大的可逆容量,表现出良好的循环性能。

合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。

3、锂钛复合氧化物 用来作锂离子电池负极的锂钛复合氧化物主要是Li4Ti5O12,其制备方法主要有:高温固相合成法、溶胶-凝胶法等。

4、纳米碳管

纳米碳管是近年来发现的一种新型碳晶体材料,它是一种直径几纳米至几十纳米,长度为几十纳米至几十微米的中空管,其性能如下:

纳碳米管的电性能

纳米管的制备有直流电弧法和催化热解法。

纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。

总之,在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。

非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

PART 2: 锂离子电池负极材料产业化现状

在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。我国拥有丰富的天然石墨矿产资源,在以天然石墨为原料的锂离子负极材料的产业化方面,深圳贝特瑞电池材料有限公司以高新科技促进传统产业的发展,运用独特的整形分级、机械改性和热化学提纯技术,将普通鳞片石墨加工成球形石墨,将纯度提高到99.95%以上,最高可以达到99.9995%。并通过机械融合、化学改性等先进的表面改性技术研制、生产出具有国际领先水平的高端负极材料产品,其首次放电容量达360mAh/g以上,首次效率大于95%,压实比达1.7g/cm3,循环寿命500次容量保持在88%以上。产品出口至日本、韩国、美国、加拿大、丹麦、印度等国家,并在国内40余家锂电厂家应用。该公司年产1800吨天然复合石墨(MSG、AMG、616、717、818等)、1200吨人造石墨负极材料(SAG系列、NAG系列、316系列、317系列)、3000吨球形石墨(SG)、5000吨天然微粉石墨和600吨锰酸锂正极材料,并正在不断扩大生产规模,同时可以根据客户的需求、工艺、设备以及存在的问题为客户开发客户需要的产品。生产的产品品质稳定、均一,具有很好的电化学性能和卓越加工性能,可调产品的比表面积、振实密度、压实密度、不纯物含量和粒度分布等。主要生产设备和检测仪器均从国外进口,从而形成该公司独特的核心竞争力的一部分。在锂离子电池负极材料行业贝特瑞已经引领了该行业的发展方向。

在锂离子电池负极材料领域,该公司的锂离子电池负极材料的已站在新一代国产化材料应用的前沿,代表着石墨深加工的方向。为确保产品持续领先,不断进行技术创新、产品创新、制度创新、思维理念创新,持续进行新产品开发,新近又推出了超高容量的合金负极材料(可逆容量>450mAh/g)、复合石墨PW系列、BF系列、纳米导电材料、锂离子动力电池用多元复合负极材料等产品。

第三篇:锂离子电池负极材料的研究现状、发展及产业化

锂离子电池负极材料的研究现状、发展及产业化

作者: userhung发布日期: 2008-09-08

锂离子电池(Lithium Ion Battery,简称LIB)是继镍镉电池、镍氢电池之后的第三代小型蓄电池。作为一种新型的化学电源,它具有工作电压高、比能量大、放电电位曲线平稳、自放电小、循环寿命长、低温性能好、无记忆、无污染等突出的优点,能够满足人们对便携式电器所需要的电池小型轻量化和有利于环保的双重要求,广泛用于移动通讯、笔记本电脑、摄放一体机等小型电子装置,也是未来电动交通工具使用的理想电源。

锂离子电池自1992年由日本Sony公司商业化开始便迅速发展。2000年以前世界上的锂离子电池产业基本由日本独霸。近年来,随着中国和韩国的崛起,日本一枝独秀的局面被打破。2003年全球生产锂离子电池12.5亿只,其中中国生产4.5亿只(含日本独资和合资),国内电池公司产量大于2.8亿只,占全球锂离子电池总产量的20%以上。近几年我国锂离子电池产量平均以每年翻一番的的速度高速增长,专家预测,未来几年,随着一批骨干企业生产规模的不断扩大,收集和笔记本电脑、摄像机、数码相机等便携产品的持续增长,我国锂离子电池产业仍将保持年平均30%以上的增长速度,2004年国内小型锂离子电池可达日产200~300万只,全年产量超过6亿只。

锂离子电池能否成功应用,关键在于能可逆地嵌入脱嵌锂离子的负极材料的制备。这类材料要求具有: ①在锂离子的嵌入反应中自由能变化小;②锂离子在负极的固态结构中有高的扩散率;③高度可逆的嵌入反应;④有良好的电导率;⑤热力学上稳定同时与电解质不发生反应。目前,研究工作主要集中在碳材料和其它具有特殊结构的化合物。

1.碳负极材料

碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。

众所周知,碳材料种类繁多,目前研究得较多且较为成功的碳负极材料有石墨、乙炔黑、微珠碳、石油焦、碳纤维、裂解聚合物和裂解碳等.在众多的用作碳负极的材料中,天然石墨具有低的嵌入电位,优良的嵌入-脱嵌性能,是良好的锂离子电池负极材料。通常锂在碳材料中形成的化合物的理论表达式为LiC6,按化学计量的理论比容量为372mAh/g。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。所以近年来锂离子电池的研究工作重点

在碳负极材料的研究上,且已经取得了许多新的进展。Okuno等[8]研究了用中介相沥青焦炭(mesophase pitch carbon,MPC)修饰的焦炭电极,发现焦炭电极的比容量仅170mAh/g~250mAh/g,焦炭和MPC按4∶1的比例混合,比容量为277mAh/g,而用MPC修饰的焦炭电极其比容量为300mAh/g~310mAh/g。马树华等[9]在中介相微球石墨(MCMB)电极上人工沉积一层Li2CO3或LiOH膜,电极的容量及首次充放电效率均有一定的改善。

邓正华等采用热离子体裂解天然气制备的天然气焦炭具有较好的嵌Li能力,初次放电容量为402mAh/g,充电量为235mAh/g,充放电效率为58.5%。冯熙康等[11]将石油焦在还原气氛中经2600℃处理后制得的人造石墨外部包覆碳层,发现处理后的这种材料有较高的比容量(330mAh/g),较好的充放电性能,较低的自放电率。

三洋公司采用优质天然石墨作负极,石墨在高温下与适量的水蒸气作用,使其表面无定形化,这样Li+较容易嵌入石墨晶格中,从而提高其嵌Li的能力。

碳负极的嵌Li能力对不同的材料有所不同,主要是受其结构的影响。如Sony公司使用聚糠醇的化合物,三洋公司使用天然石墨,松下公司采用中介相沥青基碳微球。一般说来,无定形碳具有较大的层间距和较小的层平面,如石墨为0.335nm,焦炭为0.34nm~0.35nm,有的硬碳高达0.38nm,Li+在其中的扩散速度较快,能使电池更快地充放电。Dohn描述了石墨层间距d002与比容量的关系,表明随d002的增大,放电比容量增高。Takami研究了中介相沥青基纤维在不同温度下的层间距和扩散系数,认为层间距取决于碳的石墨化程度,石墨化程度增加可降低Li+扩散的活化能,并有利于Li+的扩散。

高比容量的碳负极材料,可以极大地提高锂离子电池的比能量,但是部分裂解的碳化物有一个明显的缺陷就是电压滞后,即充电时Li+在0V(vs.Li+/Li)左右嵌入,而放电时在1V(vs.Li+/Li)脱嵌,尽管此类电池充电电压有4V,但实际上只有3V的工作电压。Takami等认为酚醛树脂、聚苯胺、微珠碳等明显有电压滞后现象。此外,这类材料的制备工序复杂,成本较高。

天然鳞片石墨用作锂离子电池负极材料的不足之处在于石墨层间以较弱的分子间作用力即范德华力结合,充电时,随着溶剂化锂离子的嵌入,层与层之间会产生剥离(exfoliation)并形成新的表面,有机电解液在新形成的表面上不断还原分解形成新的SEI膜,既消耗了大量锂离子,加大了首次不可逆容量损失,同时由于溶剂化锂离子的嵌入和脱出会引起石墨颗粒的体积膨胀和收缩,致使颗粒间的通电网络部分中断,因此循环寿命很差。

对鳞片石墨进行修饰,可以大大提高它的可逆容量和循环寿命.Kuribayashi等采用酚醛树脂包覆石墨,在700~1200℃惰性气氛下热分解酚醛树脂,形成以石墨为核心、酚醛树脂热解碳为包覆层的低温热解碳包覆石墨。包覆层在很大程度上改善了石墨材料的界面性质。低温热解碳包覆的石墨不仅具有低电位充、放电平台;同时借助于与电解液相容性好的低温热解碳阻止了溶剂分子与锂离子的共嵌入,防止了核心石墨材料在插锂过程中的层离,减少了首次充、放电过程中的不可逆容量损失并延长了电极的循环寿命。此外,对碳材料的改性方法还有表面氧化、机械研磨和掺杂等,可以有效提高电极的电化学性能。

2.非碳负极材料

近年来对LIB非碳类负极材料的研究也非常广泛。根据其组成通常可分为:锂过渡金属氮化物、过渡金属氧化物和纳米合金材料。锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs Li/Li+)附近,充、放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li3-xCoxN具有900mAh/g的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。SnO/SnO2用作LIB负极具有比容量高、放电电位比较低(在0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。在SnO(SnO2)中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物

(Amorphous Tin-based Composite Oxide 简称为ATCO)。与锡的氧化物(SnO/SnO2)相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。

纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。

某些金属如Sn、Si、Al等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。

总之,非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

3.产业化现状

在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。我国拥有丰富的天然石墨矿产资源,在以天然石墨为原料的锂离子负极材料的产业化方面,深圳贝特瑞电池材料有限公司以高新科技促进传统产业的发展,运用独特的整形分级、机械改性和热化学提纯技术,将普通鳞片石墨加工成球形石墨,将纯度提高到99.95%以上,最高可以达到99.9995%。并通过机械融合、化学改性等先进的表面改性技术研制、生产出具有国际领先水平的高端负极材料产品,其首次放电容量达360mAh/g以上,首次效率大于95%,压实比达1.7g/cm3,循环寿命500次容量保持在88%以上。产品出口至日本、韩国、美国、加拿大、丹麦、印度等国家,并在国内40余家锂电厂家应用。该公司年产1800吨天然复合石墨(MSG、AMG、616、717、818等)、1200吨人造石墨负极材料(SAG系列、NAG系列、316系列、317系列)、3000吨球形石墨(SG)、5000吨天然微粉石墨和600吨锰酸锂正极材料,并正在不断扩大生产规模,同时可以根据客户的需求、工艺、设备以及存在的问题为客户开发客户需要的产品。生产的产品品质稳定、均一,具有很好的电化学性能和卓越加工性能,可调产品的比表面积、振实密度、压实密度、不纯物含量和粒度分布等。主要生产设备和检测仪器均从国外进口,从而形成该公司独特的核心竞争力的一部分。在锂离子电池负极材料行业贝特瑞已经引领了该行业的发展方向。

在锂离子电池负极材料领域,该公司的锂离子电池负极材料的已站在新一代国产化材料应用的前沿,代表着石墨深加工的方向。为确保产品持续领先,不断进行技术创新、产品创新、制度创新、思维理念创新,持续进行新产品开发,新近又推出了超高容量的合金负极材料(可逆容量>450mAh/g)、复合石墨PW系列、BF系列、纳米导电材料、锂离子动力电池用多元复合负极材料等产品。据来自全球电池强国??日本的权威信息表明:深圳市贝特瑞电子材料有限公司研发生产的锂电池负极材料目前处于国内第一,世界第四的地位。

第四篇:2018年锂离子电池负极材料一体化生产项目可行性研究报告(编制大纲)

2018年锂离子电池负极材料一体化生产项目可行性研究报告

编制单位:北京智博睿投资咨询有限公司

0

本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、申请资金、融资提供全程指引服务。

可行性研究报告 是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。

可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投

资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。

投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。

报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。

报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等

关联报告:

锂离子电池负极材料一体化生产项目建议书 锂离子电池负极材料一体化生产项目申请报告

锂离子电池负极材料一体化生产项目资金申请报告 锂离子电池负极材料一体化生产项目节能评估报告 锂离子电池负极材料一体化生产项目市场研究报告 锂离子电池负极材料一体化生产项目商业计划书 锂离子电池负极材料一体化生产项目投资价值分析报告 锂离子电池负极材料一体化生产项目投资风险分析报告 锂离子电池负极材料一体化生产项目行业发展预测分析报告

可行性研究报告大纲(具体可根据客户要求进行调整)第一章 锂离子电池负极材料一体化生产项目总论 第一节 锂离子电池负极材料一体化生产项目概况 1.1.1锂离子电池负极材料一体化生产项目名称 1.1.2锂离子电池负极材料一体化生产项目建设单位 1.1.3锂离子电池负极材料一体化生产项目拟建设地点 1.1.4锂离子电池负极材料一体化生产项目建设内容与规模 1.1.5锂离子电池负极材料一体化生产项目性质

1.1.6锂离子电池负极材料一体化生产项目总投资及资金筹措 1.1.7锂离子电池负极材料一体化生产项目建设期

第二节 锂离子电池负极材料一体化生产项目编制依据和原则 1.2.1锂离子电池负极材料一体化生产项目编辑依据 1.2.2锂离子电池负极材料一体化生产项目编制原则 1.3锂离子电池负极材料一体化生产项目主要技术经济指标

1.4锂离子电池负极材料一体化生产项目可行性研究结论 第二章 锂离子电池负极材料一体化生产项目背景及必要性分析 第一节 锂离子电池负极材料一体化生产项目背景 2.1.1锂离子电池负极材料一体化生产项目产品背景 2.1.2锂离子电池负极材料一体化生产项目提出理由 第二节 锂离子电池负极材料一体化生产项目必要性

2.2.1锂离子电池负极材料一体化生产项目是国家战略意义的需要 2.2.2锂离子电池负极材料一体化生产项目是企业获得可持续发展、增强市场竞争力的需要

2.2.3锂离子电池负极材料一体化生产项目是当地人民脱贫致富和增加就业的需要

第三章 锂离子电池负极材料一体化生产项目市场分析与预测 第一节 产品市场现状 第二节 市场形势分析预测 第三节 行业未来发展前景分析

第四章 锂离子电池负极材料一体化生产项目建设规模与产品方案 第一节 锂离子电池负极材料一体化生产项目建设规模 第二节 锂离子电池负极材料一体化生产项目产品方案

第三节 锂离子电池负极材料一体化生产项目设计产能及产值预测 第五章 锂离子电池负极材料一体化生产项目选址及建设条件 第一节 锂离子电池负极材料一体化生产项目选址 5.1.1锂离子电池负极材料一体化生产项目建设地点

5.1.2锂离子电池负极材料一体化生产项目用地性质及权属 5.1.3土地现状

5.1.4锂离子电池负极材料一体化生产项目选址意见 第二节 锂离子电池负极材料一体化生产项目建设条件分析 5.2.1交通、能源供应条件 5.2.2政策及用工条件 5.2.3施工条件 5.2.4公用设施条件 第三节 原材料及燃动力供应 5.3.1原材料 5.3.2燃动力供应

第六章 技术方案、设备方案与工程方案 第一节 项目技术方案 6.1.1项目工艺设计原则 6.1.2生产工艺 第二节 设备方案

6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案 6.2.4设备采购方式 第三节 工程方案 6.3.1工程设计原则

6.3.2锂离子电池负极材料一体化生产项目主要建、构筑物工程方案 6.3.3建筑功能布局 6.3.4建筑结构

第七章 总图运输与公用辅助工程 第一节 总图布置 7.1.1总平面布置原则 7.1.2总平面布置 7.1.3竖向布置

7.1.4规划用地规模与建设指标第二节 给排水系统 7.2.1给水情况 7.2.2排水情况 第三节 供电系统 第四节 空调采暖 第五节 通风采光系统 第六节 总图运输

第八章 资源利用与节能措施 第一节 资源利用分析 8.1.1土地资源利用分析 8.1.2水资源利用分析 8.1.3电能源利用分析 第二节 能耗指标及分析

第三节 节能措施分析 8.3.1土地资源节约措施 8.3.2水资源节约措施 8.3.3电能源节约措施 第九章 生态与环境影响分析 第一节 项目自然环境 9.1.1基本概况 9.1.2气候特点 9.1.3矿产资源 第二节 社会环境现状 9.2.1行政划区及人口构成 9.2.2经济建设

第三节 项目主要污染物及污染源分析 9.3.1施工期 9.3.2使用期

第四节 拟采取的环境保护标准 9.4.1国家环保法律法规 9.4.2地方环保法律法规 9.4.3技术规范 第五节 环境保护措施 9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施

9.5.3其它污染控制和环境管理措施 第六节 环境影响结论

第十章 锂离子电池负极材料一体化生产项目劳动安全卫生及消防 第一节 劳动保护与安全卫生 10.1.1安全防护 10.1.2劳动保护 10.1.3安全卫生 第二节 消防

10.2.1建筑防火设计依据 10.2.2总面积布置与建筑消防设计 10.2.3消防给水及灭火设备 10.2.4消防电气 第三节 地震安全

第十一章 组织机构与人力资源配置 第一节 组织机构

11.1.1组织机构设置因素分析 11.1.2项目组织管理模式 11.1.3组织机构图 第二节 人员配置

11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员

表11-1劳动定员一览表 11.2.4职工工资及福利成本分析 表11-2工资及福利估算表 第三节 人员来源与培训

第十二章 锂离子电池负极材料一体化生产项目招投标方式及内容 第十三章 锂离子电池负极材料一体化生产项目实施进度方案 第一节 锂离子电池负极材料一体化生产项目工程总进度 第二节 锂离子电池负极材料一体化生产项目实施进度表 第十四章 投资估算与资金筹措 第一节 投资估算依据

第二节 锂离子电池负极材料一体化生产项目总投资估算

表14-1锂离子电池负极材料一体化生产项目总投资估算表单位:万元

第三节 建设投资估算

表14-2建设投资估算表单位:万元 第四节 基础建设投资估算

表14-3基建总投资估算表单位:万元 第五节 设备投资估算

表14-4设备总投资估算单位:万元 第六节 流动资金估算

表14-5计算期内流动资金估算表单位:万元 第七节 资金筹措

第八节 资产形成 第十五章 财务分析 第一节 基础数据与参数选取

第二节 营业收入、经营税金及附加估算

表15-1营业收入、营业税金及附加估算表单位:万元 第三节 总成本费用估算

表15-2总成本费用估算表单位:万元 第四节 利润、利润分配及纳税总额预测

表15-3利润、利润分配及纳税总额估算表单位:万元 第五节 现金流量预测 表15-4现金流量表单位:万元 第六节 赢利能力分析 15.6.1动态盈利能力分析 16.6.2静态盈利能力分析 第七节 盈亏平衡分析 第八节 财务评价 表15-5财务指标汇总表

第十六章 锂离子电池负极材料一体化生产项目风险分析 第一节 风险影响因素 16.1.1可能面临的风险因素 16.1.2主要风险因素识别 第二节 风险影响程度及规避措施

16.2.1风险影响程度评价 16.2.2风险规避措施 第十七章 结论与建议

第一节 锂离子电池负极材料一体化生产项目结论 第二节 锂离子电池负极材料一体化生产项目建议

第五篇:锂离子电池隔膜行业报告

锂离子电池隔膜行业季度报告

********有限公司

2014年*月*日 一.锂离子电池隔膜发展和行业演进

1.从隔膜作用看其性能要求

隔膜性能的优异对锂离子电池性能有重要作用。

在锂离子电池的结构中,隔膜是关键的内层组件之一。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。

隔膜的作用—阻隔正负极,同时具备微孔结构允许锂离子通过。

隔膜的主要作用是使电池的正、负极分隔开来,防止两极接触而短路,此外还具有能使电解质离子通过的功能。隔膜材质是不导电的,其物理化学性质对电池的性能有很大的影响。电池的种类不同,采用的隔膜也不同。对于锂离子电池,由于电解液为有机溶剂体系,因而需要有耐有机溶剂的隔膜材料,一般采用高强度薄膜化的聚烯烃多孔膜。

图1.锂电池隔膜在电池中的位置和作用(钴酸锂电池为例)

从作用出发看性能要求,锂离子电池隔膜一般需满足如下几个方面的要求:(1)隔断性要求:具有电子绝缘性,保证正、负极的有效隔离;(2)孔隙率要求:有一定的孔径和孔隙率,保证低的电阻和高的离子电导率,对锂离子有很好的透过性;(3)化学和电稳定性要求:由于电解质的溶剂为强极性的有机化 合物,隔膜必须耐电解液腐蚀,有足够的化学和电化学稳定性;(4)浸润性要求:对电解液的浸润性好并具有足够的吸液保湿能力;(5)力学强度要求:具有足够的力学性能,包括穿刺强度、拉伸强度等,但厚度尽可能小;(6)平整性要求:空间稳定性和平整性好;(7)安全性要求:热稳定性和自动关断保护性能好。

2.锂离子电池隔膜行业进入壁垒

隔膜是技术壁垒最高和国产化率最低的锂电池材料,其技术难点在于造孔的工程技术、基体材料以及制造设备。2013年,受消费类电子产品和小型动力电池市场的驱动,锂离子电池行业继续保持良好的增长,这就促进了隔膜的进一步发展。但至2013年,国内仅有的三家能生产中高端锂电隔膜的企业:沧州明珠(002108)、深圳星源材质、金辉高科。中国市场的高端隔膜产品仍需要大量进口,而国际隔膜行业则形成了以旭化成、Celgard、东丽等为领先企业,SK、宇部、Entek和国内企业如星源材质、格瑞恩等作为追随者的市场格局。

近几年来,国内还有数十家投资者计划或正在参与投资隔膜项目,如乐凯集团、九九久、南洋科技。国内隔膜行业在面临巨大的市场机遇的同时,也面临着技术制约和投资过热的风险。行业内新型隔膜技术和产品也不断出现,成功与否正在被时间和事实所检验。

3.锂离子电池隔膜国家扶持政策

锂离子电池隔膜属于国家鼓励发展的电池配套材料,符合国家《当前优先发展的高技术产业化重点领域指南》,同时属于“国家中长期科学和技术发展规划纲要(2006-2020年)”中所列的前沿技术第(11)项:高效能源材料技术中的高效二次电池材料及关键技术专题。

“十一五”期间,中央政府将在锂离子电池研制方面投资6000万元,同时要求承担项目的公司按照10倍比例投入配套资金,这样总的投资将达到6亿元。2008国家“863”计划将“低成本锂离子电池隔膜关键技术研究”列为重点产业化导向项目。近期,国家工信部接连出台的《新材料产业十二五规划》和《电子信息产业十二五规划》均将锂电池隔膜作为重点支持发展的新兴产业给予支持。媒体透露,《通用锂离子电池聚烯烃隔膜》国家标准正在进行数据验证与标准修订工作,并有望于2014年发布。今年3月31日,中共中央政治局常委、国务院副总理张高丽一行调研了沧州明珠新能源工业园区。这次的调研行动,充分说明了我国政府对于新能源建设的高度重视。有业内分析指出,未来几年,中国新能源汽车行业及其上下游产业链将会持续从政策的支持中受益。

二.隔膜生产工艺现状及发展趋势

1.隔膜生产工艺现状

目前市场上主流的锂电池隔膜生产工艺包括两种,即干法(熔融拉伸工艺)和湿法(热致相分离工艺),干法工艺又可细分为干法单向拉伸工艺和干法双向拉伸工艺。两种方法都包括至少一个取向步骤使薄膜产生空隙并提高拉升强度。

干法制备工艺原理

干法的制备原理是先将高聚物原料熔融,之后高聚物熔体挤出时在拉伸应力下结晶,形成垂直于挤出方向而又平行排列的片晶结构,并经过热处理得到硬弹性材料。具有硬弹性的聚合物膜经过拉伸环节之后发生片晶之间的分离而形成狭缝状微孔,再经过热定型制得微孔膜。该工艺对过程精密控制要求高,尤其是拉伸温度高于聚合物的玻璃化温度而低于聚合物的结晶温度,孔隙率也控制较难把握。目前主要包括干法单向拉伸和双向拉伸工艺。

干法单向拉伸工艺——源自美国Celgard 公司

从技术源头来看,干法单向拉伸工艺源自美国Celgard公司,该方法主要是在在熔融挤出成膜后经退火结晶处理形成半结晶PP/PE/PP,单向拉伸出微裂纹,孔隙率在30~40%。该工艺经过几十年的发展在美国、日本已经非常成熟,美国Celgard公司拥有干法单向拉伸工艺的一系列专利,日本UBE公司则通过购买Celgard的相关专利使用权进行生产。采用干法单向拉伸方法生产的隔膜具有扁长的微孔结构。从性能上看,没有横向拉伸步骤有利有弊:由于只进行单向拉伸,隔膜的横向强度比较差,但正是由于没有进行横向拉伸,横向几乎没有热收缩。

干法双向拉伸工艺——源自中科院化学所,美国Celgard 集大成

干法双向拉伸技术源自中科院化学所,后又得到国家863计划的支持。该技术通过在聚丙烯中加入具有成核作用的β晶型改进剂,利用聚丙烯不同相态间密 度的差异,在拉伸过程中发生晶型转变形成微孔,用于生产单层PP膜。尽管中科院化学所拥有专利技术,但是其集大成者却是美国的Celgard公司。2001年,化学所将其在美国、英国和日本申请的干法双向拉伸专利权转让给美国Celgard公司。国内的新乡格瑞恩公司以及新时科技的技术就来自于中科院化学所,采用的是干法“双向拉伸”技术生产单层PP膜。从理论上分析,干法双向拉伸工艺生产的隔膜经过双向拉伸,在纵向拉伸强度相差不大的情况下,横向拉伸强度要明显高于干法的单向拉伸工艺生产的隔膜。

湿法工艺——目前在日韩厂商中占据主流

和干法相比,湿法需要有机溶剂,其基本过程是指在高温下将聚合物溶于高沸点、低挥发性的溶剂中形成均相液,然后降温冷却,导致溶液产生液-固相分离或液-液相分离,再选用挥发性试剂将高沸点溶剂萃取出来,经过干燥获得一定结构形状的高分子微孔膜。在隔膜用微孔膜制造过程中,可以在溶剂萃取前进行单向或双向拉伸,萃取后进行定型处理并收卷成膜,也可以在萃取后进行拉伸。

和干法相比,湿法的制膜过程相对容易调控,可以较好地控制孔径、孔径分布和孔隙率,且机械性能良好,可以满足动力电池的大电流充放的要求。但制备过程中需要大量的溶剂,容易造成环境污染,而且工艺相对复杂,采用的聚乙烯基材熔点也比较低只有140℃,所以热稳定性较差。目前日韩厂商采用湿法工艺的公司较多,主要有日本旭化成、东丽、三菱化学、韩国SK化学和美国Entek等。

2.隔膜发展趋势

隔膜厚度发展趋势——消费类锂离子电池追求更薄,动力电池倾向于厚膜。对于手机、笔记本电脑、电子相框等消耗型锂离子电池,25μm的隔膜逐渐成为标准。然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,例如20μm、18μm、16μm、甚至更薄的隔膜开始大范围的应用。对于动力电池来说,由于装配过程的机械要求,往往需要更厚的隔膜,同时厚一些的隔膜往往同时意味着更好的安全性。总体来讲隔膜的厚度直接影响电池的安全性、容量和内阻等指标,目前常用的隔膜厚度一般为16~40um。

凝胶聚合物锂离子电池的复合隔膜可能成为未来隔膜的发展趋势。为了消除液态锂离子电池潜在的爆炸隐患,近年使电解液与具有离子传输性 能的聚电解质充分浸润形成凝胶的全固态凝胶聚合物锂离子电池开始出现。全固态锂聚合物电池采用凝胶聚电解质,要求隔膜具有良好的吸液性能,出现了以偏氟乙烯与六氟丙烯共聚物(PVDF-HFP)为主要材料,通过溶剂涂膜、静电纺丝或拉伸方法制备凝胶聚合物隔膜的研究和报道。同时以聚烯烃隔膜材料为基体,涂覆PVDF、PEO等材料,适应于凝胶聚合物锂离子电池复合隔膜的研究也有大量报道。全固态凝胶聚合物锂离子电池指明了未来锂离子电池的发展方向,对于国内隔膜生产企业来说,开发能够满足全固态锂离子聚合物电池使用的隔膜将是大势所趋。

三.锂离子电池隔膜行业状况

1.全球锂离子电池隔膜行业状况

全球隔膜产业呈稳步高速增长

全球范围内来看,随着锂离子电池应用范围的逐步扩张,下游锂离子电池产业规模保持了快速的增长趋势,从而带动整个隔膜产业的高速增长。2008年到2011年间,全球锂离子电池隔膜的产量均保持了10%以上的增长速度,特别是2009年受益于全球经济的复苏,下游需求的增长带动全球隔膜产量增幅高达20.15%,达到3.28亿平方米。2010年,由于基数较大的原因,隔膜产量的增幅保持平稳,产量达到3.93亿平方米。2011、2012年,受到下游需求带动的影响,隔膜产量达到4.87和6.54亿平方米,同比增长23.9%和34.29%。

图2.全球隔膜产量趋势 据研究统计,2013年全球锂电隔膜出货量为7.76亿平方米,同比增长22.78%。产品主要有传统的聚烯烃类隔膜和新型无纺布隔膜两大类,其出货量分别为7.68亿平方米和800万平方米。业内人士分析,新型材料隔膜虽然在性能上表现相对好一些,但是由于价格偏高而造成市场需求增长非常缓慢。

隔膜市场仍为国外制造商占主体

2013年全球隔膜龙头依然是日本旭化成、东丽以及美国Celgard,前三名总市场份额高达48.33%,使得隔膜国际市场依旧是寡头垄断形态。值得注意的是,日本的这两家企业的主要增长得益于涂覆了陶瓷材料的PE隔膜产品,其以更薄的隔膜和更高的耐热性能取代了部分美国Celgard生产的PP/PE/PP三层复合隔膜的动力锂离子电池业务。第四名的韩国SK创新公司除了本国固有的三星SDI客户外,其在中国的市场业务也拓展良好。

中国的隔膜龙头企业新乡格瑞恩、深圳星源材质、佛山金辉高科分别以7000万平方米、3200万平方米以及2600万平方米位列第五、七、八位。格瑞恩的主打产品是PP隔膜,不过已经有试产的PE生产线;星源材质和金辉高科的产品分别以PP隔膜和PE隔膜为主。

图3.2013年全球主要隔膜企业市场份额

电动汽车爆发式增长使隔膜需求量倍增

2013年全球电动汽车销量同比增长78.3%,2014年预计同比增长80%,全球电动汽车保有量将超过70万辆。根据国际能源署估计,2015年全球电动汽车销量将达到110万辆,2020年将达到690万辆,市场空间巨大。这种全球电动 汽车爆发式增长将拉动锂电池材料需求增长。

以特斯拉为例,2014年特斯拉Model S电动轿车销量将达3.5万辆,年产量将达5万辆,每辆特斯拉电动车平均使用7500个18650电芯,每个18650电芯隔膜使用量为0.09m2,则每辆特斯拉电动车消耗隔膜675平方米,2014年特斯拉电动车的隔膜用量则为3375万平方米。据了解,特斯拉的目标是争取在10年内将产量扩大至50万辆,如果使用的电池组保持现状,到2024年,特斯拉电动车的全球隔膜将达到3.4亿平方米。

2.国内锂离子电池隔膜行业状况

国内隔膜需求增加,但国产隔膜市场占有率低

作为世界上最大的锂电池生产制造基地和第二大锂离子电池生产国和出口国,中国对隔膜的需求日益增加。2013年,中国国内隔膜市场容量为5.38亿平方米,同比增长40.40%,市场规模达到50.32%亿元,同比增长20.52%。但是由于隔膜具备较高的技术壁垒,国产隔膜与进口隔膜在性能上存在较大差距,导致国内隔膜市场大部分需要进口,尤其是高端隔膜基本依靠进口。因此,仅从国产隔膜的产量来看,2013年,国产隔膜的产量仅为2.96亿平方米,产量约为国内隔膜市场容量的50%左右,同比增速保持了54.31%。

图4.2009年-2013年我国隔膜产量及国内隔膜需求量 中高端为国际巨头垄断,仅三家国内企业具中高端产能

目前国内锂电池隔膜市场主要呈现国外、本土厂商共存且两极分化的市场格局:低端市场集中度较低,无序竞争状态明显,主要由本土厂商占据;技术门槛高、产品质量要求高的中高端市场则为日韩厂商及本土少数领先企业所占据。国内仅有的三家能生产中高端锂电隔膜的企业包括沧州明珠、深圳星源材质、佛塑科技与比亚迪合资公司金辉高科。深圳星源已切入LG供应链;沧州明珠也成功打入比亚迪、苏州星恒、中航锂电供应体系;佛塑科技联营公司佛山金辉高科的客户包括比亚迪、比克等国内知名电池厂商,公司产品主要用于数码类产品的锂电池上。国内的锂电池隔膜企业未来有望凭借性价比,进一步打入国际供应体系。

中国隔膜行业产能严重过剩,导致价格迅速下滑

在4 大关键材料中,隔膜是唯一没有完全实现国产化的,行业初期毛利率高达40%。众多企业看到投资机会,本着先有“量”再有“质”的一贯方式,上马隔膜项目,致使现在中国企业隔膜规划产能已经达到了一个令人不可置信的数字——36亿平方米,是我国国内需求量的6倍多。参与企业的迅速增多引发了激烈竞争,导致隔膜价格快速下滑。从图5可以看到,国产PP隔膜的均价由2010 年的8 元/m2 下降到了2013 年的4.4 元/m2,而国产PE 隔膜的均价则由2010 年的9.3 元/m2 下降到了2013 年的5.6 元/m2,降幅分别达到了45%和40%。

图5.2010年-2013年国产隔膜价格走势 国内隔膜企业和国际龙头的主要差距

目前国内的隔膜企业和国际龙头的主要差距在于企业实力、生产原料、生产工艺的研发、生产设备、以及长期积累的品牌信任度。

首先,国外隔膜厂商基本都有生产电池的背景或者是从电池企业转型而来,因此他们了解下游电池企业的生产需要,也有足够的财力支持从原材料开始进行研发,例如旭化成、东丽、Celgard等都有独立的高分子实验室,可以实现专料供应。而国内的隔膜企业主要是做塑料拉伸膜的塑料加工企业、风投组成的企业或是其他行业转型过来的,基本上是小企业,没有足够资本。国内企业若想保证研发力量,需要实现10亿元的收入,有股权保证的上市公司更受到资本投入的欢迎。

其次,我国企业的设计产能结构和市场需求结构存在差异。国产隔膜主要集中应用在电动工具、消费类电子产品等中低端领域,而这一部分市场已经饱和。高端动力电池隔膜还在发展阶段,供需缺口很大,基本依赖进口。所以目前国内的隔膜投资主要是瞄准高端隔膜,希望在市场格局成熟固化之前分得一杯羹。

最后,隔膜产业作为中间工业品也同样需要基于技术和品质的品牌价值。国内企业应该学习国外成熟的锂电池产业链模式,开拓下游市场,营销自己的产品品牌,切入知名电池企业、甚至电动汽车企业的供应链。例如,2013年初美国PPT公司为拓展亚洲市场,在上海成立新公司,专门生产具有高孔隙度、低电阻特点的电池隔膜产品,并为亚洲电池制造商提供现场支持服务。

综上来看,锂电池下游需求旺盛,已经进入黄金发展时代,这将带动锂离子电池各种材料的强劲需求。隔膜国际市场虽然集中度有所下降,但还呈日韩寡头垄断态势。国内低端隔膜市场饱和,未来发展还看高端动力电池隔膜。国内外锂离子电池制造企业由于成本的压力,都在试着导入国产隔膜产品。据高工锂电最近调研数据显示,2014年上半年国内锂电池隔膜的销量是1.61亿平方米,同比增长41%,这主要得益于出口量的打开。未来,国内隔膜市场将会进入一个资源整合阶段,简单加工模仿、不被主流锂电池企业认可的隔膜企业将生存困难。

下载锂离子电池负极材料的调研报告(精选)word格式文档
下载锂离子电池负极材料的调研报告(精选).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    锂电池负极材料简介

    负极材料: 负极材料作为锂离子电池的重要组成部分,其研究对象多种多样,归纳起来:主要分为两太类:第一类是碳材料,包括石墨化碳材料和无定形碳材料:第二类是非碳材料,主要包括硅基材......

    负极碳材料(五篇模版)

    负极碳材料 1 石墨烯1.1 石墨烯结构与性能 石墨烯是由碳原子构成的二维新材料,碳原子采用 sp2杂化形成了具有蜂巢状的二维晶格结构,这种结构非常稳定,碳-碳键键长只有 1.42埃,单......

    锂离子电池[推荐阅读]

    ENSTA ParisTech 是一所培养有能力在国际经济环境约束下设计,实施和复杂项目管理的工程师的 “工程师大学校”。法国国立高等先进科技学校(ENSTA ParisTech)在法国教育体系中......

    锂离子电池总结报告

    锂离子电池总结报告 工作原理 锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电......

    镍氢电池负极材料研究概况

    目 录 第一章 前言 .............................................................. 3 第二章 镍氢电池应用背景 ................................................. 5 2......

    锂离子电池电解液生产流程及发展实习报告

    目录 摘要 ......................................................... 1 前言 ......................................................... 2 1、实习单位概况 ............

    锂离子电池常见问题总结

    锂离子电池常见问题总结 11、什么是电池的容量? 电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1......

    纳米硅碳负极材料研究报告

    纳米硅碳负极材料研究报告 0引言 自1991年SONY公司以石油焦炭为负极材料将锂离子电池推向商业化以来,因其出色的循环寿命、较高工作电压、高能量密度等特性,锂离子电池一经推......