超高温陶瓷复合材料的研究进展(共五则)

时间:2019-05-13 13:01:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《超高温陶瓷复合材料的研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《超高温陶瓷复合材料的研究进展》。

第一篇:超高温陶瓷复合材料的研究进展

超高温导热陶瓷复合型材料的研究进展

超高温导热陶瓷复合材料主要包括一些过渡族金属的难熔硼化物、碳化物和氮化物,它们的熔点均在3000℃以上。在这些超高温导热陶瓷中,ZrB2和HfB2基超高温导热陶瓷复合材料具有较高的热导率、适中的热膨胀系数和良好的抗氧化烧蚀性能,可以在2000℃以上的氧化环境中实现长时间非烧蚀,是一种非常有前途的非烧蚀型超高温防热材料。

★超高温导热陶瓷复合材料的制备

超高温导热陶瓷复合材料的致密化主要有热压烧结(HP)、放电等离子烧结(SPS)、反应热压烧结((RHP)和无压烧结(PS)。在这些制备方法中,热压烧结是目前超高温导热陶瓷复合材料最主要的烧结方法。

热压烧结

ZrB2和HfB2都是ALB2型的六方晶系结构,其强共价键、低晶界及体扩散速率的特征,导致该类材料需要在非常高的温度下才能致密化,一般需要2100℃或更高的温度和适中的压力(20-30 MPa)或较低温度(~1800℃)及极高压力(> 800 MPa)。ZrB2和HfB2结构和性能相近,后者的熔点比前者高,需要更高的致密化温度,同时具有更优异的高温性能,而前者的密度和成本都比后者低,也是业内关注最多的。

放电等离子烧结

放电等离子烧结是在粉末颗粒间直接通人脉冲电流进行加热烧结,具有升温速度快、烧结时间短、组织结构可控等优点,该方法近年来用于超高温导热陶瓷复合材料的制备。产生的脉冲电流在粉体颗粒之间会发生放电,使其颗粒接触部位温度非常高,在烧结初期可以净化颗粒的表面,同时产生各种颗粒表面缺陷,改善晶界的扩散和材料的传质,从而促进致密化,相对于热压烧结超高温导热陶瓷复合材料而言,放电等离子烧结的温度更低、获得的晶粒尺寸更细小。

反应热压烧结

超高温导热陶瓷复合材料的合成及致密化可以通过原位反应在施加压力或无压的情况下一步合成,目前通常采用Zr, B4C和Si原位反应制备超高温导热陶瓷复合材料,通过原始材料比例的设计可以实现对合成材料组分及含量的调控。此外,Zr可以由ZrH2或ZrO2等代替,B4C可以由B/B2O3, C等代替,S1可由SiC代替,用于合成ZrB2基超高温导热陶瓷复合材料,HfB2基超高温导热陶瓷复合材料可以用同样的方法制备。

无压烧结

与热压烧结方法相比,无压烧结可以实现复杂结构的近净成型,从而可以降低材料/结构的制备成本。超高温导热陶瓷复合材料的无压烧结目前主要有十粉冷等静压处理后烧结、注浆成型烧结和注凝成型烧结,由于在烧结过程中不施加压力,超高温导热陶瓷复合材料很难致密,因此需要采用较高的烧结温度或添加烧结助剂。

★超高温导热陶瓷复合材料力学性能

超高温导热陶瓷复合材料的室温与高温力学性能是该材料使用的关键指标。ZrB2和HfB2基超高温导热陶瓷复合材料弹性量和硬度与致密度密切相关,致密的超高温导热陶瓷复合材料弹性模量在500 GPa左右,硬度在20 GPa左右。超高温导热陶瓷复合材料的室温弯曲强度与烧结后的材料晶粒尺寸密切相关,而晶粒尺寸又取决于初始粉体颗粒粒径(包括基体和增强相)、增强相含量和烧结工艺参数。

★超高温导热陶瓷复合材料抗热冲击性能

超高温导热陶瓷复合材料是一种典型的脆性材料,在极端加热环境下很容易发生热冲击失效,导致灾难性破坏,因此改善其抗热冲击性尤为重要。★超高温陶瓷复合材料抗氧化/烧蚀性能和热响应

温度是影响超高温导热陶瓷材料抗氧化烧蚀性能的最主要影响因素,ZrB2在700℃开始发生明显的氧化,1100℃以下生成的氧化层具有良好的抗氧化性能,但温度高于1200℃氧化生成B}03会因高蒸气压而大量挥发从而渐失抗氧化保护能力,而ZrO2挥发蒸气压非常低,在高温下很稳定。★挑战与展望

超高温导热陶瓷复合材料具有优异的高温综合性能,然而其较低的损伤容限和抗热冲击性能限制了该材料的工程应用,未来将通过微结构的设计和控制实现超高温导热陶瓷复合材料损伤容限和可靠性的大幅度提高,为超高温导热陶瓷材料的应用奠定基础。

在诸多超高温导热陶瓷复合材料强韧化方法中,碳纤维增强增韧、纤维增强体结构与性能退化的抑制及多尺度增韧将是超高温导热陶瓷复合材料未来强韧化的主要研究方向。超高温导热陶瓷材料很难致密化,目前烧结机制尚不完全清楚,尤其是纳米超高温导热陶瓷材料的烧结,未来需要深人研究超高温导热陶瓷材料低温烧结和微结构的精确控制。

第二篇:超高温陶瓷及其应用

超高温陶瓷及其应用讲座小结

超高温陶瓷(UHTCs:Ultra High Temperature Ceramics)是指能在1800℃以上温度下使用的陶瓷材料。这类陶瓷材料有望用于航天火箭的发动机部件,太空往返飞行器和高超音速运载工具的防热系统,先进核能系统用抗辐照结构材料和惰性基体材料,以及金属高温熔炼和连铸用的电极、坩埚和相关部件等。目前,针对超高温陶瓷的主要研究内容包括:微结构调控与强韧化、抗氧化-耐烧蚀-抗热震性能的提升、抗辐照性能的改善等。

超高温陶瓷材料最早的研究从1960’s年代开始。当时在美国空军的支持下,Manlab开始了超高温陶瓷材料的研究,研究对象主要是ZrB2和HfB2及其复合材料。研发的80vol%HfB2-20vol%SiC复合材料能基本满足高温氧化环境下持续使用的需要,但采用的热压工艺对部件制备有很大的限制。到1990’s,NASA Ames 实验室也开始了相关研究。与此同时,美国空军从 1960’s年代开始进行尖锐前缘飞行器及其热防护系统的分析和设计,经过三十多年的研究,取得了很大进展。Ames 实验室及其合作伙伴开展了系统热分析、材料研发和电弧加热器测试等一系列研究工作,并于1990’s年代进行了两次飞行实验(SHARP-B1、SHARP-B2)。其中,SHARP-B2 的尖锐翼前缘根据热环境的不同分为三部分,分别采用的是ZrB2 /SiC/C、ZrB2/SiC和HfB2/SiC材料,展示了基于二硼化铪和二硼化锆为主体的一类超高温陶瓷材料作为大气层中高超声速飞行器热防护系统材料的应用前景。2003年2 月1 日,美国航天飞机发生了“哥伦比亚”号的爆炸惨剧,为了保障未来的航天飞机具有更可靠的飞行安全性,美国航天宇航局(NASA)在“哥伦比亚”号失事后迅速启动了相关的研究计划,其中就包括研究新一代超高温陶瓷,用于航天飞机的阻热材料。研究计划目的在于开发出熔点高于3000℃的超高温陶瓷材料,主要是 ZrB2、HfB2以及它们的复合材料,作为航天飞机的新型阻热材料。

从材料种类来看,超高温陶瓷主要包括高熔点硼化物和碳化物。其中HfB2、ZrB2、HfC、ZrC、TaC等硼化物、碳化物超高温陶瓷熔点都超过 3000℃,无相变,具有优良的热化学稳定性和优异的物理性能,包括高弹性模量、高硬度、低饱和蒸汽压、高热导率和电导率、适中的热膨胀率和良好抗热震性能等,并能在高温下保持很高的强度。成为超高温陶瓷最具潜力的候选材料。硼化物陶瓷基复合材料,主要指HfB2、ZrB2为基体的陶瓷基复合材料,材料的脆性可以通过合理选择原材料的组分、纯度和颗粒度来克服。它们的共价键很强的特性决定了它们很难烧结和致密化。为了改善其烧结性,提高致密度,可通过提高反应物的表面能、提高材料的体扩散率、延迟材料的蒸发、加快物质的传输速率、促进颗粒的重排及提高传质动力学来解决。单相ZrB2或HfB2在1200℃以下具有良好的抗氧化性,这是由于液态B2O3玻璃相的生成,起到了良好的抗氧化保护作用。在1200℃以上时,B2O3快速蒸发,从而降低了它作为一种扩散障碍的效用,ZrB2或HfB2将会发生快速氧化。加入SiC可以显著提高它的抗氧化性能,在高温时形成玻璃相的硅酸盐来覆盖材料的表层,在1600℃以下具有良好的保护作用。

碳化物陶瓷基复合材料,主要指碳化铪(HfC)、碳化锆(ZrC)和碳化钽(TaC)为基体的陶瓷基复合材料,这三种物质的熔点较硼化物高,加热过程中不会发生任何固相相变,具有较好的抗热震性,在高温下仍具有高强度。这类碳化物陶瓷的断裂韧性和抗氧化性非常低,为了克服陶瓷的脆性,通常采用纤维来增强增韧。2000 年,NASA 对RCI公司生产的炭纤维增强HfC基复合材料效果最好,它完成所有的10min10次循环,3次循环质量1.30%,5次循环质量损失3.28%,10次循环质量损失10.33%;完成了 1h的持续加热,质量损失1.12%。

超高温陶瓷粉体的制备,原料纯度和粒度对超高温陶瓷材料的烧结性能和高温性能有十分重要的影响。在制备过程中残留的杂质或工艺过程加入的添加剂,能与超高温陶瓷化合物形成低熔点产物,在很大程度上会对高温性能产生不利影响。超细的陶瓷粉体可以提高其烧

结性能。因此,发展高纯、超细的超高温陶瓷粉体合成技术,是制备高性能超高温陶瓷材料的基础。

超高温陶瓷致密化烧结通常采用放电等离子烧结,放电等离子体烧结技术是使可烧结性差的材料(例如 ZrB2、ZrC等)致密化的最有力手段之一。它比其它大多数传统烧结方法用的烧结温度低、时间短。

超高温陶瓷材料由于具有潜在的高温综合性能优异的特点,是未来超高温领域很有前途的材料,对其开展包括材料体系、粉体合成、烧结和应用等方面的基础科学研究和科学技术研究,具有重要的科学意义和应用价值。

第三篇:陶瓷基复合材料的复合机理

陶瓷基复合材料的复合机理、制备、生产、应用及发展前景

1.陶瓷基复合材料的复合机理

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

1.1陶瓷基复合材料增强体

用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种。

1.1.1纤维类增强体

纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。连续纤维中又分为单丝和束丝,碳(石墨)纤维、氧化铝纤维和碳化硅纤维(烧结法制)、碳化硅纤维是以500~12000根直径为5.6~14微米的细纤维组成束丝作为增强体使用。而硼纤维、碳化硅纤维是以直径为95~140微米的单丝作为增强体使用。连续纤维制造成本高、性能高,主要用于高性能复合材料。短纤维连续长度一般几十毫米,排列无方向性,一般采用生产成本低,生产效率高的喷射成型制造。其性能一般比长纤维低。增强体纤维主要包括无机纤维和有机纤维。

1.1.2颗粒类增强体

颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末。

1.1.3晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.1.4金属丝

用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.1.5片状物增强体

用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

1.2陶瓷基的界面及强韧化理论

陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性

等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面 作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影 响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。

1.2.1界面的粘结形式

(1)机械结合(2)化学结合陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。

若增强体与基体在高温时不发生反应,那么在冷却下来时,陶瓷的收缩大于增强体,由此产生的径向压应力与界面剪切应力有关: =  ,为摩擦系数,一般取0.1~0.6。

1.2.2界面的作用

陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。因此,陶瓷基复合材料界面要有一个最佳的界面强度。强的界面粘结往往导致脆性破坏,裂纹在复合材料的任一部位形成并迅速扩展至复合材料的横截面,导致平面断裂。这是由于纤维的弹性模量不是大大高于基体,因此在断裂过程中,强界面结合不产生额外的能量消耗。若界面结合较弱,当基体中的裂纹扩展至纤维时,将导致界面脱粘,发生裂纹偏转、裂纹搭桥、纤维断裂以至于最后纤维拔出。所有这些过程都要吸收能量,从而提高复合材料的断裂韧性。

2.复合材料的制备与生产

陶瓷基复合材料的制备工艺主要有以下几部分组成:粉体制备、增强体(纤维、晶须)制备和预处理,成型和烧结。

2.1粉体制备

粉体的性能直接影响到陶瓷的性能,为了获得性能优良的陶瓷基复合材料,制备出高纯、超细、组分均匀分布和无团聚的粉体是很关键的。

陶瓷粉体的制备主要可分为机械制粉和化学制粉两种。化学制粉可获得性能优良的高纯、超细、组分均匀的粉体,是一类很有前途的粉体制备方法。但是这类方法或需要较复杂的设备,或制备工艺要求严格,因而成本也较高。机械法制备多组分粉体工艺简单、产量大,但得到的粉体组分分布不均匀,特别是当某种组分很少的时候,而且这种方法长会给粉体引入杂质。除此外,还可用物理法,即用蒸发-凝聚法。该方法是将金属原料加热到高温,使之汽化,然后急冷,凝聚成分体,该法可制备出超细的金属粉体。

2.2成型

有了良好的粉体,成型就成了获得高性能陶瓷复合材料的关键。坯体在成型中形成的缺陷会在烧成后显著的表现出来。一般成型后坯体的密度越高则烧成的收缩就越小,制品的尺寸精度越容易控制。陶瓷材料常用的成型方法有:

2.2.1模压成型

模压成型是将粉体填充到模具内部,通过单向或者双向加压,将粉料压成所需形状。

2.2.2等静压成型

一般等静压成型是指将粉料装入橡胶或塑料等可变形的容器中,密封后放入液压油或者水等流体介质中,加压获得所需坯体。

2.2.3热压铸成型

热压铸成型是将粉料与蜡(或其他有机高分子粘合剂)混合后,加热使蜡(或其他有机高分子粘合剂)熔化,是混合料具有一定流动性,然后将混合料加压注入模具,冷却后即可得到致密较结实的坯体。

2.2.4挤压成型

挤压成型就是利用压力把具有塑性的粉料通过模具挤出,模具的形状就是成型坯体的形状。

2.2.5轧模成型

轧模成型是将加入粘合剂的坯料放入相向滚动的压辊之间,使物料不断受到挤压得到薄膜状坯体的一种成型方法。

2.2.6注浆成型

注浆成型是基于多孔石膏模具能够吸收水分的物理特性,将陶瓷粉料配成具有流动性的泥浆,然后注入多孔模具内(主要为石膏模),水分在被模具(石膏)吸入后便形成了具有一定厚度的均匀泥层,脱水干燥过程中同时形成具有一定强度的坯体。

2.2.7流延法成型

一种陶瓷制品的成型方法,首先把粉碎好的粉料与有机塑化剂溶液按适当配比混合制成具有一定黏度的料浆,料浆从容器同流下,被刮刀以一定厚度刮压涂敷在专用基带上,经干燥、固化后从上剥下成为生坯带的薄膜,然后根据成品的尺寸和形状需要对生坯带作冲切、层合等加工处理,制成待烧结的毛坯成品。

2.2.8注射成型

陶瓷料粉与热塑性树脂等有机溶剂在注塑机加热料筒中塑化后,由柱塞或往复螺杆注射到闭合模具的模腔中形成制品的加工方法。

2.2.9泥浆渗透法

泥浆渗透法是先将陶瓷基体坯料制成泥浆,然后在室温使其渗入增强预制体,再干燥就得到所需的陶瓷基复合材料坯体。

2.3烧结

在高温下(低于熔点),陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。陶瓷基复合材料基体常见烧结方法有普通烧结、热致密化方法、反应烧结、微波烧结和等离子烧结。

其中反应烧结是指粉末混合料中至少有两种组分相互发生反应的烧结。微波烧结是一种材料烧结工艺的新方法,它具有升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,并能提高产品的均匀性和成品率,改善被烧结材料的微观结构和性能,近年来已经成为材料烧结领域里新的研究热点。

2.4陶瓷基复合材料特殊的新型制备工艺

2.4.1熔体渗透

熔体渗透是指将复合材料基体加热到高温使其熔化成熔体,然后渗入增强物的预制体中,再冷却就得到所需的复合材料。

2.4.2化学气相渗透(CVI)

化学气相渗透(CVI)制备陶瓷基复合材料是将含挥发性金属化合物的气体在高温反应形成陶瓷固体沉积在增强剂预制体的空隙中,使预制体逐渐致密而形成陶瓷基复合材料。

2.4.3由有机聚合物合成由有机聚合物可以合成SiC、Si3N4,并可作为基体制备陶瓷基复合材料。通常是将增强

体材料和陶瓷粉末与有机聚合物混合,然后进行成型烧结。

3陶瓷基复合材料的应用

陶瓷基复合材料具有较高的比强度和比模量,韧性好,在要求质量轻的空间及高速切削的应用很有前景。

在军事上和空间应用上陶瓷基复合材料可做导弹的雷达罩,重返空间飞行器的天线窗和鼻锥,装甲,发动机零部件,专用燃烧炉内衬,轴承和喷嘴等。石英纤维增强二氧化硅,碳化硅增强二氧化硅,碳化钽增强石墨,碳化硼增强石墨,碳,碳化硅或氧化铝纤维增强玻璃等可用于上与上述目的。

陶瓷基复合材料耐蚀性优越,生物相容性好,可用作生体材料,也可用作制作内燃机零部件。陶瓷件复合材料可做切削道具,如碳化硅晶须增强氧化铝刀具切削镍基合金,铸铁和钢的零件,不但使用寿命增加,而且进刀量和切削速度都可大大提高。

5陶瓷基复合材料现状与发展前景

复合材料所面临的问题是:怎样把不同的材料有效地结合起来使某些性能得到加强,同时又把成本控制在市场可接受的范围。目前,只有少数CMC达到实际应用的水平,大多数尚处于实验室研究阶段,但从其具有的优异性能和研究状况来看,CMC有着非常广阔的应用前景。因而,对CMC的未来发展趋势作一预测是非常有必要和有意义的。

5.1为了保证陶瓷基复合材料性能的可靠,除了从工艺上尽量保证陶瓷基复合材料的均一性及完整性之外,对材料性能的准确评价也是一个很重要的问题。因此,无损探伤是一项急待开展的工作。

5.2由宏观复合形式向微观复合形式发展。目前应用最多的是纤维、晶须补强复合材料

补强剂尺寸较大属于宏观复合。所谓微观复合就是均质材料在加工过程中内部析出补强剂,(晶体)与剩余基体构成的原位复合材料或用纳米级补强剂补强的纳米复合材料。

5.3由结构复合向结构功能一体化方向发展。到目前为止,研究的陶瓷基复合材料基本上是结构复合型材料。将逐步向结构功能一体化方向发展,也就是复合材料既能满足力学性能的要求,同时还具有其他物理、化学和电学性能。

5.4从一元补强、双元混杂复合向多元混杂方向发展。用纤维、晶须或颗粒补强剂的陶瓷复合材料已经取得良好的效果,同时二种补强剂双元混杂的复合材料也取得了一定进展,将会向多元混杂的方向发展。比如在混杂的纤维补强剂中还可以加入颗粒填料二种以上的纳米颗粒同时弥散的复合材料,多元混杂有可能制备出超强度、超韧性的高性能陶瓷材料。

5.5由复合材料的常规设计向电子计算机辅助设计发展

参考文献

[1] 韩桂芳,张立同,成来飞等·二维石英纤维增多孔Si3N4-SiO2基复合材料的制备及其力学性能[J]·复合材料学报,2007,24(1):91-96·

[2] 张存满,徐政,许业文·弥散SiC颗粒增韧Al2O3基陶瓷的增韧机制分析[J]·硅酸盐通报,2001,20(5):47-50·

[3]孙康宁,尹衍升,李爱民.金属间化合物-陶瓷基复合材料[M].北京:机械工业出版社,2002

[4]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004

[5]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005

[6] 周曦亚.复合材料.北京:北京工业出版社,2004

[7] 张杏奎.新材料技术,江苏科学技术出版社,1992

[8] 甘永学.宇航材料工艺,1994;(5):1~5

[9] 林德春等.出国考察技术报告,1994;(2): 87

[10] 国防科技大学五0五教研室.无机材料学报,1986;1(1):329

[11] 杨淑金等.宇航材料工艺,1986;(5):26

[12] 赵稼祥.纤维复合材料,1996;(4):46~50

[13] 郭景坤、杨涵美、张玉峰、诸培南、黄世忠,材料科学进展,1993(2):179.[14]孙康宁,尹衍升,李爱民.金属间化合物-陶瓷基复合材料[M].北京:机械工业出版社,2002

[15]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004

[16]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005

[17]穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002

第四篇:生物活性陶瓷涂层材料的制备及研究进展

表面生物活性陶瓷的制备及研究

姓名:彭博

学号:20130512225

班级:材料化学

摘要:简单介绍表面生物活性陶瓷的种类以及制备表面生物活性陶瓷的主要方法:等离子喷涂、溶胶-凝胶法、电沉积和激光熔覆等,并且介绍了各个方法对表面生物陶瓷的工艺参数、界面结合等因素进行分析,最后展望表面生物陶瓷材料的发展前景,并提出了表面生物陶瓷材料今后的研究方向。

关键词:表面生物活性陶瓷材料;制备方法;研究进展

前言:生物材料包括金属材料、陶瓷材料、高分子材料及其复合材料等。金属材料具有抗压和抗拉强度高、抗冲击性和延展性好、加工成形性好和质量波动小及可靠性高等优点。生物陶瓷材料作为无机生物医学材料,没有毒副作用,与生物体组织有良好的生物相容性,且具有耐腐蚀等优点。表面生物陶瓷材料(又称表面生物陶瓷材料)按照功能分为惰性表面生物陶瓷材料和表面生物活性陶瓷材料。表面惰性生物陶瓷材料是指在植入生物体后不与生物体发生相互作用的材料。在生物环境中能保持稳定,不发生或仅发生微弱化学反应的生物医学材料,包括氧化铝、氧化锆和氮化硅等,涂覆表面惰性生物陶瓷的植入体植入生物体后,涂层与生物机体组织不发生反应,机体不产生排异现象,在植入体与生物体之间形成一定厚度的纤维组织。同时机体组织生长到植入体表面,形成机械式固定结合。表面生物活性陶瓷材料是指在植入生物体的过程中,能够与生物体骨细胞和组织发生相互作用,逐渐转变成天然的股材料。它具有与生物体组织很好的生物相容性,其中最典型的为羟基磷灰石表面涂层材料和钙硅酸盐表面涂层材料。生物惰性材料不能与骨组织产生化学结合,只能被纤维结缔组织所包围,其与骨组织的结合和对骨组织的生长的促进都不理想,有的材料还可能溶出一些对生物体有一定毒性的元素。19世纪70年代,科学家开始将生物活性材料用于人工骨材料[1],其中应用最广泛的是羟基磷灰石生物活性陶瓷,它是人体硬组织中主要的无极成分,与生物组织有良好的生物相容性,并能与骨组织形成骨性结合。与表面生物惰性材料形成鲜明的对比,更加说明了生物活性陶瓷的特性及研究意义。本文主要介绍表面生物活性陶瓷的种类、性能遗迹等离子喷涂、溶胶-凝胶法、电沉积及激光熔覆等主要制备方法[2]。

一、表面生物活性陶瓷的种类

【1.1】羟基磷灰石材料

人体骨中主要成分是M10(RO4)6(OH)2,其中M主要成分为Ca,R的主要成分为P,其结晶结构完整且为细长针状结构。羟基磷灰石[Ca10(PO4)6(OH)2](简称HA)属流放晶系,其与人体骨中的无机物结构相同,植入人体后无毒、无体外排异反应,具有良好的生物活性和生物相容性[3],是理想的人体骨替代材料。

关于HA涂层制备过程中的物理化学变化,目前亦取得一些显著成果。例如,等离子喷涂制备羟基磷灰石涂层过程中,羟基磷灰石粉料被高温等离子体(火焰温度高达100000K)加热并熔化,部分羟基磷灰石分解为Ca10(PO4)6O、α-磷酸三钙[α-Ca3(PO4)2]、β-磷酸三钙[β-Ca3(PO4)2]、磷酸四钙(Ca4P2O9)、CaO遗迹无定形相。

【1.2】钙硅酸盐材料

自1969年L LHench发现某些组成的玻璃能同骨骼形成化学键合以来,生物活性玻璃和α-W玻璃陶瓷已被广泛地应用于骨组织的修复和重建。发现在模拟体液中,CaO-SiO2基玻璃表面能形成骨磷灰石层,而CaO-P2O5基玻璃表面没有骨磷灰石生成,意味着CaO和SiO2成分是生物活性玻璃在体内与骨发生化学键合的主要原因。硅灰石的化学分子式为CaSiO3,其理论组成为48.3%CaO和51.7%SiO2。因此,硅灰石在体液中也应具有生物活性,并能诱导骨磷灰石在其表面形成。PSiihorpannnn等[4]发现在模拟体液中CaSiO3陶瓷表面骨磷灰石的形成速度比其他生物玻璃和玻璃陶瓷更快。Liu X Y等[5]采用等离子火焰球化商用硅灰石粉末(d为10~100μm),以TiC4合金作为基体材料,制备了硅灰石涂层。硅灰石涂层在TiC4基体上的拉伸结合强度为42.8MPa。

二、制备表面生物活性陶瓷的方法

【2.1】等离子体喷涂技术

等离子喷涂法[6]是迄今为止研究最为广泛的制备表面生物陶瓷的方法。该技术利用等离子枪产生等离子流将生物陶瓷粉料高温加热熔融或接近熔融状态,高速喷至金属基体表面形成涂层。它能在基体与涂层之间提供很高的结合力,并能获得覆盖完整的涂层40~54μm。但由于等离子喷涂制备陶瓷涂层的过程中等弧θ高达1000°C以上,所以冷却时金属基体与涂层的界面存在很高的残余热应力和缺陷的集中,使得材料的破坏通常发生在界面处,不利于涂层的稳定且涂层与基体界面主要是机械咬合,结合强度也相应受到制约。另外等离子喷涂涂层与金属基体间物理性能差别较大,在界面处会产生较大的内应力,从而降低了涂层与基体的结合强度。Yang[7]等采用等离子体喷涂技术在Ti和CoCrMo合金上制备了高强度的ZrO2涂层。研究表明:在钛合金基体上3%Y2O3,稳定的ZrO2涂层结合强度为32MPa,而4%GeO2稳定的ZrO2涂层结合强度可达68MPa,这是因为4%GeO2稳定的ZrO2涂层中四方相ZrO2粒径较小,涂层的稳定性较好。Lu[8-11]等利用后处理技术对等离子体喷涂纳米TiO2涂层进行生物活化处理,获得了既具有良好生物活性和生物相容性,又与钛合金基体结合良好的TiO2涂层。

近年来发展了在铝合金表面等离子喷涂生物活性梯度涂层的研究,在基体与羟基磷灰石之间形成一个化学组成梯度变化的过渡区域,大大降低了界面处的应力,提高了界面结合强度。Lu等[12-15]采用等离子体喷涂技术,成功制备了硅灰石和硅酸二涂层,另外对透辉石涂层也进行初步探查,并对这些涂层材料的生物活性和生物相容性进行了探讨,说明利用等离子体喷涂的硅灰石涂层、硅酸二钙涂层和透辉石涂层都具有良好的生物活性和生物相容性。

【2.2】激光熔覆法

激光熔覆技术已成为制备各种功能涂层材料的有效手段之一,其最显著的特点就是涂层与基体之间能形成牢固的冶金结合,且熔覆层成分和稀释度可控。界面作为金属基生物活性陶瓷涂层极为重要的组成部分,其结构和性能对涂层稳定性及寿命起着决定性作用。因此,研究金属基生物活性陶瓷涂层界面的组织结构、结合机制及残余应力分布对获得高性能涂层尤为重要[16]。郑敏等[16]对熔覆层和界面的显微组织、相组成及成分等进行了研究,并重点分析激光熔覆生物陶瓷复合涂层的界面形貌、结合状态及残余应力分布。邓迟等[17]用X-射线衍射和能谱分析方法检测了表面生物陶瓷和涂层与界面的物相及成分分布,结果显示涂层内和涂层与基材间出现了新相,这表明其中发生了复杂的化学冶金反应,适当的激光熔覆工艺、涂层及基体的物性三者确定了化学冶金反应发生。在这些条件作用下,涂层内合成了具有生物活性的钙.磷陶瓷,形成了牢固的界面。高家诚等[18]先用高能激光束辐射预置于钛表面的陶瓷粉末,在金属表面原位合成生物陶瓷成分,再用X-射线衍射表征了涂层材料,测定了涂层与界面的结合强度。结果表明:获得的涂层的成分为生物陶瓷成分,其中的主要成分为羟基磷灰石(HA),涂层与基材获得的界面强度达到42.96MPa,界面有较好的改善。张亚平[19]等在经过渡层预处理的TC 铝合金表面上预置设定配比的CaHPO4、CaCO3混合粉末,比较少量Y2O3粉末对合成与涂砚表面生物陶瓷的影响。经优化激光工艺处理后,成功地实现一步激光束合成与涂砚表面生物陶瓷。该涂层具有优良的力学性能,且改善了植人材料弹性模量与生物硬组织的匹配性。Y2O3,对表面生物陶瓷的合成及性能改善均有重要作用。王勇等[20]测试了激光熔覆表面生物陶瓷与基体的结合强度、涂层抗弯、抗拉和抗压强度,并计算了弹性模量。结果表明,稀土能够提高涂层与基体的结合强度、抗弯及抗拉强度,但降低了涂层的抗压强度。稀土在激光熔覆条件下充分扩散传质弥散分布于涂层熔池内,分散的稀土颗粒促进晶体形核和成长,细化晶粒,强化涂层。激光熔覆涂层复合材料能满足生理条件下的强度要求。激光是一种能量高度集中的能源,利用激光束对材料表面的局部区域进行加热、熔化,进行激光熔覆原位合成与涂覆羟基磷灰石(HA)等生物陶瓷的方法,由于合成生物陶瓷成分效率高,工艺新颖,操作方便而引起同行的关注。

【2.3】燃烧合成法

燃烧合成是一种制备生物涂层的新工艺,具有较大的优点[21]:燃烧温度高,反应速度快,工艺简单,设备要求低,生产率高,不受基体形状和大小的限制,可在复杂表面合成厚度均匀的陶瓷涂层等。国外已有报道采用溶液燃烧合成制备生物陶瓷粉末。在此基础上,拟开发溶液燃烧合成制备表面生物陶瓷的工艺[22]。刘咏等[23]采用然烧合成-水热法制备了表面生物陶瓷,用X-射线衍射、扫描电镜和粘接拉伸法分析了涂层物相组成形貌和涂层与基体的界面结合弧度。水热处理2h后,涂层中HA含量增加,延长水热处理时间,得到纯HA涂层,涂层δ为20μm。

【2.4】电沉积一水热合成法

Shirkhanzadeh等[24]首先报道了用电沉积法制备磷酸钙涂层的工艺:电沉积一水热合成法是一种低温下在含Ca2+和H2PO4-溶液中沉积磷酸钙涂层随后水热处理获取纯HA涂层的工艺,具有设备投资少、生产费用低、操作简单、原材料利用率高、工艺连续性好及易于实现自动化生产的优点。采用电沉积.水热合成法和高温锻烧相结合的方法,制备了表面生物陶瓷。刘芳等[25]研究了涂层与基体间过渡层的物相组成和界面结合强度。用X-射线衍射、扫描电镜和粘接拉伸法进行分析。研究结果表明:水热合成后,界面结合强度较低,为7.04MPa。在空气中煅烧,700°C以下时,界面出现极薄TiO2

层,同时随着煅烧温度的升高,界面结合强度提高。黄伯云等[26]评述了电沉积一水热合成法制备在羟基磷灰石表面生物陶瓷的相形成机理、工艺进展和工艺特点,并对有关问题进行了探讨。结果表明,采用电沉积.水热合成法制备羟基磷灰石表面生物陶瓷最大的缺点是涂层与基体结合力较低。今后,将在可控制涂层孔隙度梯度变化的基础上,着手研究涂层化学组分的梯度变化,降低涂层与基体问热膨胀系数等物理特性的差别,减少涂层材料中残余热应力和残余热应变,促进界面化学冶金结合,提高涂层与基体的结合强度。

【2.5】电泳沉积法

用电泳方法制备的表面生物陶瓷,基底和涂层界面不存在热应力,有利于增强基底和涂层的结合强度,而且电泳过程是非直线过程,可以在形状复杂和表面多孔的基底上制备出均匀的涂层,涂层再经过真空烧结等技术可以进一步提高HA与基底的结合强度。郭军松等[27]用异丙醇作为分散介质,对电泳沉积羟基磷灰石表面生物陶瓷进行了系统研究。经过制备稳定的悬浮液、电泳沉积及高温烧结等过程,在Ti6A14V合金上得到表面均匀的羟基磷灰石表面生物陶瓷。用X-射线衍射和扫描电镜等对羟基磷灰石颗粒的物相和沉积层的表面进行了表征。研究了电泳时间与电泳沉积量和电流密度、电泳沉积量与电泳电压之间的相互关系,并讨论了这些参数对电泳沉积过程的影响。并通过电泳沉积得到HA沉积层,沉积层在高温条件下烧结,制得羟基磷灰石表面生物陶瓷。同时,运用电容充电的模型,定性地解释了电泳沉积过程中质量、时间、电压及电流之间的关系曲线。

三、展望

表面生物陶瓷是综合运用材料科学和生命科学原理进行研制的一种新型陶瓷涂层材料。生物材料必须具备的特性是无毒性、无致癌作用,无变态反应,对周围生物组织无刺激和不引起其他故障作用在生物机体内材料的物理、化学性能稳定,经长期使用不会发生变质和力学性能降低的现象与生物组织亲和性好容易进行杀菌、消毒等。表面生物陶瓷的种类从生物惰性涂层材料发展到生物活性涂层材料、降解材料及多相复合材料。表面生物陶瓷材料可分为惰性表面生物陶瓷、活性表面生物陶瓷、降解表面生物陶瓷和复合表面生物陶瓷。目前,生物涂层材料的研究已经进入了攻坚阶段,而如何提高材料的界面结合强度又能够保证涂层的稳定性和生物活性则是研究的核心内容。随着各种制备方法的不断出现和改进,以及对其机理的深入研究,将会对生物涂层材料的研究提供强大的工具。从基于仿生原理出发,制备类似于自然组织的组成、结构和性质的理想生物材料,应该是生物材料的一个新的发展方向。参考文献

[1] 戴浩,周融,樊刚.钛板表面生物活性梯度陶瓷涂层的制备[J].江苏冶金,2006,34(2):19-21.

[2] 刘栋,刘其斌.宽带激光熔覆生物陶瓷梯度涂层及其生物活性[J].红外与激光工程,2010,39(4):741—746.

[3] 赵海涛.生物陶瓷的研究与应用前景展望[J].长春光学精密机械学院学报,2002,35(1):6l一64.

[4] Siriphannon P,Kameshima Y,Yasumori A,et a1.Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO2 ceramics:Form~ion of hydroxyapatite in simulated body fluid[J].J.Biomed.Mater.Res,2000,52(1):30—39.

[5] Xuanyong Liu,Chuanxian Ding,Zhenyao Wang.Apatite formed on the surface of plasma—sprayed wollastonite coating immersed in simulated body fluid[J].Biomaterials,2001,22(14):2007-2012.

[6] Yang Y C,Chang E.The bonding of vlasma—sprayedhydroxyapatite coatings to titanium :effect of processin,prosityand residual stress[J].Thin Solid Films,2003,444:260—274.

[7] Yang Yunzhi,Ong J L,Tian Jierno.Deposition of highly adhesive ZrO2 coating on Ti and CoCrMo implant materials using plasma spraying[J].Biomatefials,2003,24:619—627.

[8] Liu Xuanyong,Zhao Xiaobing,Ding Chuanxian,et a1.Light-induced bioactive TiO2 surface[J].App1.Phys.Lett,2006,88(1):013905.

[9] Zhao Xiaobing,Liu Xuanyong,Ding Chuanxian,et a1.Invitro bioactivity ofplasmasprayed TiO2 coating after sodium hydroxide treatment[J].Sur Coat Teahnol,2006,200:5487—5492.

[10] Liu Xuanyong,Zhao Xiaobing,Furky,et a1.Plasma—treated nanostruetured TiO2 surface supposing biomimetic growth apatite[J].Biomaterials,2005,26(31):6143.6150.

[11] Zhao Xiaobing,Liu Xuanyong,Ding Chuanxian.Acid—induced bioactive titania sueface[J].J Biomed Mater Res,2005,75A:888-894.

[12] Liu Xuanyong,Ding Chuanxian.Apatite formed on the Surface of plasma—spryed wollastonite

coating

immersed

in

simulated

body fluid[J].Biomaterials,2001,22:2007—2012 [13] 刘宣勇,丁传贤.等离子喷涂硅灰石涂层结构和性能的研究[J].硅酸盐学报.2002,30(1):20—25.

[14] 郑学斌.等离子喷涂羟基磷灰石复合涂层的研究[D].上海:中国科学院上海硅酸盐研究所,2005:l6-20.

[15] Liu Xuanyong,Tao Shunyan.Ding Chuanxian.Bioactivity of plasma spraycd diealcium silicatc coatings[J].Biomaterials,2002,23:963—968.

[16]郑敏,樊丁,李秀坤,等.激光熔覆钛基生物陶瓷涂层的制备及其界面研究[J].稀有金属材料与工程,2009,38(11):2004-2009.

[17]邓迟,黄永一,张亚平.激光熔覆生物陶瓷涂层化学冶金反应研究[J].西南师范大学学报(自然科学版),2005,30(6):1055—1061.

[18]高家诚,邓迟,张亚平.激光熔覆生物陶瓷涂层和界面的研究[J].应用激光,2006,26(1):20—25.

[19]张亚平,高家诚,文静.铝合金表面激光熔凝一步制备复合生物陶瓷涂层[J].材料研究学报,2003,12(4):424-426.

[20]邓迟,王勇,张亚平,等.稀土对激光熔覆生物陶瓷涂层强度的影响[J].材料热处理学报,2005,26(5):28.34.

[21]金华峰.燃烧合成陶瓷涂层技术的应用研究与发展趋势[J].表面技术,2000,29(6):26—32.

[22]刘芳,周科朝,刘咏,等.燃烧合成在制备生物陶瓷涂层中的应用[J].粉末冶金材料科学与工程,2004,9(1):41—44.

[23]刘芳,刘咏,周科朝,等.燃烧合成一水热法制备生物陶瓷涂层[J].粉末冶金材料科学与工程,2003,8(2):103—106.

[24]Shinkhanzadeh M.Bonctive enleium phsphte eontings preepared by electrode position[J].Matenial seienee Lettet,2001,10:1415—1417.

[25]刘芳,周科朝,刘咏,等.电沉积-水热合成法制备的生物陶瓷涂层与基体界面结合强度[J].粉末冶金材料科学与工程,2003,8(3):191—194.

[26] 刘芳,周科朝,黄伯云,等.电沉积一水热合成法制备羟基磷灰石生物陶瓷涂层的研究进展[J].粉末冶金材料科学与工程,2002,7(2):128—131.

[27] 郭军松,张建民.电泳沉积羟基磷灰石生物陶瓷涂层的研究[J].郑州大学学报(理学版),2003,35(1):4.77.

第五篇:石墨烯强韧陶瓷基复合材料研究进展

石墨烯强韧陶瓷基复合材料研究进展

赵琰 建筑工程学院

摘要:石墨烯具有优异的力学性能,可作为强韧相引入陶瓷材料中,解决陶瓷材料的脆性问题。本文综述了石墨烯强韧的陶瓷基复合材料的研究进展。在介绍石墨烯力学性能的基础上,着重阐述了石墨烯/陶瓷基复合材料的材料体系、制备方法、强韧化效果和强韧化机理,讨论了实现石墨烯对陶瓷材料强韧化的关键问题,并对未来石墨烯强韧陶瓷基复合材料的研究工作进行了展望。关键词:石墨烯;陶瓷;强韧 1.引言

二十世纪八十年代以来,纳米材料与技术得到了极大的发展,而纳米碳材料也是从这一时期开始进入历史舞台。1985年,由60个碳原子构成的“足球”分子C60被三位英美科学家Curl、Smalley和Kroto发现,随后C70、C86等大分子相继出现,为碳家族添加了一大类新成员富勒烯(Fullerene)。1991年,日本电镜专家Iijima发现了由石墨层片卷曲而成的一维管状纳米结构—碳纳米管(CNTs),其性能奇特,应用前景广阔,现已成为一维纳米材料的典型代表[1]。2004年,英国科学家Andre Geim和Konstantin Novoselov发现了碳材料“家谱”中的一位新成员—石墨烯(Graphene),石墨烯仅由一个原子层厚的单层石墨片构成,是一种二维纳米材料。作为碳的二维晶体结构,石墨烯的出现最终将碳的同素异形体勾勒为一副点、线、面、体(从零维到三维)相结合的完美画面,如图1所示[2,3]。纵观近三十年的纳米材料与技术的发展史,我们可以看到,每一种新的纳米碳材料的发现都极大的推动了纳米材料与技术的发展。2.石墨烯的结构和力学性能

石墨烯是由sp2杂化的碳原子紧密排列而成的蜂窝状晶体结构,厚度约0.35 nm,仅为一个原子的尺寸。石墨烯是碳材料的基本组成单元,石墨烯可以包裹形成零维的富勒烯,可以卷曲形成一维的碳纳米管,还可以堆积成为三维的石墨,通过二维的石墨烯可以构建所有其他维度的碳材料[4]。同单壁、多壁碳纳米管之间的关系类似,除了严格意义上的石墨烯(单层)外,少数层的石墨层片在结构和性质上明显区别与块体石墨,在广义上也被归为石墨烯的范畴[3]。

图1 碳的同素异形体

[2]

石墨烯在热学、电学、力学等方面均具有优异的性能,其室温下的热导率约为3000-5000 Wm-1K-1,电子迁移率可达10000-20000 cm2V-1s-1[5,6],理论和实验研究均表明石墨烯是目前已知的材料中强度和硬度最高的晶体结构[7-13]。利用原子力显微镜(AFM)和纳米压痕技术可以测量石墨烯的力学性能,如图2所示,不同研究者的测试结果列于表1。从表1可以看出,机械剥离法制备的石墨烯力学性能较好,其杨氏模量可达1 TPa,强度可达130 GPa,而化学剥离法制备的石墨烯,由于其表面存在缺陷和含氧官能团,力学性能受到一定影响。石墨烯优异的性能,使其可作为复合材料中的添加相,实现材料的功能化和结构化。

图2 悬浮的石墨烯膜,(a)跨越圆形孔阵列的石墨烯薄片的扫描电子显微镜(SEM)图,(b)石墨烯膜的非接触式AFM图,(c)悬浮的石墨烯薄片的纳米压痕示意图,(d)断裂膜的AFM图

[13]

表1 石墨烯力学性能的实验测试结果

研究者

研究机构

测试结果

机械剥离法制备的单层石墨烯的杨C Lee, X Wei, J W

Columbia University(USA)氏模量为1.0 ± 0.1 TPa,强度为130 ±

Kysar等 GPa[13]

Max-Planck-Institut für C Gómez-Navarro, M

Festkörperforschung Burghard, K Kern

(Germany)

化学还原法制备的单层石墨烯的弹

性模量为0.25 ± 0.15 TPa[12]

M Poot, H S J van der Zant

Delft University of Technology(Netherlands)

当石墨层数在八层以下时,力学性能

依赖于石墨烯的层数[11]

3.石墨烯在陶瓷材料中的应用

陶瓷材料具有高熔点、高硬度、高耐磨性、高化学稳定性等优点,但是脆性是其致命的缺点,限制了陶瓷材料的应用范围,因此,陶瓷材料的强韧化一直是材料学家长期关注的问题。目前,陶瓷材料的强韧方法包括:ZrO2相变增韧、纤维增韧、晶须增韧、颗粒增韧等[14]。

随着石墨烯制备、化学修饰和分散技术的成熟,近年来基于石墨烯的复合材料研究进展很快[15-37]。基于石墨烯优异的力学性能,将其作为强韧相引入陶瓷材料的研究也已展开。

表2 石墨烯/陶瓷基复合材料力学性能的研究结果

强韧相

基体

制备方法

氧化石墨烯与Al2O3机械混

Al2O3

合,用一水肼还原,放电等

离子烧结(SPS)十二烷基硫酸钠(SDS)作为Graphene Nanosheet

Al2O3

分散剂,超声混合,高频感

应加热烧结(HFIHS)

添加0.5 wt%,断裂韧

性提高72 %[29] 实验结果

Graphene Nanosheet

添加2 wt%,断裂韧性

提高53 %[28]

添加3 wt%,断裂韧性Graphene Few-layer Graphene Graphene Platelet

Al2O3 ZrO2-toughened Al2O3(ZTA)Graphene

ZrO2

球磨混合,HFIHS 十六烷基三甲基溴化铵

添加1.5 vol%,断裂韧Graphene Platelet

Si3N4

(CTAB)作为分散剂,超声结合球磨混合,SPS Multilayer Graphene;

添加1 wt% Multilayer Exfoliated Graphene Nanoplatelet;Nano Graphene Platelet

热压烧结,添加0.2 wt%,弯曲强度提高

N-甲基吡咯烷酮(NMP)作Graphene Platelet

Si3N4

为溶剂,超声结合球磨混合,热压烧结和无压烧结 %,断裂韧性提高10 %;无压烧结,添加2 wt%,弯曲强度提高147 %,断裂韧性提

高30 %[36]

Graphite Nanosheet 羟基磷灰石

超声混合,SPS

(HA)

添加0.5 wt%,弯曲强

度提高12 %[37]

Si3N4

聚乙二醇作为分散剂,高能

Graphene,断裂韧性提

球磨,热等静压烧结

高43 %[35] 性提高235 %[34]

Al2O3

球磨混合,HFIHS 氧化石墨烯与Al2O3胶体滴

定混合,SPS

添加0.81 vol%,断裂

球磨混合,SPS

韧性提高40 %[32] 添加3 wt%,断裂韧性

提高367 %[33] 提高22 %[30] 硬度稍有降低[31]

表2列出了不同研究者制备的石墨烯/陶瓷基复合材料力学性能的研究结果。从表2可以看出,石墨烯在不同的陶瓷基体中(Al2O3、ZTA、ZrO2、Si3N4、HA)均可达到明显的补强增韧的效果,增韧方面的效果尤其突出,其强韧化机制主要包括裂纹的偏转、分支,石墨烯的桥联、断裂、拔出等,如图3和图4所示。

值得注意的是,与纳米颗粒的团聚或纳米纤维之间的纠缠不同,石墨烯材料,特别是化学还原法制备的石墨烯,因其平面形貌和层间相互作用,很容易发生层状堆积。由于制备技术的限制和石墨烯本身容易团聚的特点,目前作为陶瓷材料强韧相研究的石墨烯材料并不是严格意义上的单层石墨烯,通常为多层的石墨烯,当其厚度方向达到几个纳米时,可称其为石墨烯纳米片。虽然随着石墨层数的增加,石墨烯中存在缺陷的可能将增加,这将导致其力学性能有所降低,但是石墨烯作为陶瓷材料的强韧相,由于其独特的二维结构和巨大的接触面积,依然可以显著提高陶瓷材料的力学性能,因此围绕石墨烯和石墨烯纳米片展开的陶瓷基复合材料的研究是十分必要的。

图3 石墨烯纳米片/ 氮化硅纳米复合材料中的韧化机制,(a)显微硬度测试预制裂纹(插图),对于裂纹的进一步观察发现在几处位置有石墨烯纳米片对裂纹的桥联,其中的两处展示在高分辨率的SEM图片上,(b)对裂纹的进一步观察发现裂纹曲折的扩展路径,(c)材料的断口形

貌揭示了复合材料中存在三维增韧机制[34]

图4(a-c)不同Al2O3/GNS纳米复合材料断口的高分辨SEM图片;(a)Al2O3/0.25GNS纳米复合材料观察到短的GNS拔出和其与Al2O3基体的结合;(b)Al2O3/0.5GNS纳米复合材料观察到相对大尺寸的GNS拔出和分离的石墨烯层片(小的白色箭头);(c)一个多层石墨烯结构和GNS的拔出;(d)GNS拔出增韧机制和相邻GNS层片滑移现象的示意图;(e,f)外力作用下晶

格中的原子经历滑移运动的示意图[29]

在陶瓷基体中实现石墨烯的强韧作用主要取决于两个关键因素,一是石墨烯的分散,二是基体与石墨烯之间的界面结合。

强韧相在基体中的分布状态对于复合材料的力学性能至关重要,石墨烯由于其平面形貌和层间相互作用,很容易发生层状堆积,因此石墨烯的有效分散对于复合材料力学性能的提高显得尤为重要,众多研究者在此方面进行了大量的研究。研究结果表明,采用不同的溶剂、添加表面活性剂或对石墨烯进行化学修饰等方法有利于提高石墨烯的分散性[38-41]。石墨烯在有机介质中的分散效果较好,如NMP;选用无机介质作为溶剂,通常需要添加分散剂,如阴离子表面活性剂SDS、阳离子表面活性剂CTAB、非离子型表面活性剂聚乙二醇和聚乙烯吡咯烷酮等。为了获得良好的分散效果,石墨烯和基体材料可采用球磨、超声分散、胶体滴定等一种或多种方式依次使用的方法进行混合。与石墨烯相比,氧化石墨烯表面官能团较多,分散性较好,将氧化石墨烯与陶瓷基体混合,然后用还原剂进行还原,如一水肼、氢气等,可得到分散效果良好的石墨烯/陶瓷基体的混合粉体。需要注意的是,除了采用多种方法得到分散良好的石墨烯/陶瓷基体的混合浆体,还应注意分散后料浆的干燥方法,避免干燥过程中石墨烯的二次团聚。

为提高石墨烯与基体的界面结合强度,有利于载荷在界面间的传递,可对石墨烯进行物理或化学的表面修饰和改性。需要注意的是,虽然对石墨烯进行表面修饰有利于其分散和提高界面结合强度,但是由于化学修饰引入的缺陷对石墨烯面内力学性能的降低在复合材料的设计中也应加以考虑。同时,当石墨烯与基体的界面结合强度过高时,不利于石墨烯拨出增韧机制的发挥,因此对复合材料界面结合强度的控制至关重要,然而目前对于这方面的研究报道还很少。

对于陶瓷基材料,烧结过程对力学性能的影响很大。采用先进的烧结方法,如热压烧结、热等静压烧结、SPS、HFIHS,可以降低烧结温度、缩短保温时间、有效保护石墨烯的二维结构,获得致密度高、晶粒尺寸均匀细小的复合材料,有利于力学性能的提高。4.结论与展望

石墨烯具有优异的力学性能,同时其独特的二维结构和巨大的接触面积,使其在陶瓷材料中具有明显的补强增韧的效果。石墨烯对陶瓷材料强韧作用的实现,关键在于石墨烯的有效分散和基体与石墨烯之间适宜的界面结合,这将是今后研究中需要重点解决的问题。通过表面改性达到石墨烯的有效分散同时控制其与陶瓷基体的界面结合状态,可实现陶瓷材料补强增韧的可控制备,有利于扩展陶瓷材料的使用范围。

本论文得到国家自然科学基金(81171463)、山东省高校科技计划(J14LA59)、淄博市科技发展计划(2014kj010079)资助。

参考文献

[1] 麦亚潘, 刘忠范, 碳纳米管: 科学与应用 [M].北京: 科学出版社, 2007.[2] 朱宏伟.石墨烯: 单原子层二维碳晶体——2010 年诺贝尔物理学奖简介 [J].自然杂志, 2010, 32(6): 326-331.[3] 朱宏伟, 徐志平, 谢丹, 石墨烯——结构、制备方法与性能表征 [M].北京: 清华大学出版社, 2011.[4] A K Geim, K S Novoselov.The rise of graphene [J].Nature Materials, 2007, 6(3): 183-191.[5] K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov.Electric field effect in atomically thin carbon films [J].Science, 2004, 306(5696): 666-669.[6] A A Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao, C N Lau.Superior thermal conductivity of single-layer graphene [J].Nano Letters, 2008, 8(3): 902-907.[7] F Liu, P Ming, J Li.Ab initio calculation of ideal strength and phonon instability of graphene under tension [J].Physical Review B, 2007, 76(6): 064120(7).[8] Q Lu, M Arroyo, R Huang.Elastic bending modulus of monolayer graphene [J].Journal of Physics D: Applied Physics, 2009, 42(10): 102002(6).[9] A Sakhaee-Pour.Elastic properties of single-layered graphene sheet [J].Solid State Communications, 2009, 149(1-2): 91-95.[10] H Zhao, K Min, N Aluru.Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension [J].Nano Letters, 2009, 9(8): 3012-3015.[11] M Poot, H S J van der Zant.Nanomechanical properties of few-layer graphene membranes [J].Applied Physics Letters, 2008, 92(6): 063111.[12] C Gómez-Navarro, M Burghard, K Kern.Elastic properties of chemically derived single graphene sheets [J].Nano Letters, 2008, 8(7): 2045-2049.[13] C Lee, X Wei, J W Kysar, J Hone.Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].Science, 2008, 321(5887): 385-388.[14] 周玉, 陶瓷材料学 [M].北京: 科学出版社, 2004.[15] S Stankovich, D A Dikin, G H Dommett, K M Kohlhaas, E J Zimney, E A Stach, R D Piner, S T Nguyen, R S Ruoff.Graphene-based composite materials [J].Nature, 2006, 442(7100): 282-286.[16] C Wu, X Y Huang, G L Wang, X F Wu, K Yang, S T Li, P K Jiang.Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites [J].Journal of Materials Chemistry, 2012, 22(14): 7010-7019.[17] X L Wang, H Bai, Y Y Jia, L J Zhi, L T Qu, Y X Xu, C Li, G Q Shi.Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials [J].RSC Advances, 2012, 2(5): 2154-2160.[18] X Huang, X Y Qi, F Boey, H Zhang.Graphene-based composites [J].Chemical Society Reviews, 2012, 41(2): 666-686.[19] P Avouris, C Dimitrakopoulos.Graphene: synthesis and applications [J].Materials Today, 2012, 15(3): 86-97.[20] C Ramirez, L Garzón, P Miranzo, M Osendi, C Ocal.Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy [J].Carbon, 2011, 49(12): 3873-3880.[21] S Hai Yang, Z Xin Wei.Mechanical properties of Ni-coated single graphene sheet and their embedded aluminum matrix composites [J].Communications in Theoretical Physics, 2010, 54(1): 143.[22] Y C Fan, L J Wang, J L Li, J Q Li, S K Sun, F Chen, L D Chen, W Jiang.Preparation and electrical properties of graphene nanosheet/Al2O3 composites [J].Carbon, 2010, 48(6): 1743-1749.[23] J Dusza, J Morgiel, A Duszová, L Kvetková, M Nosko, P Kun, C Balázsi.Microstructure and fracture toughness of Si3N4+graphene platelet composites [J].Journal of the European Ceramic Society, 2012, 32(12): 3389-3397.[24] D Lahiri, E Khaleghi, S R Bakshi, W Li, E A Olevsky, A Agarwal.Graphene induced strengthening in spark plasma sintered tantalum carbide-nanotube composite [J].Scripta Materialia, 2012, 68(5): 285-288.[25] L Kvetková, A Duszová, P Hvizdoš, J Dusza, P Kun, C Balázsi.Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites [J].Scripta Materialia, 2012, 66(10): 793-796.[26] H Seiner, C Ramirez, M Koller, P Sedlák, M Landa, P Miranzo, M Belmonte, M I Osendi.Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers [J].Materials and Design, 2015, 87: 675-680.[27] I Ahmad, B Yazdani, Y Zhu.Recent advances on carbon nanotubes and graphene reinfored ceramics nanocomposites [J].Nanomaterials, 2015,(5): 90-114.[28] K Wang, Y F Wang, Z J Fan, J Yan, T Wei.Preparation of graphene nanosheet/alumina composites by spark plasma sintering [J].Materials Research Bulletin, 2011, 46(2): 315-318.[29] I Ahmad, M Islam, H S Abdo, T Subhani, K A Khalil, A A Almajid, B Yazdani, Y Zhu.Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina [J].Materials and Design, 2015, 88: 1234-1243.[30] W Kim, H S Oh, I J Shon.The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating [J].Int.Journal of Refractory Metals and Hard Materials, 2015, 48: 376-381.[31] Y Fan, M Estili, G Igarashi, W Jiang, A Kawasaki.The effect of homogeneously dispersed few-layer grahene on microstructure and mechanical properties of Al2O3 nanocomposites [J].Journal of the European Ceramic Society, 2014, 34: 443-451.[32] J Liu, H Yan, M J Reece, K Jiang.Toughening of zirconia/alumina composites by the addition of graphene platelets [J].Journal of the European Ceramic Society, 2012, 32(16): 4185-4193.[33] S M Kwon, S J Lee, I J Shon.Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high-frequency induction heating [J].Ceramics International, 2015, 41: 835-842.[34] L S Walker, V R Marotto, M A Rafiee, N Koratkar, E L Corral.Toughening in graphene ceramic composites [J].Acs Nano, 2011, 5(4): 3182-3190.[35] P Kun, O Tapasztó, F Wéber, C Balázsi.Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites [J].Ceramics International, 2012, 38(1): 211-216.[36] Y Yang, B Li, C Zhang, S Wang, K Liu, B Yang.Fabrication and properties of graphene reinforced silicon nitride composite materials [J].Materials Science & Engineering A, 2015, 644: 90-95.[37] J Zhu, H M Wong, K W K Yeung, S C Tjong.Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: mechanical and in vitro cellular properties [J].Advanced Engineering Materials, 2011, 13(4): 336-341.[38] D Parviz, S Das, H T Ahmed, F Irin, S Bhattacharia, M J Green.Dispersions of non-covalently functionalized graphene with minimal stabilizer [J].Acs Nano, 2012, 6(10): 8857-8867.[39] M Lotya, P J King, U Khan, S De, J N Coleman.High-concentration, surfactant-stabilized graphene dispersions [J].Acs Nano, 2010, 4(6): 3155-3162.[40] S M Notley.Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition [J].Langmuir, 2012, 28(40): 14110-14113.[41] A S Wajid, S Das, F Irin, H Ahmed, J L Shelburne, D Parviz, R J Fullerton, A F Jankowski, R C Hedden, M J Green.Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production [J].Carbon, 2012, 50(2): 526-534.

下载超高温陶瓷复合材料的研究进展(共五则)word格式文档
下载超高温陶瓷复合材料的研究进展(共五则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    碳纤维增强SiC陶瓷复合材料的研究进展(精)[范文模版]

    碳纤维增强SiC陶瓷复合材料的研究进展 邹世钦,张长瑞,周新贵,曹英斌 (国防科技大学 410073航天与材料工程学院国防科技重点实验室,湖南长沙) 摘 要: 碳纤维增强 SiC 陶瓷基复合材料具......

    晶须增韧陶瓷基复合材料研究进展

    晶须增韧陶瓷复合材料研究进展 芦珊(学号07093095) 电力系统及其自动化09-1班 信息与电气工程学院 摘要 综述了晶须增韧陶瓷复合材料的制备方法和分类;讨论了晶须陶瓷基复合......

    陶瓷基复合材料的研究进展及其在航空发动机上的应用

    陶瓷基复合材料的研究进展及其在航空发动机上的应用 摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。......

    复合人才参考

    1981年8月,在财政部第一机械工业部和中国会计学会的支持下,在中国人民大学和第一汽车制造厂联合召开的“财务、会计、成本应用电子计算机专题讨论会”上,正式将“电子计算机在......

    聚氨酯研究进展

    聚氨酯树脂的研究进展 摘要:本文综述了聚氨酯目前研究热点,其中包括氟硅改性、水性化、非异氰酸酯聚氨酯和聚氨酯纳米复合材料的研究,指出了聚氨酯未来研究方向。 关键词:聚氨酯......

    药用植物研究进展

    植物是药物的重要来源之一,人类利用药用植物的历史渊远流长。今天,尽管科学家已经能够利用化学方法研制品类繁多的药品,但开发利用植物药的热情在世界范围内却有增无减。这主要......

    生物信息学研究进展

    我国生物信息学发展现状及展望 摘要:简要叙述了我国生物信息学发展现状,以及我国当前生物信息学发展中的一些问题,并对生物信息学的发展前景进行概述。关键词:生物信息学 现状......

    生命科学研究进展

    生命科学研究进展尹强(江西农业大学理学院,江西南昌,330045)现代生物技术已进入商品生产的激烈竞争阶段。据在京举行的关于“分子生物学进展”方面的学术报告会透露,美国科学院......