第一篇:车站信号自动控制原理测试题及答案修改
一、填空题(共20个空,每空1分,共20分)
1、在车站范围内,列车和调车车列由某一指定地点运行至另一指定地点所经过的路段称做进 路。
2、从排列进路到列车或车列通过了该进路是一过程,我们称该过程为进路控制过程。进路控制过程可分为进路建 立 和进 路 解 锁两个大的阶段。
3、信号、道岔和进路必须按照一定程序并满足一定条件才能动作和建立的这种约束称做联 锁。
4、单线车站正线的进站道岔为车 站 两 端 向 不 同 线 路 开 通位臵为定位,由左侧行车制决定。双线车站正线上的进站道岔,为向各该正线开通的位臵为定位
5、在铁路信号系统中,凡是涉及行车安全的继电器电路都必须采用安 全 型继电器。
6、安全技术首先是从铁路信号开始的。故 障 导 向 安 全是铁路信号领域必须贯彻的原则
7、为了记录按压每个进路铵钮的动作,一般对应每个进路按钮设臵一个AJ。但是,对应每个单臵调车进路按钮应设臵1AJ、2AJ、AJ三个按钮继电器。
8、在建立进路的过程中,从按压进路按钮起到进路选出这一阶段所涉及的各个继电器电路统称选 择 组电路。
9、所谓超限界绝缘系指具有以下两个特征的绝缘:一是绝缘节的设臵位臵距道岔警冲标不足3.5m;二是该绝缘节两侧的两个道岔之间没有双动关系(即这两个道岔各有自己的控制电路)。
10、列车用的信号机应在列车驶 入 进 路 后立即关闭;调车用的信号机则根据作业需要应在列 车 出 清 接近区 段,或当接近区段留有车辆时,待车列出清调车信号内方第一道岔区段后才自动关闭。
11、信号机的允许显示因故熄灭时(允许灯泡的灯丝断丝),应自动改点禁止显示——红灯。
12、调车中途返回解锁有两种情况:一是牵出进路全部区段都没有解锁;二是牵出进路有一部分区段已经解锁,还留有一部分区段没有解锁。
13、信号开放后车已经接近,即进路处于接近锁闭状态时,要想改变进路,必须先使进路解锁,这时必须用人工延时解锁的办法,从信号 2 关闭时算起,接车进路和正线发车进路,要延时3分钟解锁,侧线发车进路和调车进路,要延时30秒。
14、信号开放以后,在车列驶入进路以前,若进路中某段轨道电路瞬时故障导致信号机自动关闭。在轨道电路故障自动消失且进路仍处于锁闭状态时,允许值班员再次按下该进路的始 端按钮,让 FKJ 再度励磁吸起,信号机可再次开放。
二、单选题(共10个小题,每小题2分,共20分)
1、捺形渡线道岔反位操纵继电器的励磁网路线是:(A)A.3、4线 B.5、6线 C.1、2线 D.7线
2、当办理下行列车通过作业时,只须按压哪两个按钮就可把下行列车通过进路选出来。(A)
A.XTA和XLZA B.XTA和SLZA C.XTA和STA D.XTA和SLA
3、道岔区段有车时,道岔不应转换,此种锁闭叫做(A)A.区段锁闭 B.进路锁闭 C.单独锁闭 D.接近锁闭
4、两路主、副电源必须自动互相切换,即一路停电时能自动倒换到另一路。在转换过程中,断电时间不得超过(B)A.0.2s B.0.15s C.0.1s D.0.3s 3
5、当列车或车列未驶入接近区段时,允许操作人员立即使进路解锁而不会危及行车安全,习惯上称这种解锁方式为(C)A.正常解锁 B.人工解锁 C.取消进路 D.进路解锁
6、当单臵调车进路按钮作为变通按钮使用时,它的按钮继电器吸起的是(C)
A.1AJ和AJ B.1AJ和2AJ C.1AJ、2AJ和AJ D.2AJ和AJ
7、检查进路选排一致性的继电器是(A)A.KJ B.XJJ C.KJ和ZJ D.XJJ和ZJ
8、在8线,检查本咽喉区没有建立敌对进路时通过(C)的后接点来实现的。
A.KJ B.XJJ C.KJ和ZJ D.KJ和XJJ
9、引导信号应显示(B)灯光 A.红 B.红和白 C.白 D.黄
10、当道岔启动电路已经动作后,如果车随即驶入道岔区段,则应保证使转辙机(C),不要受上述区段锁闭的限制。
A.停止转换 B.反向转换 C.继续转换到底 D.停止转换并回转
三、判断题(共15个小题,每小题1分,共15分)
1、防护道岔、带动道岔都必须进行联锁条件的检查,防护道岔、带动道岔不在防护的位臵,进路就不能建立。错。带动道岔不检查联锁条件。
2、所谓安全型继电器是指它的结构必须符合故障-安全原则,是一种不对称器件,在故障情况下使前接点闭合的概率远大于后接点闭合的概率。
错。前接点闭合的概率远小于后接点闭合的概率。3、4个方向继电器同时只允许其中一个方向继电器励磁吸起,并保持到整条进路全部选出为止。对。
4、股道有车占用时不允许向其排列调车进路。错。应为允许
5、允许两端同时向无岔区段办理调车作业。错。不允许同时向无岔区段调车。
6、联锁设备、调度集中设备都是安全性设备。错。调度集中设备不属于安全性设备。
7、故障-安全混线防护位臵法的关键在于继电器和电源必须分设在可能混线位臵的同侧。错。应为两侧。
8、依照按压进路始端按钮和进路的终端按钮先后顺序,能确定进路的运行方向和进路的不同性质。错。不能区分进路的性质。
9、调车按钮可兼做列车进路的变更按钮,也能兼做调车进路的变更按钮。
错。调车按钮不能兼做调车进路的变更按钮
10、在执行组电路中,由于一些继电器电路的逻辑条件涉及到信号、道岔和道岔区段,因此,它们的电路具有网络形状。错。应为站场形状。
11、在尖轨和基本轨之间夹有障碍物(如道碴等)而使道岔不能转换到极处,再操纵时,应使道岔能向反方向转换,以防电机过载。对。
12、检查另一咽喉区没有建立迎面的敌对进路。是通过检查另一咽喉该股道处的照查继电器GJJ的前接点来实现。
错。应为ZCJ继电器。
13、道岔位臵正确,用DBJ或FBJ的前接点来证明,把道岔锁在规定的位臵用1SJ、2SJ或SJ的前接点来实施。错。应为锁闭继电器的后接点。
14、为防护守车“跳动”所可能引起的道岔中途转换事故,利用FDGJ的缓放性能,采取了车出清道岔区段后,延迟30秒解锁的防护措施。错。应为3秒。
15、在6502电气集中电路里对应每一道岔区段设一个锁闭继电器。错。应为每组道岔。
四、简答题(共5个小题,每小题5分,共25分)
1、进路建立到解锁分哪5个阶段?
答:1.道岔转换阶段;2。进路选排一致检查阶段;3.进路锁闭阶段;4.开放信号阶段;5.进路解锁阶段
2、什么叫超限绝缘检查?
在检查道岔轨道区段空闲时,还必须注意是否要检查超限界绝缘节另一侧的非进路内道岔区段的空闲状态。习惯上称这种检查为超限界绝缘检查。
3、开放信号前先检查什么灯丝完整,即确实是在点什么灯? 答:检查红灯灯丝完整,在点红灯。
4、引导锁闭有哪几种及锁闭方式? 答:引导锁闭分为两种;
一种是按进路锁闭方式的,叫引导进路锁闭;另一种是把全咽喉所有的联锁道岔都锁闭的方式叫引导总锁闭。
5、什么叫联锁?
答:信号、道岔和进路必须按照一定程序并满足一定条件才能动作和建立的这种约束称做联锁。
五、论述题或应用题(共2个小题,每小题10分,共20分)
1、简述继电器 DCJ 和 FCJ、DBJ 和 FBJ、KJ、ZJ的名称和作用。答:概括地说,道岔操纵继电器 DCJ 和 FCJ 是为了选道岔位臵用的,道岔表示继电器DBJ 和 FBJ 是反映道岔位臵用的,开始继电器KJ 和 终端ZJ 是记录进路的始端位臵和终端位臵用的,而 KJ 是兼作检查进路选排一致性的。
2、选择组电路共有哪几条网路,各网路的作用是什么? 答: 共有6条网路,作用如下: 1、2线是“八”字撇形渡线道岔反位操纵继电器网路;
3、4线是“八”字捺形渡线道岔反位操纵继电器网路;
5、6线是渡线道岔的定位操纵继电器和单动道岔的定位和反位操纵继电器网路,进路选择继电器也属于这一组。
第二篇:车站信号自动控制系统维护—信号
车站信号自动控制系统维护
指导老师:傅宗纯
姓名: 班级:信号151
学号:
6502电气集中设备实验报告
实验目的:
1.了解6502电气集中的组成部分
2.掌握控制台各种按钮的用途、各种操作的方法。3.能够正确的办理进路和取消进路。
一、6502电气集中设备概述
6502电气集中联锁是用电气集中控制和监督,用继电器实现道岔、进路和信号机之间的联锁关系。
电气集中车站的信号设备分室外和室内两部分,电气集中联锁车站和计算机联锁车站室外设备相同,主要有色灯信号机、电动转辙机、轨道电路和电缆电路。
对于6502电气集中信号楼内的设备主要有控制台、区段人工解锁按钮盘、继电器组合及组合架、电源屏和分线盘。控制台用于控制和监督道岔、进路和信号机,设有控制台和信号楼或行车室就是车站的控制中心。区段人工解锁按钮盘是辅助设备,主要在更换继电器或停电后,用它使设备恢复正常状态。继电器组合及组合架的实现联锁控制的核心设备,它安放着控制和监督用的各种继电器。电源屏能不间断的供给电气集中用的各种交直流电源。分线盘是室内外电缆连接的地方。通过这些设备完成联锁控制功能和显示及报警功能。
二、6502电气集中系统设备组成
室内设备:控制台、区段人工解锁按钮盘、继电器组合及组合架、电源屏、分线盘。
室外设备:信号机、电动转辙机、轨道电路、电缆线路及各种箱盒。
1、区段人工解锁按钮
是辅助设备,主要在更换继电器或者停电后,用它使设备恢复正常状态。另外,在道岔区段因故障不能解锁时,用它来办理区段故障人工解;若设备发生故障时,用它实现对信号的强制关闭。
2、继电器组合及组合架
把控制对象相同的继电器按照定型电路环节组合在一起,叫继电器组合,它是6502电气集中系统实现联锁功能的设备。组合架用来放置继电器组合。
图 1 继电器组合及组合架
3、电源屏
不间断的供给电气集中用的各种交直流电源。
图 2 电源屏
4、分线盘
室内外电缆连接的地方,有助于辅助查找信号设备故障的范围。黄色的胶木板上有许多的白色的瓷端子。中间蓝色部分为轨道电路模拟测试盘,测试轨道轨面电压。
图 3分线盘 分线盘分10层,从下往上依次为F1-F10;每一层里面有13块18柱端子板,也有的是15块6柱端子板。
图 4 分线盘
4、控制台
控制台盘面上装有站场线路的模拟图形、按钮和表示灯。车站值班员利用按钮集中操纵全站的道岔和信号,并通过表示灯和光带监督设备状态和线路作用情况。
图 5 控制台
6、模拟盘
在模拟盘上按钮向下表示为有车占用,按钮向上表示为列车出清。
图 6室外设备模拟盘
三、进路
基本进路:依次按下进路的始、终端按钮后所选定的一条进路叫基本进路
例如从石门---长沙3G 按S进站信号机前的绿色按钮,后按X3LA
(1)以单置顺向的调车信号机为阻挡信号时,应以该单置的调车信号按钮为终端。如书中站场平面图中,排列D3→D11的调车进路应以D11A为终端。
(2)阻挡信号机处有并置或差置的调车信号机时,应以相反方向的信号机按钮为终端。
第三篇:区间信号自动控制课程设计
区间信号自动控制课程设计报告
1设计目的
本次课程设计旨在通过回顾学过的区间相关知识设计并利用AutoCAD软件绘制区间信号设备平面布置图,区间移频柜设备布置图,区间综合柜设备布置图和通过信号机点灯电路。熟练掌握公里标的含义,信号机的布置和命名,设备的配置和点灯电路等实际的高于课本的专业知识,为我们以后参加工作夯实基础。
2设计内容及要求
绘制区间信号设备平面布置图,区间移频柜设备布置图,区间综合柜设备布置图和通过信号机点灯电路。熟练掌握公里标的含义,信号机的布置和命名,设备的配置和点灯电路等专业知识。
设计原理:ZPW-2000A系统由调谐区、匹配变压器、补偿电容、传输电缆、发送器、接收器、衰耗盒、电缆模拟网络组成。
发送器用于产生高精度、高稳定移频信号源,系统采用N+1冗余设计,故障时通过FBJ接点转至“+1FS”。
接收器采用A、B双机并联,A主机输入接至A主机,并同时接入B主机;B主机输入接至B主机,并同时接入A主机;A主机输出与B主机输出并联,动作A主机的执行对象;B主机的输出也是类似的。
调谐区由主轨和短小轨组成,主轨道信号传至本区段接收器,调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
衰耗盘用于实现主轨道电路、小轨道电路的调整。给出发送接收故障,轨道占用表示及发送,接收用+24电源电压,发送供出电压和接收GJ、XGJ测试条件。正方向调整用a11~a23端子,反方向调整用c11~c23端子。
3设计图纸说明
3.1区间信号平面布置图
我设计的K14站中有16个闭塞分区,上行有九个闭塞分区,下行有九个闭塞分区。在区间信号平面图的绘制中包括进站信号机、出站信号机和通过信号机的布置和命名,反向进站预告标的设置,各闭塞分区载频的配置,补偿电容的配置以及确定区间各区段的长度及命名。如附图QJKS-01所示。
区间信号自动控制课程设计报告
3.1.1区段长度的设置
本次设计站绘制区间信号平面布置图分了18个区段,每个区段的划分以电气绝缘节为分界点,但是进出站的地方用机械绝缘隔开。车站以坐标K8814+000为准,而车站与区间的交接点是进站信号机,车站的长度为3000米左右,四个进站信号机据信号楼的距离在800~1500m之间。因此先确定四个进站信号机的位置,然后向两侧推来布置区间的轨道区段。为保证行车安全,闭塞分区必须要有足够的制动距离,按照区间具体情况设置各闭塞分区的长度,每个闭塞分区的长度以1200~1400m为准。3.1.2信号机的设置及命名
(1)信号机设置的原则
①闭塞分区长度应满足各种列车制动距离的要求,两架信号机之间的距离以本闭塞分区的具体情况为准。
②区间通过信号机应在车站进站、出战信号机位置确定之后才能布置。③上、下行方向的通过信号机,尽量的并列设置。
④信号机应设在列车运行方向的左侧或其所属线路的中心线上空。
⑤在下行方向有一架下行出站信号机XⅠ和一个反向进站信号机XF,上行方向也有一架出站信号机SⅡ和一个反向进站信号机XF,本区间采用三灯四显示,并且三接近的通过信号机上加三根短斜线,二接近的通过信号机上加一根短斜线。设短斜线的目的有两个,一个是起预告作用,另一个是与其他的通过信号机加以区别。
(2)信号机的命名
信号机位置确定后,应进行编号,一般以信号机坐标公里数和百米数组成,下行编奇数(如88163),上行编偶数(如88164)。
(3)区间载频配置原则
载频设置的目的是防止由于绝缘节的损坏而导致的信息干扰,可分上行和下行两种。下行区段由1700-1Hz,2300-1Hz,1700-2Hz,2300-2Hz顺序交替配置,特别地,下行正线进站信号机外方第一个区段(即三接近)一般配置2300-1Hz,一离去一般配置2300-2Hz。上行区段由2000-1Hz,2600-1Hz,2000-2Hz,2600-2Hz顺序交替配置,上行正线三接近一般配置2600-1Hz,一离去一般配置2600-2Hz。
(4)轨道区段的绝缘节
在本站的闭塞分区与邻站的闭塞分区的交界处都设置分界点。车站采用机械绝缘,区间内采用电气绝缘,两种绝缘方式的轨道电路具有相同的传输长度。
区间信号自动控制课程设计报告
(5)轨道区段命名
除了X1LQG和S1LQG,其余轨道区段都用其防护的通过信号机的公里标命名,比如88163G(详见附图QJKS-01)。3.1.3反向进站预告标的设置
反向进站预告标分为3级,第一预告标设置在距离反向进站信号灯1100m处,第二预告标设置在距离反向进站信号灯1000m处,第三预告标设置在距离反向进站信号机900m处。
3.1.4站内叠加ZPW-2000闭环电码化补偿电容
根据通道参数并兼顾低道床电阻道床传输,选择电容器容量。使ZPW-2000电码化传输通道趋于阻性,保证ZPW-2000电码化具有良好传输性能,同时尽可能降低对原有站内轨道电路影响。
(1)设置原则
当电码化轨道长度超过300m时,必须设置电容补偿。(2)电容选择
1700Hz、2000Hz、2300Hz、2600Hz(含-
1、-2型)区段,电容容量分别为:55µF、50µF、46µF、40µF。
(3)设置方法
补偿电容按照等间距设置,其具体方法如下:
Δ=L(轨道电路长度)/Σ(电容个数)
式中 Σ——数量,Σ=N+A; 其中 N——百米位数,A——个位、十位数为0时为0,个位数不为0时为1;
Δ——等间距长度,轨道电路两端与第一个电容距离为Δ/2,安装允许误差±0.5m 3.2区间移频柜设备布置图
区间移频柜由零层组合和双套设置的衰耗盘,发送器,接收器组成。其各个设备的具体说明如下:
(1)移频柜零层有五个四柱电源端子板,从D1到D5,每块电源端子板对应四个熔断器(RDn,n=1、2、3……20),共二十个。因每个区段都需要两个熔断器分别提供给区段的发送器和接收器,因此对应区间信号平面布置图中显然需要2个移频柜。在区间移频柜中,单数的熔断器是10A的,双数的熔断器是5A的。
区间信号自动控制课程设计报告
(2)移频柜内有十个3×18柱端子板,用于区间移频柜内各种设备之间的配线。(3)每个移频柜有5个纵向组合,每个纵向组合放置两个闭塞分区的轨道电路设备(发送器、接收器、衰耗盘各两个),由于轨道占用灯设置在衰耗盘上,只要将移频柜设备按照线路闭塞分区顺序放置在移频柜上,通过衰耗盘轨道占用灯红灯指示即可反映列车在线路上的行进情况。一个移频柜从左到右依次一层布置五个区段,两层共可布置十个区段。按照已经绘制的区间信号平面布置图上的区段名称和相应的载频,从左至右,依次配置。先配下行的五个闭塞分区,从88061G一直到88189G配置在上面一层。从88078G一直到88204G配在下面一层。填写配置表时不仅要填写轨道区段名称还要把每个轨道区段相应的载频也填上。因每个纵向组合的两个接收器采用成对双机并联运用,每一个组合由本接受主机和本组合另一接收并机两部分构成。由于发送器采用“N+1”冗余系统,因此要在移频组合内设置“+1FS”。如附图QJKS-02所示。
3.3区间综合柜设备布置图
区间综合柜共有10层,分别编号为0到9。其各层的具体说明如下:(1)1-4层为放置隔离变压器的位置,每个组合匣可放置6个。在我所画的区间综合柜设备布置图中从第1层开始放置的是上行轨道区段的隔离变压器,第3层放的是下行的隔离变压器,在填写隔离变压器时离去区段不设隔离变压器,填写时从左到右依次填写。1-4层中的RD1~RD6为断路器,均为1A。
(2)5-9层为站防雷和电缆模拟网络组匣,每个组匣可放置4个闭塞分区(JS和FS)的电缆模拟网络单元(8个ZPW.PML)。在填写时从第9层开始填写下行方向各轨道区段的FS和JS。如果第8层填满,那么依次填写第7层,从第5层开始填写上行方向各轨道区段的FS和JS。填满后依次填第6层。
(3)零层D1~D30为18柱端子板,按照已经绘制好区间信号设备平面布置图上的轨道区段名称,从左至右,按以上所说的方法依次配置综合柜。如附图QJKS-03所示。
3.4通过信号机点灯电路
在我设计的通过信号机点灯电路中,我设计的是一接近区段88089G的通过信号机的点灯电路。如附图QJKS-04所示。
设计中用到的继电器有QZFJ,DJ,2DJ,GJF,1GJ,2GJ。其中,GJF是一接近区段即88089G轨道继电器的复示继电器,1GJ是二接近区段即88103G轨道继电器的复示继电器,2GJ是三接近区段即88117G轨道继电器的复示继电器。
区间信号自动控制课程设计报告
用1GJ和2GJ来区分点黄灯、绿黄灯和绿灯。当本区段和二、三接近区段都是空闲时,GJF↑和1GJ↑、2GJ↑,则点绿灯。当本区段和二区段空闲,GJF↑和1GJ↑,三接近区段有车占用2GJ↓的情况下,点绿黄灯。在仅仅本区段空闲即GJF↑,而二接近区段占用即2GJ↓的情况下,则点黄灯。在本区段有车占用即GJF↓情况下,则点红灯。
各点灯电路的接通公式如下: 红灯:BBⅡ-3
—QZJF71-72—DJ1-2线圈—GJF31-33—H去线—H—H回线—GJF43-41—QZJF82-81—BBⅡ-4。
黄灯:BBⅡ-3—QZJF71-72—DJ1-2线圈—GJF31-32—1GJ31-33—1GJ53-51—U去线—U—U回线—1GJ43-41—GJF42-41—QZJF82-81—BBⅡ-4。
绿黄灯:
①黄灯:BB-3—QZJF71-72—2DJ1-2线圈—GJF51-52—2GJ51-53—1GJ52-51—U去线Ⅱ—U—U回线—2GJ43-41—1GJ42-41—GJF42-41—QZJF82-81—BBⅡ-4。②再点绿灯:BBⅡ-3—QZJF71-72—DJ1-2
线圈—GJF31-32—1GJ31-32—2GJ31-33—2DJ31-322—L去线—L—L—回线—2DJ42-41—2GJ43-41—1GJ42-41—GJF42-41—QZJF82-81—BBⅡ-4。
绿灯:BBⅡ-3—QZJF71-72—DJ1-2线圈—GJF31-32—1GJ31-32—2GJ31-32—L去线—L—L回线—2GJ42-41—1GJ42-41—GJF42-41—QZJF82-81—BBⅡ-4。
4总结
通过本次课程设计我完成了区间四张图的绘制,在对每一张图进行规划和布置的时候都用到相关AutoCAD的知识,因此对于所学的知识有了一定的巩固,最重要的是第一次把学到的知识运用到实际中去,并能更加熟练的使用CAD绘图。通过本次课程设计对于区间信号自动控制的相关知识有更进一步的理解,在这次的课程设计中,我意识到了设计中有很多平时课程中没有遇到的问题,当遇到这些问题时,更多的是需要请教老师和同学,还有自己翻看课本,不要害怕困难,而是要知难而进,这样才能对提升自我,升华自我。最后,在经过了五次答疑,和大家下来的努力后,这次区间课程设计结束了,相信通过这次课程设计,我们在今后的学习和工作中都能得到更多的经验,为今后的发展打下良好的基础。
区间信号自动控制课程设计报告
附图一:K14站信号平面布置图 附图二:区间移频柜设备布置图 附图三:区间综合柜设备布置图 附图四:
1接近通过信号机点灯电路
第四篇:自动控制原理总结报告
自动控制原理总结报告
专 业 自动化 班 级 09自动化<1>班 姓 名 学 号
完成 时间
自动控制原理总结报告
摘要: 本学期我们学习了自动控制原理的前前8章,重点介绍了前6章,离散系统的分析与线性系统类似。自动控制技术所取得的成就和起到的作用给各行各业的人们留下了深刻的印象。从最初的机械转速、位移的控制到工业过程中对温度、压力、流量、物位的控制,从远洋巨轮到深水潜艇的控制,而今的数控机床,汽车工业,自动控制技术的应用几乎无处不在。关键是自动控制理论和技术已经介入到了电气、机械、航空、化工、核反应等诸多的学科和领域。所以越来越多的工程技术人员和科学工作者开始了解和关注自动控制的知识。关键字:控制 方法 发展 正文:
一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法
系统的数学模型(1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数(2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线
自动控制原理基础系列课程内容体系具有系统性、科学性、先进性、实用性,对课程体系进行了改革确立了以系统分析、系统建模、系统综合为自动控制原理课程的主线构建了由时域分析、复域分析、频域分析、系统校正4个模块构成的知识体系。
从课程的体系出发以系统建模→系统分析→综合设计作为课程主线。数学模型是描述系统内部各物理量或变量之间关系的数学表达式建立一个合理的模型是系统分析和设计的前提。从不同的角度对系统进行建模加深对这方面内容的理解。例如可用船舶上的电机调速系统为例通过建立它的微分方程、传递函数、结构图、信号流图这些不同的数学模型来建立各模型的联系。
系统分析方法是控制系统综合设计的基础这部分的内容主要包括时域分析法、根轨迹法、频域响应法是控制理论的重点。在控制系统中稳定性、快速性和准确性是对控制系统的基本要求也是衡量系统性能的重要指标控制系统不同的分析问题方法都是紧紧围绕这三个方面展开的。只要抓住这个特点就抓住了系统分析的关键有助于加深对不同方法的理解。例如以我军某军舰上的雷达定位系统为例假设给定目标信号要求设计控制器使系统在给定输入下跟踪指定目标最小且抗干扰性最好。这些生动的工程实例大大激发了我的兴趣使我感受到了控制理论的魅力深刻理解了
结合控制理论的发展更新教学内容近年来控制理论得到了蓬勃发展特别在非线性控制、分布参数控制、鲁棒控制、自适应控制、智能控制等方向上取得了重要进展。例如每章结束后都开设一个专题介绍本学科的发展动态这种方法扩大了我们的知识面培养了我们探索科学技术的兴趣。结合船舶电气的发展而言近几年来随着电力、电子、控制技术、通讯及信息技术等的不断发展及其在船舶上的广泛应用船舶电气自动化程度大大地提高。新一代大功率半导体电力电子器件在材料、理论、机理、制造工艺和应用技术等方面的研究开发取得了突破性的进展船舶设备进一步向高可靠、节能型方向发展对船舶电力推进和辅机电力拖动技术带来重大变革可编程序控制器和单片机已逐渐发展成为船舶控制中的一种普遍控制方式。自动控制原理课程虽然是电专业的基础专业课程但是一般学时安排也不十分充裕。要想在有限的时间内把这门理论性和工程应用性都很强的课程学好必须认真的学习。例如在课程绪论部分通过与专业相关的典型示例引出控制、开环控制、闭环控制以及反馈等基本概念使我们认识到学习本课程的重要性并对控制理论在专业发展的作用有了一定的了解。
二、控制未来发展
1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。智能控制的理论基础是人工智能,控制论,运筹学和系统学等学科的交叉。2.非线性控制(Nonlinear Control)非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行。非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展。
3.自适应控制(Adaptive Control)自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。4.鲁棒控制(Robust Control)过程控制中面临的一个重要问题就是模型不确定性,鲁棒控制主要解决模型的不确定性问题,但在处理方法上与自适应控制有所不同。自适应控制的基本思想是进行模型参数的辩识,进而设计控制器。控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。
鲁棒控制认为系统的不确定性可用模型集来描述,系统的模型并不唯一,可以是模型集里的任一元素,但在所设计的控制器下,都能使模型集里的元素满足要求。鲁棒控制的一个主要问题就是鲁棒稳定性。5.模糊控制(Fuzzy Control)模糊控制借助模糊数学模拟人的思维方法,将工艺操作人员的经验加以总结,运用语言变量和模糊逻辑理论进行推理和决策,对复杂对象进行控制。模糊控制既不是指被控过程是模糊的,也不意味控制器是不确定的,它是表示知识和概念上的模糊性,它完成的工作是完全确定的。
1974年英国工程师E.H.Mamdam首次把Fuzzy集合理论用于锅炉和蒸气机的控制以来,开辟了Fuzzy控制的新领域,特别是对于大时滞、非线性等难以建立精确数学模型的复杂系统,通过计算机实现模糊控制往往能取得很好的结果。6.神经网络控制(Neural Network Control)神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。神经网络的种类很多,控制中常用的有多层前向BP网络,RBF网络,Hopfield网络以及自适应共振理论模型(ART)等。
神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。神经网络在控制系统中可充当对象的模型,还可充当控制器
7.实时专家控制(Real Time Expert Control)专家系统是一个具有大量专门知识和经验的程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。专家系统和传统的计算机程序最本质的区别在于:专家系统所要解决的问题一般没有算法解,并且往往要在不完全、不精确或不确定的信息基础上作出结论。
实时专家系统应用模糊逻辑控制和神经网络理论,融进专家系统自适应地管理一个客体或过程的全面行为,自动采集生产过程变量,解释控制系统的当前状况,预测过程的未来行为,诊断可能发生的问题,不断修正和执行控制计划。实时专家系统具有启发性、透明性、灵活性等特点,目前已经在航天试验指挥、工业炉窑的控制、高炉炉热诊断中得到广泛应用。目前需要进一步研究的问题是如何用简洁语言来描述人类长期积累的经验知识,提高联想化记忆和自学习能力。8.定性控制(Qualitative Control)定性控制是指系统的状态变量为定性量时(其值不是某一精确值而只知其处于某一范围内),应用定性推理对系统施加控制变量使系统在某一期望范围。定性控制与模糊控制的区别:模糊控制不需建模,其控制律凭经验或算法调整,而定性控制基于定性模型,控制规则基于对系统的定性分析;模糊控制是基于状态的精确测量值,而定性控制基于状态的定性测量值。
定性控制面临的问题:发展定性数学理论,改进定性推理方法,注重定性和定量知识的结合;研究定性建模方法,定性控制方法;加强定性控制应用领域的研究。9.预测控制(Predictive Control)预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。这
最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。
预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。10.分布式控制系统(Distributed Control System)分布式控制系统又称集散控制系统,是70年代中期发展起来的新型计算机控制系统,它融合了控制技术(Control),计算机技术(Computer),通信技术(Communication),图像显示技术(CRT)的“4C”技术,形成了以微处理器为核心的系统,实现对生产过程的监视、控制和管理。
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。它的主要特点是:真正实现了分散控制;具有高度的灵活性和可扩展性;较强的数据通信能力;友好而丰富的人机联系以及极高的可靠性。
总结:通过这一学期的学习,我对自动控制原理这门课有了深刻的认识,现在能够简单的分析一些问题了,过程实验给我们很大的提高。虽然现在还不知道未来要从事什么行业,但不管怎样要学好当前的每门课。基础一定要打好。
第五篇:自动控制原理实验报告
北京交通大学
自动控制原理研究性学习报告
——基于MATLAB软件的系统建模分析与校正
谭堃15221309 田斌15221310 努尔夏提15221305 张雪程13222028
摘要
本文利用MATLAB软件来实现对自动控制系统建模、分析与设计、仿真的方法。它能够直观、快速地分析系统的动态性能、和稳态性能。并且能够灵活的改变系统的结构和参数通过快速、直观的仿真达到系统的优化设计。
关键词:MATLAB,自动控制,系统仿真
1.主要任务
单位负反馈随动系统固有部分的传递函数为
G(s)=4K/s(s+2)
1、画出未校正系统的Bode图,分析系统是否稳定。
2、画出未校正系统的根轨迹图,分析闭环系统是否稳定。
3、设计系统的串联校正装置,使系统达到下列指标:(1)静态速度误差系数Kv=20s-1;(2)相位裕量γ≥50°(3)幅值裕量Kg≥10dB。
4、给出校正装置的传递函数。
5、分别画出校正前,校正后和校正装置的幅频特性图。计算校正后系统的穿越频率ωc、相位裕量γ。
6、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。
2.理论分析
(1)确定K值
Kv=limsWk =2k=20 所以K = 10(2)校正前系统的开环对数幅频特性如图实线所示。
由A(wc)=20/[wc√(1+(wc/2)^2]=1;
得wc≈6.32;
γ(wc)=180˚+ɸ(wc)=90˚-72.4˚=17.6˚
可见相位裕量并不满足要求,为不影响低频段特性和改善暂态响应性能,采用引前矫正。
(3)设计串联微分校正装置:
微分校正环节的传递函数为
Wc(s)=(Tds+1)/[(Tds/γd)+1);最大相位移为
ɸmax=arcsin[(rd-1)/(rd+1)] 根据系统相位裕量γ(wc)≥50˚的要求,微分矫正环节最大相位移为
ɸmax≥50˚-17.6˚=32.4˚
考虑Wc’≥Wc,原系统相角位移将更负些,故ɸmax将更大些,取ɸmax=40˚,即有
Sin40˚=(γd-1)/(γd+1)=0.64解得γd=4.6 设校正后的系统穿越频率Wc’为矫正装置两交接频率w1与w2的几何中点。即
Wc’=√w1w2=w1√rd 若认为Wc’/w1>>1,Wc’/w2<<1,则得
A(wc’)=1≈20wc’/(wc^2/2)解得w1≈4.32;w2≈19.87;wc’≈9.26。所以校正装置的传递函数为
Wc(s)=(s/4.32+1)/[(s/19.87)+1);(4)验算校正后系统指标
Wk’(s)=20(s/4.32+1)/[s(s/2+1)(s/19.87+1)] 同理,代入数值得校正装置的相位裕量为γ(wc’)=52.4˚ 另ɸ(wj)=-180˚,可得出系统穿越频率wj→∞;所以一定满足
GM=20lg[1/(wk’(jwj)]≥10dB(三)MATLAB仿真
(1)时域分析
1.校正前系统的暂态响应曲线如图:
-图1 系统单位阶跃相应
计算结果:
pos(超调量)=60.46%、、tp(峰值时间)= 0.5s、tr(上升时间)=1.8s,ts(调节时间)=3.7s 由图可知:校正前系统的的调节时间较长,超调量过大。
3.校正后系统的暂态响应曲线如图
图2系统单位阶跃相应
计算结果:
pos(超调量)=15.88%、、tp(峰值时间)= 0.3s、tr(上升时间)=0.2s,ts(调节时间)=0.6s
系统的暂态响应与校正前相比有较大改善。该系统依然稳定,而且反应更加快速,应采用。
(2)根轨迹
校正前系统的根轨迹如图
校正后系统的根轨迹如图:
校正前后根轨迹对比
(3)对数频率特性
校正前系统的开环对数频率特性如图实线所示:
图1 系统对数频率特性曲线
相位裕量γ=17.6
穿越频率=6.32rad/s微分校正环节的对数频率特性如图所示:
校正后系统的开环对数频率特性如图所示:
相位裕量γ=52.4穿越频率=9.26rad/s
对比图
(4)幅相频率特性
校正前系统的开环幅相频率特性如图所示:
图7 系统幅相频率特性曲线
校正后系统的开环幅相频率特性如图所示:
对比图
四、程序附录(1)时域分析
clear
t=0:0.1:5;s=[184 794.8];d=[1 21.87 233.7 794.8];sys=tf(s,d);y1=step(sys,t);plot(t,y1)maxy1=max(y1);yss1=y1(length(t));pos1=100*(maxy1-yss1)/yss1;for i=1:1:51 if(y1(i)==maxy1)n=i;break;end end
tp1=(n-1)*0.1;for i=1:1:51 if(y1(i)<1.02&&y1(i)>0.98)m=i;break;end end
tr1=(m-1)*0.1;for i=51:-1:1 if(y1(i)>1.02||y1(i)<0.98)a=i;break;end end
ts1=a*0.1;pos=[pos1] tp=[tp1] tr=[tr1] ts=[ts1]
clear t=0:0.1:10;s=[40];d=[1 2 40];sys=tf(s,d);y1=step(sys,t);plot(t,y1)maxy1=max(y1);yss1=y1(length(t));pos1=100*(maxy1-yss1)/yss1;for i=1:1:101 if(y1(i)==maxy1)n=i;break;
end end
tp1=(n-1)*0.1;for i=1:1:101 if(y1(i)<1.02&&y1(i)>0.98)m=i;break;end end
tr1=(m-1)*0.1;for i=101:-1:1 if(y1(i)>1.02||y1(i)<0.98)a=i;break;end end
ts1=a*0.1;pos=[pos1] tp=[tp1] tr=[tr1] ts=[ts1]
(2)对数频率特性 clear s1=[0.23 1];d1=[0.05 1];s2=[40];d2=[1 2 40];s3=[184 794.8];d3=[1 21.87 233.7 794.8];sys1=tf(s1,d1);sys2=tf(s2,d2);sys3=tf(s3,d3);figure(1)bode(sys1,sys2,sys3)
(3)根轨迹 clear s1=[40];d1=[1 2 40];s2=[184 794.8];d2=[1 21.87 233.7 794.8];sys1=tf(s1,d1);sys2=tf(s2,d2);figure(1)rlocus(sys1,sys2)
(4)幅相频率特性 clear s1=[40];d1=[1 2 40];s2=[184 794.8];d2=[1 21.87 233.7 794.8];sys1=tf(s1,d1);sys2=tf(s2,d2);figure(1)nyquist(sys1,sys2)
总结
本次研究性学习的内容主要是建立自动控制系统并运用MATLAB软件对设计的自动控制系统进行仿真,其中涉及了关于自动控制方面的很多知识,也有关于数学建模方面的知识以及MATLAB软件的应用,此次研究性学习建立了卫星姿态的自动控制。
在此次设计过程中遇到了很多问题,也接触到了很多以前不知道的知识,特别是之前很少接触过MATLAB软件,这让本次设计一度陷入停滞阶段。后来在图书馆和网络上查阅了大量的相关书籍,并在同学的细心指导下安装了MATLAB软件并学习其使用方法,从而使问题一步步得到了解决,最终成功的完成了此次研究性学习。