第一篇:发动机凸轮轴的磨削技术
汽车凸轮轴的磨削技术
简介:CBN砂轮磨削具有高效、高精度、低成本等显著优点,是凸轮轴磨削加工技术发展的必然趋势。依据多年实验研究的结果和相关技术文献,文章指出了国内在将凸轮轴的CBN磨削技术推向市场的过程中主要的制约因素,并提出了积极的建议,以期在凸轮轴加工中广泛采用CBN磨削技术,提高发动机整体的加工技术水平。凸轮轴作为发动机的关键零件之一,其加工质量的好坏直接影响发动机的动力特性;同时,凸轮轴又是一种非圆磨削的工关键字:刀具夹具切削铣削车削机床测量
CBN砂轮磨削具有高效、高精度、低成本等显著优点,是凸轮轴磨削加工技术发展的必然趋势。依据多年实验研究的结果和相关技术文献,文章指出了国内在将凸轮轴的CBN磨削技术推向市场的过程中主要的制约因素,并提出了积极的建议,以期在凸轮轴加工中广泛采用CBN磨削技术,提高发动机整体的加工技术水平。
凸轮轴作为发动机的关键零件之一,其加工质量的好坏直接影响发动机的动力特性;同时,凸轮轴又是一种非圆磨削的工件,其加工余量大且材料难磨,对磨削精度和生产效率要求都很高,加工难度比较大。因而,凸轮轴的磨削技术一直是业内人士关注的重点。如何提高磨削效率和加工质量是凸轮轴磨削急需解决的问题,主要应考虑如下几个■影响因素:
■机床的特性;
■凸轮轮廓磨削成形的方式; ■砂轮性能和冷却液;
■磨削工艺,包括修整工具及修整工艺。■国内外凸轮轴磨削技术发展现状
目前,国内多数轿车主机厂的凸轮轴生产线和专业生产凸轮轴的厂家均引进了CBN磨削技术,但仍有很多的载重汽车、柴油机和摩托车发动机的凸轮依然采用传统的刚玉砂轮、靠模仿形的磨削工艺。粗磨工序使用的是国产中低速磨床(35m/s以下),精磨工序部分厂家使用进口磨床,但使用速度均在60m/s以下,修整工具以单点金刚石笔居多,进口磨床和少数国产磨床采用金刚石滚轮修整。这种传统技术给凸轮轴的磨削带来的问题主要体现在如下几个方面:
凸轮轮廓精度低且难以提高
采用靠模样板磨削,凸轮轮廓形状误差最小只能控制在±0.03mm范围内,而全数控无靠模磨削则可控制在±0.01mm内。另外,普通磨料砂轮在使用时,外径变化范围大(80~100mm),而砂轮直径每变化1mm就会使凸轮轮廓产生0.007mm的变化,因而难以进一步提高凸轮轮廓精度。
凸轮表面易产生烧伤、裂纹等缺陷,很难提高生产效率
由于凸轮磨削余量大且材料难磨,普通磨料砂轮的性能很难适应,磨削质量和生产效率两者往往不能兼顾。
综合经济效益不高
普通磨料砂轮的耐用度和使用寿命低,需频繁修整或更换,使修整工具损耗加快,辅助时间和劳动强度增加,既影响了生产效率,又加大了生产成本。另外,砂轮用量大,其质量波动也影响了磨削工艺的稳定性,又因大量磨削残物的产生,增加了磨削液的过滤清理量,对环境造成一定的污染。
CBN磨削技术的应用,使传统凸轮轴磨削过程中的难题迎刃而解。十几年前,有关使用CBN砂轮磨削凸轮轴的报导只在有限的国外文献中见到。在大规模工业化生产中,使用CBN专用数控凸轮轴磨床磨削凸轮轴的技术在某些西方发达国家也刚刚进入实用阶段。紧跟世界先进制造技术发展的潮流,郑州磨料磨具磨削研究所于20世纪90年代初,在国内率先自主研究开发了用于汽车凸轮轴磨削的陶瓷结合剂CBN砂轮,在国产普通高速(60m/s)强力凸轮轴磨床上粗磨冷激铸铁凸轮轴,取得了良好的使用效果。但由于受到当时机床条件和砂轮制造技术的限制,还没能达到更理想的效果。至90年代中期,工业化国家的多数汽车制造厂均已采用了CBN砂轮磨削凸轮轴,国内主要的轿车生产线上也陆续引进了这项技术。它是以CBN专用数控CNC凸轮轴磨床、高速及高性能陶瓷CBN砂轮、专用磨削液、修整滚轮和磨削工艺整套技术的形式引进的。该技术的主要特点是:砂轮使用速度高(80~125m/s),加工效率高(工件由毛坯粗、精磨一次完成,效率是普通砂轮的2~3倍)。随着凸轮轴的CBN磨削技术及其专用磨床的不断引进,国内研究的CBN专用高速数控凸轮轴磨床也即将进入市场。对此,在完善国产磨床用CBN砂轮粗磨凸轮轴技术,积极研究用CBN砂轮精磨凸轮轴的同时,郑州磨料磨具磨削研究所又开始研制为进口CBN专用数控凸轮轴磨床配套的高速、高效陶瓷CBN砂轮,并已取得了一定成果。研制的砂轮使用速度为80m/s,耐用度和寿命相当于进口砂轮的1/2,而价格只有进口砂轮的1/3。研制的陶瓷CBN砂轮与同类进口砂轮相比,主要差距在于耐用度、寿命和产品质量稳定性偏低,不能完全替代进口砂轮在凸轮轴生产线上连续使用。为了迎头赶上这种快速发展的技术水平,近两年,郑州磨料磨具磨削研究所又研发成功了使用速度为125m/s的磨凸轮轴陶瓷CBN砂轮,其使用速度、磨削效率、磨削质量均达到进口同类产品水平,具有很高的性价比,产品质量稳定质量,完全可以替代进口。这些都表明我国CBN砂轮的制造和应用技术已达到了新的水平。
凸轮轴的CBN磨削技术要素
工业化国家在研发CBN磨削技术时的一个显著特点是将CBN磨料、磨具、磨床和磨削工艺作为一个系统工程来进行的。如美国在20世纪90年代初,为解决凸轮轴的CBN磨削技术,联合了GE公司(CBN磨料)、Norton公司(磨具)和Landis公司(磨床)三家本行业的顶级公司共同攻关。他们最终是以高速CBN砂轮、高速数控CBN专用磨床和CBN磨削工艺一整套技术提供给市场。
在凸轮轴的磨削系统中,必须同时考虑到CBN砂轮制造和应用技术所涉及的各方面的影响因素,才会最终得到令人满意的磨削结果。凸轮轴CBN磨削技术的重要影响因素主要有:
CBN砂轮
性能优越的砂轮必须同时具备磨削锋利、自锐性好和耐用度高等特征。在制造和选择砂轮时主要考虑结合剂、磨料、砂轮浓度和磨具硬度。
结合剂
在CBN磨具的四种结合剂(树脂、陶瓷、金属、电镀)中,以陶瓷结合剂的CBN磨具发展最快。在世界范围内,陶瓷CBN磨具的比例已由20世纪80年代的4%上升到现在的50%以上,增速迅猛。由于陶瓷CBN磨具具有磨削效率高、形状保持性好、耐用度高、易于修整、磨料利用率高(为75%以上,其余类型结合剂为50~60%)、砂轮使用寿命长等优势,因而成为高效、高精度磨削的首选磨具。目前,用于凸轮轴磨削的CBN砂轮全部采用陶瓷结合剂。Mli>磨料选择
在磨削加工中,磨料是磨具中的主体,其性能好坏直接影响磨削效果。CBN磨料与刚玉磨料相比,具有更高的硬度和强度,因而切削锋利且耐磨。在凸轮轴加工这样高强度的磨削情况下,使用CBN磨料是最佳选择。不同牌号的CBN磨料,因制造工艺的不同,其晶体形态、颗粒形状也各不相同,它们各自具有不同的强度、热稳定性、耐化学侵蚀性和破碎特性。应根据结合剂的种类、磨削工件和磨削方式的不同,选择不同牌号的磨料。需要指出的是,CBN磨料在高温下易与水和碱性氧化物发生化学反应而使其结构受到破坏,这是在选择磨削液的种类、压力和流量时必须考虑的因素。
浓度
砂轮浓度的高低表示在磨削时砂轮工作面单位面积上参加磨削的磨粒数的多少,高浓度可带来高的磨削比,200%浓度比100%浓度砂轮寿命长4~5倍。目前,高速、高效磨削均采用较高的砂轮浓度,如进口磨凸轮轴磨床配套的陶瓷CBN砂轮浓度一般均为200%。
硬度
磨具的硬度等级表示结合剂对磨料把持力的大小,它是制造商工艺控制的重要指标,也是用户选择磨具性能的主要参数。砂轮硬度均匀和稳定及硬度高低的合理选择是保证磨削质量的重要前提。国外陶瓷CBN砂轮一般有3~7个硬度等级可供选择,国内目前尚未制订CBN砂轮(包括金刚石磨具)的硬度检验标准,制造商仅以配方硬度进行控制。磨床
砂轮作为以磨床为中心的磨削体系中的一个附件,只有通过磨床所具有的优异特性并优化各种磨削参数,才能最大限度地发挥优势,对CBN磨削来说尤其如此。
高速度
提高砂轮的工作线速度可明显提高磨削效率和磨削比,降低磨削力,从而降低磨削成本。如使用陶瓷CBN砂轮磨削凸轮轴,当砂轮速度从80m/s提高到160m/s时,磨削时间相同,则修整间隔(耐用度)增加2倍;当砂轮速度由35m/s增加至60m/s时,在不同的单位金属去除率(Q'w)情况下,法向磨削力(F'n)均减小1/3左右。CBN砂轮因其结构特点及CBN磨料的特性,为高速、超高速磨削提供了可能。80~125m/s的使用速度已成为目前国内进口的CBN专用凸轮轴磨床基本特征之一。在条件允许的情况下,使用尽可能高的速度是提高CBN磨削的技术性和经济性的重要前提。
机床的高刚性和抗震性
高速磨削和CBN砂轮磨削的特点,要求机床主轴和整体要具有很高的刚性和良好的抗震性,从而保证磨削工件的精度和表面质量,这是CBN高速磨削技术中对磨床的基本要求。不具备这些条件,在使用CBN砂轮时,要想获得更高的金属去除量,工件的几何精度和表面质量就会变差。波纹是常见的表面质量缺陷,它是由振动产生的。引起振动的原因有多种,包括机床刚性低、抗震性差、机床共振或砂轮参数设计不合理造成磨削力过大等。有资料显示:机床的刚度应不小于100N/0.001mm的数量级为好。修整
使用金刚石滚轮修整,不仅可提高修整效率,更重要的是可获得较好的砂轮形貌。使用其他修整工具,很难完成对高硬度砂轮表面的修整。修整装置的进给精度要高,每次进给量应在mm级,过量的修整既影响磨削质量又会大大减少砂轮使用寿命。修整速比Vr /Vc是修整工艺中一个重要的参数,它的改变会使砂轮表面形貌显著变化,并最终影响到工件的表面质量。
冷却液
在磨削过程中,90%以上的能量转化为热能,这些热必须被冷却液最大限度地吸收,否则工件就会被烧伤。对CBN砂轮来讲,还要考虑CBN磨料与水在高温下所产生的化学反应对磨料的破坏。正确选择冷却液种类和冷却工艺参数,往往会收到事半功倍的效果。不同的冷却液,会使砂轮的磨削比相差几倍甚至十几倍。表5为冷却液对CBN砂轮的影响,结果表明砂轮在磨削过程中的机械磨损、化学侵蚀和热损伤的程度与冷却效果密切相关。问题和建议
目前,国内在将凸轮轴的CBN磨削技术推向市场的过程中的制约因素主要体现在如下几个方面:
进口的磨床和配套的CBN砂轮价格昂贵,磨床价格是国内普通凸轮轴磨床的10倍左右,是国内研制同类磨床的3~4倍;进口CBN砂轮的价格是国内同类砂轮的3~5倍,使得在国内市场的进一步推广受到成本方面的制约。
国产凸轮轴加工用的磨床大多数速度低,其精度、刚性、抗振性、修整、冷却等条件均不能满足使用CBN砂轮的要求。因此,在使用CBN砂轮时,往往得不到期望的效果。
国内CBN砂轮的主要磨削性能已达到国外同类产品水平,只是在砂轮的耐用度、使用寿命和质量稳定、适应性方面略低,但价格较低,因而有着较高的性价比,其技术和经济性已为国内许多汽车主机厂和配套厂所认可,但仍需进一步提高CBN砂轮制造技术水平。
新技术宣传力度不够,部分企业因循守旧,对新工艺的需求不强烈,对提高生产效率和加工质量不重视,是这项技术推广的外部制约因素。建议
加快开发国产CBN专用高速数控凸轮磨床,重点解决其刚性和抗振性的关键技术,首先使80m/s的磨床尽快投放市场,使其技术性和经济性能满足大多数中小企业的需要。在此基础上,再开发速度更高、性能更完善的产品。
CBN砂轮的研究应立足于提高性能、完善工艺、稳定质量和批量化生产。应加强基础理论研究和专用设备的研发。通过为进口磨床配套砂轮的研制解决其制造的关键技术,满足进口砂轮国产化的需要。同时,考虑到目前国产凸轮轴磨床的技术现状,在CBN砂轮制造技术参数的设计上尽量满足这部分磨床使用CBN砂轮的要求,使CBN磨削尽可能地发挥最大效果。
在磨床、磨具制造和用户之间建立紧密联系,加强沟通和协作,共同促进CBN磨削技术的不断提高。
第二篇:发动机实习项目3凸轮轴的测量
发动机实习项目三:凸轮轴的检测
实习目的:掌握凸轮轴的检测内容及方法
实习步骤:
一、凸轮的最大高度H与基圆直径D的检测
测量工具:外径千分尺、游标卡尺
注:凸轮轴磨损后,其升程减小0.40MM以上时,应更新凸轮轴所测基圆直径D:所测凸轮最大高度H:
所测凸轮升程:H-D=
二、凸轮轴轴颈圆度的检测
测量工具:外径千分尺、游标卡尺
注:凸轮轴轴颈圆度误差大于0.015MM时应修磨
所测凸轮轴轴径圆度:
三、凸轮轴与轴承的配合间隙的检测
测量方法:压保险丝法
注:凸轮轴与轴承的配合间隙一般为0.05—0.10MM,当货车大于0.20,轿车大于0.15MM时,应更换新轴承
所测的配合间隙:
四、凸轮轴主轴颈圆跳度的检测
用磁能百分表进行检测,凸轮轴主轴颈圆跳度不能超过0.025mm.五、气门间隙的检测
进气门间隙一般为0.25~0.30,排气门间隙一般为0.30~0.35 实习效果:另付考核表
理论知识:
1、什么是凸轮主轴径的圆度?其圆度超标后会产生什么危害?
2、凸轮磨损后对发动机的进、排气有什么景响?
3、什么是配合间隙?凸轮轴主轴径与承孔配合间隙过大有什么危
害?
第三篇:超声振动磨削技术、
超声振动精密磨削技术的发展
1、引言
随着科学技术的进步,金属间化合物、工程陶瓷、石英、光学玻璃等硬脆材料以及各种增韧、增强的新型复合材料因其高硬度、耐磨损、耐高温、化学稳定性好、耐腐蚀等优点在航空航天、国防科技、生物工程、计算机工程等尖端领域中的应用日益广泛;但由于这些材料的脆硬特性,传统加工方法已不能满足对这些材料零件的精密加工要求,因此有关其精密超精密磨削加工技术便成为世界各国研究的热点。超声振动精密磨削技术便是顺应这一需要而发展起来的技术之一。
超声振动磨削技术的基本原理为:由超声波发生器产生的高频电振荡信号(一般为16~25KHz)经超声换能器转换成超声频机械振动,超声振动振幅由变幅杆放大后驱动工具砂轮产生相应频率的振动,使刀具与工件之间形成周期性的切削。即工具砂轮在旋转磨削的同时做高频振动。
超声加工技术的经历了从传统超声波加工到旋转超声波加工的发展阶段,旋转式超声加工是在传统超声加工的工具上叠加了一个旋转运动。这种加工用水带走被去除的材料并冷却工具,不需要传统超声加工中的磨料悬浮液,因此,这种方法被广泛的运用于超声振动磨削加工中。
2、超声振动磨削技术发展回顾
1927 年,R.W.Wood 和 A.L.Loomis 就发表了有关超声波加工的论文,超声加工首次提出。
1945 年L.Balamuth 就申请了关于超声加工的专利。世纪 50~60 年代日本学者隈部淳一郎发表了许多对振动切削进行系统研究的论文,提出了振动切削理论,并成功实现了振动磨削等加工 [8]。
1960 年左右,英国 Hawell 原子能研究中心的科学家发明了新的超声磨削复合加工方法。超声振动磨削加工在难加工材料和高精度零件的加工方面显示了很大的优越性。
1986 年日本学者石川健一受超声电机椭圆振动特性启发,首次提出了“椭圆振动 [6]
切
削方法”(elliptical vibration cutting)。世纪 90 年代初,日本神户大学社本英二等人对超声椭圆振动切削技术进行了深入研究,其最具代表性的研究成果是利用金刚石刀具采用双激励双弯曲合成椭圆振动的方式对黑色金属淬火不锈钢进行精密车削,最小表面粗糙度可以达到 Ra0.0106um,不但解决了金刚石不能加工黑色金属的难题,而且使这项技术达到了实用化阶段。
20世纪50年代,在前苏联的影响下,我国进行了振动加工的初步应用研究工作,对超声振动磨削机理进行了探索研究。
1976年,我国再次开展超声加工的试验研究和理论探索。
1983年,我国机械电子工业部科技司委托《机械工艺师》杂志社在西安召开了我国第一次“振动与切削专题讨论会”。
1985 年前后机械电子工业部第 11 研究所研制成功超声旋转加工机,在玻璃、陶瓷、等硬脆材料的内外圆磨削等加工中取得了优异的工艺效果。
1987年北京市电加工研究所于研究成功了超硬材料超声电火花复合抛光技术。这项发明技术是世界上首次提出并实现采用超声频调制电火花与超声波复合的研磨、抛光加工技术。与纯超声波研磨、抛光相比,效率提高5倍以上,并节约了大量的金刚石磨料。
80年代后期,天津大学李天基等人在高速磨削的同时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高了6倍以上,表面质量也有了大幅提高。
90年代后,超声振动作为一种新型的高新技术成为了科研机构和大学院校的研究热点,3、国内外研究现状
3.1超声振动磨削技术 国外 研究现状
1993年,美国堪萨斯州立大学D.Prabhakar等人提出了一种超声旋转加工陶瓷材料去除率的理论模型,并试验证明了与普通磨削相同的条件下旋转超声加工工具具有低的切削力和相对高的材料去除率。
1996年东京大学的增泽隆久等人用超声激振方式在结构陶瓷材料上加工出了直径
为5µm的微孔。
1998年德国工业大学E.Uhlman、G.Spur等人在48届CIPR年会上提出在加工表面的法向施加超声振动,材料的去除率大大提高,并试验证明了在提高材料去除率的同时,并不会对表层造成损伤。
1999年,德国Kaiserslautern大学的G.Warnecke指出,在磨削新型陶瓷和硬 金属等硬脆材料时,磨削过程及结果与材料去除机理紧密相关。
美国内布拉斯加大学和内华达大学对Al2O3陶瓷材料微去除量精密超声加工技术进行了研究。通过模拟陶瓷材料超声加工的力学特性对材料去除机制进行分析,研究发现,低冲击力会引起陶瓷材料结构的变化和晶粒的错位,而高冲击力会导致中心裂纹和凹痕。美国内布拉斯加大学还第一次分析了Al2O3陶瓷精密超声加工的机理、过程动力学以及发展趋势,并详细讨论了超声技术在陶瓷加工方面的应用情况。
巴西的研究人员对石英晶体的超声研磨技术进行了研究,发现石英晶体的材料去除率取决于晶体的晶向,研磨晶粒的尺寸影响材料去除率和表面粗糙度。研究指出,加工过程中材料产生微裂纹是材料去除的主要原因。
日本的吴勇波等人建立了超声振动辅助磨削的实验装置(装置如图 1-4)并研究了磨削不锈钢内孔时超声振动对表面粗糙度和切削力的影响,研究发现,当施加 19.2KHz 超声振动后,表面粗糙度可以减少 20%;法向力减少 65%,切向力减少 70%。
3.2超声振动磨削技术 国内 研究现状
国内众多知名院校均对超声振动加工方面进行了研究,超声振动磨削机理的研究在这一时期取得了一系列的理论成果。
哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统在小孔磨削提高磨削效率和加工精度等方面取得了一定的成效,但其使用的磁致伸缩换能器发热大,需要加装制冷装置致使其结构复杂,且超声电能的供应采用的是碳刷集流环的传统供电方式。
河北工学院的李健中等人对超声振动磨削的材料去除机理、表面创成机理、表面粗糙度等进行了一系列的研究。利用自行研制的超声振动磨削装置使砂轮磨削的同时作轴向超声振动,通过试验得知,由于高频振动,砂轮不易堵塞,保持磨粒锋利性,提高了
磨削效率;磨削表面形成网状结构,加工表面质量较好。
1998 年前后兵器工业第五二研究所杨继先、张永宏等人通过对外圆磨床的改造进行了超声振动内圆磨削试验研究,验证了超声振动内圆磨削可明显地提高陶瓷加工效率,能有效地消除普通磨削产生的表面裂纹和崩坑的效果,提高磨削圆度。
1999年上海交通大学赵波等利用自行研制的超声振动珩磨机床对工程陶瓷发动机缸套类零件进行了超声振动磨削试验研究.加工表面微裂纹大幅度减少,加工效率和加工表面质量均得纠很大提高,加工工具耐用度比普通磨削提高至少3倍。
2000 年前后,天津大学于思远、刘殿通、李天基等人 [12] 对各种先进陶瓷小孔加工进行了系统研究,采用无冷压电陶瓷换能器制开发了一台陶瓷小孔超声波磨削加工机床,在工程陶瓷小孔磨削时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高 6 倍以上,表面质量也有大幅度提高。
南京航空航天大学对硬脆金属材料的超声电解复合加工工艺进行了实验研究。结果表明,该复合加工方法使加工速度、精度及表面质量较单一加工工艺有显著改善
东北大学庞楠研究了新型陶瓷材料的超声波复合磨削加工中砂轮堵塞及自锐性分析,砂轮修整方法及最佳砂轮修整程度的分析,提出超声振动磨削的最佳工艺参数[11]。
上海交通大学吴雁在陶瓷材料的超声加工方面进行了深入研究,研究了二维超声振动磨削陶瓷材料的脆-塑性转变机理、塑性去除机理、高效去除机理等相关的超声磨削机理,提出了微-纳米复合陶瓷二维超声振动表面变质层结构模型以及精密磨削复合陶瓷材料是塑性变形为主的去除方式,并且还进行了纳米复相陶瓷超声振动表面微观特性的研究,提出了在特定的磨削条件下,陶瓷材料纳米增韧改性和二维超声振动磨削技术相结合,可实现以非弹性变形为主要去除机理的超精密磨削表面[12][13]。
河南理工大学闫艳燕等进行了陶瓷材料的超声磨削机理和试验研究,分析了陶瓷材料二维超声振动研磨、磨削的去除机理和磨削表面创成机理以及硬脆材料的表面形成和破碎状况,并建立了相关的数学模型,得出了陶瓷材料脆—塑性转化的临界公式,以及超声磨削提高陶瓷材料表面质量的相关结论[15][16]。
山东大学张洪丽、张建华等研究了工件沿砂轮轴向、径向、切向三种超声振动条件下的磨削特性,分析了三种情况下的运动学、磨削力、材料去除机理及表面加工质量,建立了三种加工方式下的表面粗糙度的计算模型,并进行了实验研究。
北京航空航天大学和哈尔滨工业大学将超声振动引入普通聚晶金刚石(PCD)的研磨
[14]
加工,显著地提高了研磨效率,并在分析PCD材料的微观结构和去除机理的基础上,对PCD超声振动研磨机理进行了深入研究。研究指出,研磨轨迹的增长和超声振动脉冲力的作用是提高研磨效率的根本原因。
本人及团队在超声振动内圆磨削加工技术上取得了新的突破,通过在普通内圆磨削机床上添加超声振动内圆磨削磨头即可以实现超声内圆磨削,结构简单、成本低廉,并且采用了新型的回转式非接触超声波电能传输方式,解决了一直以来困扰众多学者的碳刷、集流环电能传输方式中存在的问题,并申请了一项有关非接触超声波电能传输的实用新型国家专利。
3.3超声振动磨削装置的研究进展
超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。超声振动磨削系统通常采用一维纵向(轴向)振动方式,并按“全调谐”方式工作。但近年来,随着超声技术基础研究的发展和在不同领域实际应用的特殊需要,对超声振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展,二维超声振动磨削系统也得到了研究和应用。
超声振动磨削系统依据换能器的振动方式可以分为两大类,单方向激励超声振动磨削系统和复合振动磨削系统。
日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。
日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。
1994年日本多贺电气株式会社采用“纵一弯”型超声复合振动系统制成研磨机,用于放电加工后的模具沟槽侧壁研磨抛光。研磨工具做纵向振动和弯曲振动。研究结果表明,弯曲振动方向不同,可获得不同的研磨效果。
哈尔滨工业大学的吴永孝、张广玉等人研制的超声波振动小孔内圆磨削系统,在小
[8]
孔磨削提高磨削效率和加工精度等方面取得了一定的成效,所用磁致伸缩换能器发热大,采用了加装制冷装置的方法解决冷却问题,但致使其结构复杂。
1996 年前后华北工学院辛志杰、刘刚通过对超声振动内圆磨削机理的探讨,研制了一套超声内圆磨削装置,在改善工件表面质量、提高生产率和内圆磨削系统结构设计上有了新的突破。
1997年英国研制了硬脆材料纳米磨削中心,可实现硬脆材料超声纳米表面加工;日本UNNO海野邦昭分别进行了工程陶瓷超声磨削的研究。多项研究结果表明:超声磨削陶瓷材料的加工效率可提高近一倍;当工具与工件上同时施加超声振动时,加工效率可提高2—3倍。
1997 年前后西北工业大学史兴宽等人研制了一种超声内圆磨削装置,此装置较专用超声磨床主轴系统结构简单,但因发热大而使用了冷却装置,这就使此超声磨头的结构显得复杂,虽然加工效率和加工质量有一定的提高,但其复杂的结构不利于推广使用。
2002年弗劳恩霍夫生产技术研究院研制出了新型超声研磨设备DMS 50,采用该设备对超声辅助磨削过程进行了技术性分析。并且,国外已研究出先进的超声振动主轴,其转速可达4000r/min至30,000r/min。可以实现加工过程中砂轮的振动,并使其转速达到传统磨削工艺的水平。
德国 Fraunhofer 研究中心和布莱梅大学精密工程中心采用非圆周对称结构在单纵振激励的条件下产生了 10:1 的椭圆振动,提高了刀具寿命,也保证了加工精度。另外新加坡制造技术研究所仿照德国研究人员的结构也制作除了超声椭圆振动切削不锈钢的装置。
天津大学于思远、刘殿通等人对各种先进陶瓷小孔加工进行了系统研究,采用无冷压电陶瓷换能器研制了一台陶瓷小孔超声波磨削加工机床,在工程陶瓷小孔磨削时对磨头施以超声振动,提出了高效的超声磨削复合加工方法,效率比传统的超声加工提高6倍以上,表面质量也有大幅度提高[23]。
南京航空航天大学杨卫平、徐家文设计了用于加工三维型面的超声磨削装置,推导了用于数控加工的超声磨削装置变幅杆设计的数学模型,此装置采用电机直连进行旋转,电信号传输采用碳刷集流环的传输方式。
河南工业大学机电工程学院李华、殷振等人设计了超声波椭圆振动内圆磨削磨头,[24]
并在超声振动内圆磨削系统中采用了新型的回转式非接触超声波电能传输方式,解决了碳刷、集流环电能传输方式中存在的问题 [25]。
德国 DMG 公司和日本马扎克公司将超声振动头安装在加工中心上,进行了零件异形沟槽加工、内外圆磨削、平面磨削加工、以及导电陶瓷材料的超声振动磨削研究,取得良好效果,并已实现商业化生产应用。
在第八届中国国际机床展览会(CIMT2003)上,德国DMG公司展出了其新产品DMS35Ultrasonic超声振动加工机床,该机床主轴转速3 000~4 0000 r/min,特别适合加工陶瓷、玻璃、硅等硬脆材料。与传统加工方式相比,生产效率提高5倍,加工表面粗糙度Ra<0.2μm,可加工0.3 mm精密小孔,堪称硬脆材料加工设备性能的新飞跃。
图 1-2 德国 DMG 超声振动加工中心 图 1-3 德国 DMG 超声振动加工中心刀具
4、超声加工技术的发展趋势和未来展望
随着传统加工技术和高新技术的发展,超声振动切削技术的应用日益广泛,振动切削研究日趋深入,主要表现在以下几个方面。
(1)研制和采用新的刀具材料
在现代制造业中,钛合金、纯钨、镍基高温合金等难加工材料所使用的范围越来越大,对机械零件加工质量的要求越来越高。为了更好地发挥刀具的效能,除了选用合适的刀具几何参数外,在振动切削中,人们将更多的注意力转为对刀具材料的开发与研究上,其中天然金刚石、人造金刚石和超细晶粒的硬质合金材料的研究和应用为主要方向。
(2)高效稳定超声振动系统研究
现有的实验及实用振动切削加工系统输出功率尚小、能耗高,因此,期待实用的大功率振动切削系统早日问世。到目前为止,输出能量为4 kW的振动切削系统已研制出来并投产使用。在日本,超声振动切削装置通常可输出功率1 kW,切削深度为0.01~0.06 mm。
(3)超声椭圆振动切削的研究与推广
超声波椭圆振动切削已受到国际学术界和企业界的重视。美国、英国、德国和新加波等国的大学以及国内的北京航空航天大学和上海交通大学已开始这方面的研究工作。日本企业界如日立、多贺和Towa公司等已开始这方面的实用化研究。但是,超声波椭圆振动切削在理论和应用方面还有许多工作要做。尤其是对硬脆性材料的超精密切削加工、微细部位和微细模具的超精密切削加工等方面还需要进一步研究。
(4)微细超声加工技术
以微机械为代表的微细制造是现代制造技术中的一个重要组成部分,晶体硅、光学玻璃、工程陶瓷等硬脆材料在微机械中的广泛应用,使硬脆材料的高精度三维微细加工技术成为世界各国制造业的一个重要研究课题。目前可适用于硬脆材料加工的手段主要有光刻加工、电火花加工、激光加工、超声加工等特种加工技术。超声加工与电火花加工、电解加工、激光加工等技术相比,既不依赖于材料的导电性又没有热物理作用,与光刻加工相比又可加工高深宽比三维形状,这决定了超声加工技术在陶瓷、半导体硅等非金属硬脆材料加工方面有着得天独厚的优势。
随着东京大学生产技术研究所增泽研究室对微细工具的成功制作及微细工具装夹、工具回转精度等问题的合理解决,采用工件加振的工作方式在工程陶瓷材料上加工出了直径最小为5μm的微孔,从而使超声加工作为微细加工技术成为可能。
超声加工技术在不断完善之中,正向着高精度、微细化发展,微细超声加工技术有望成为微电子机械系统(MEMS)技术的有力补充。
超声加工技术的发展及其取得的应用成果是可喜的。
展望未来,超声加工技术的发展前景是美好的。
************000000000
图 1-5 超声椭圆振动切削出的镜面试件
当前普通磨削的加工精度大于1μm,表面粗糙度为Ra 0.16~1.25μm;精密磨削技术是指被加工零件加工精度达到1~0.5μm,表面粗糙度为Ra 0.04~0.16μm的加工技术。主要靠对砂轮的精细修整。超精密磨削的加工精度小于0.5~0.1μm,表面粗糙度Ra0.01~0.04μm。使用金刚石或CBN砂轮。适合于合金钢、陶瓷等硬脆材料的加工;用磨具进行磨削和用磨粒进行研磨和抛光时实现精密超精密磨削的主要途径。
第四篇:先进磨削技术的新发展
先进磨削技术的新发展
摘要:磨削是指用磨料或磨具去除材料的加工工艺方法,磨削加工的发展趋势正朝着采用超硬磨料、磨具,高速、高效、高精度磨削工艺及柔性复合磨削、绿色生态磨削方向发展。为适应现代工业技术和高性能科技产品对机械零件加工精度、表面粗糙度与完整性、加工效率和批量化质量稳定性的要求,近年出现了一些先进的磨削加工技术,其中以超高砂轮线速度和超硬磨料砂轮为主要技术特征的超高速外圆磨削、高效深切磨削、快速点磨削技术的发展最为引人注目。我们也需要了解超高速磨削加工的机理及超高速磨削的优越性,把握高速超高速磨削加工技术的发展前景。为适应现代工业技术和高性能科技产品对机械零件加工精度、表面粗糙度与完整性、加工效率和批量化质量稳定性的要求,近年出现了一些先进的磨削加工技术,其中以超高砂轮线速度为主要技术特征的超高速外圆磨削、高效深切磨削、快速点磨削技术的发展最为引人注目。
关键词:先进磨削 超高速磨削 发展方向 关键技术 正文:
超高速磨削是近年迅猛发展的一项先进制造技术,被誉为现代磨削技术的最高峰。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。国际生产工程学会将超高速磨削技术确定为面向21世纪的中心研究方向之一。东北大学自上世纪80 年始一直跟踪高速/超高速磨削技术发展,并对超高速磨削机理、机床设备及其关键技术等开展了连续性的研究,建造了我国第一台额定功率55kw、最高砂轮线速度达250m/s 的超高速试验磨床,进行了超高速大功率磨床动静压主轴系统研究、电镀CBN 超高速砂轮设计与制造、超高速磨削成屑机理及分子动力学仿真研究、超高速磨削热传递机制和温度场研究、高速钢等材料的高效深磨研究、超高速单颗磨粒CBN 磨削试验研究、超高速磨削砂轮表面气流场和磨削摩擦系数的研究等,部分研究成果达到国际先进水平。超高速磨削技术特点:
超高速磨削之所以应用这么广泛,与它特有的特点是分不开的,主要体现在以下几个方面
磨削效率高。超高速磨削时,单位时间内通过磨削区的磨粒数增多,如保持每颗磨粒的切深与普通磨削一样,其切入进给量可以大大增加,金属去除率 得到提高,磨削效率大幅度提高。
加工精度高。在进给量不变的条件下,超高速磨削的磨屑厚度更薄,在磨削效率不变时,法向磨削力随磨削速度的增大而大幅度减小,继而减小磨削过程中的变形,提高工件的加工精度。可以得到高质量、小粗糙度值的工件表面。砂轮耐用度大幅提高,有利于实现磨削加工自动化。超高速磨削时,单颗磨粒的切削力较小,使每颗磨粒的可切削时间相对延长。
可磨削难加工材料。超高速磨削可实现硬脆 材料的延性域磨削,使陶瓷材料的磨削加工成为了现实,并且能够获得极好的磨削表面质量和极高的磨削效率。大幅度提高磨削效率,设备使用台数少。磨削力小、磨削温度低、加工表面完整性好。砂轮使用寿命长,有助于实现磨削加工的自动化。实现对难加工材料的磨削加工。
超高速磨削不仅可对硬脆材料实行延性域磨削,而且对钦合金、镍基耐热合金、高温合金、铝及铝合金等高塑性的材料也可获得良好的磨削效果。超高速磨削纯铝的实验表明,当磨削速度超过200m /s时,工件表面硬化程度和表面粗糙度值开始减小,表面完整性得到改善。因为加载速度提高使得塑性应变点后移,增加了材料在弹性小变形阶段被去除的机率。因此塑性材料静态应力波速是实现“脆性”加工的临界点。
超高速磨削关键技术: 超高速磨削砂轮
超高速磨削砂轮应具有良好的耐磨性、高动平衡精度和机械强度、高刚度和良好的导热性等。以此来实现高性能加工。主轴系统
超高速磨床的主轴最高转速在10000r / mm 以上,传递的磨削功率常为几十千瓦,故要求其主轴系统刚性好、回转精度高、温升小、空转功耗低。近年来,超高速磨床越来越多地使用电主轴。
超高速回转的砂轮动不平衡引起的振动会严重影响主轴系统的工作性能和磨削质量。除了砂轮和主轴系统预先要进行严格的动平衡外,还应当在磨削的过程中实施在线自动平衡。砂轮自动平衡系统一般由电子传感及控制系统和平衡头组成。在高速及超高速磨床上常用的在线动平衡系统主要有液体式、气体式及机械式三种。砂轮在线动平衡装置是高速磨床上的重要组成部分。美国、日本和德国等工业发达的国家在高速磨床上均采用了自动平衡系统。砂轮修整技术
超硬磨料砂轮的修整特别是在线修整迄今仍是研究的热点。电解修整(ELlD)法适合金属结合剂超硬磨料砂轮的在线修整,激光修整法不仅便于修整树脂或金属结合剂超硬磨料砂轮,而且热影响区小、砂轮修整损耗小和易于实现自动化,修整效率也高,有很好的发展前景。目前对CBN 砂轮的修整广泛采用接触在线修整法,借助传感系统控制砂轮和修整工具的接触,然后通过进给系统进行微米级进给,得到理想的砂轮形貌,从而保证了精密及超精密加工的要求。磨削液供给系统
超高速磨削中,由于砂轮极高速旋转形成的气流屏障阻碍了磨削液有效地进人磨削区,使接触区高温得不到有效的抑制,工件易出现烧伤,严重影响零件的表面完整性和机械物理性能。因此,磨削液供给系统对提高和改善工件质量、减少砂轮磨损至关重要。超高速磨削常用的冷却液注人方法有高压喷射法,空气挡板辅助截断气流法,气体内冷却法,径向射流冲击强化换热法等。为提高供液效果,应对供液系统参数包括供液压力、流量、磨削液喷注位置、喷嘴结构及尺寸等进行优化设计,此外系统还需配有高效率油气分离和吸排风单元。超高速磨削进给系统
目前数控机床进给系统主要采用滚珠丝杠传动。随着高速超高速加工技术的发展,国内外都采用了直线伺服电机直接驱动技术。使用高动态性能的直线电机结合数字控制技术,避免了传统的滚珠丝杠传动中的反向间隙、弹性变形、磨擦磨损和刚度不足等缺陷,可获得高精度的高速移动并具有极好的稳定性。结语:
超高速磨削是先进制造的前沿技术,在获得高效率,高精度的同时,又能对各种材料和形状进行高表面完整性和低成本加工,因此也正为世界工业发达国家所重视,并已开始进入实用化阶段。随着超硬磨料磨具的应用和发展,高速大功率精密机床及数控技术、新型磨削液和砂轮修整等相关技术、以及磨削自动化和智能化等技术的发展,使超高速磨削和高效率磨削技术在机械制造领域具有更加重要的地位,发展前景广阔。我国应在现有条件下,大力加强各种新型超高速磨削技术的研究、推广和应用,对提高我国机械制造业的加工水平具有十分重要的意义。参考文献: 1孔宪玉 先进制造技术研究与发展 黑龙江科技信息2012 2牛景丽 陈东海 现代超精密加工机床的发展及对策 机床与液压2010 3李伯民 赵波 现代磨削技术 机械工业出版社 2003 4司国斌 张艳 精密超精密加工及现代精密测量技术 机械研究与应用2006 5刘启东 徐春广 超精密机床数控伺服系统及其控制机理-机床与液压2005 6侯亚丽 李长河 卢秉恒 超高速磨削相关技术与工业应用 2009 7赵恒华 王颖 磨削加工技术的发展及现状 制造技术与机床 2007 8冯宝富 超高速磨削技术在机械制造领域中的应用 东北大学学报2003 9左磊 浅谈高速及超高速磨削加工 科技视野2009 10荣烈润 面向21世纪的超高速磨削技术金属加工 2010 11庞子瑞 王晋生 超高速磨削的特点及其关键技术 机械设计与制造 2007
第五篇:汽油发动机技术现状及发展趋势
汽油机控制技术发展现状及趋势分析
内燃机的发明,带动了汽车的发展,给世人在“行”上带来极大的便利,使得窨距离缩小,人们的工作速度得以提高。近年来随着电子技术的发展,又使汽车发动机如虎添翼,成为高新技术的集成。
一、世界汽油机技术发展现状
为了适应汽车对节油、环保、安全的需要,车用汽油机主要朝着更节油、更环保的方向发展,因此欧洲己执行欧Ⅳ标准。以下为国外在汽油机方面主要先进技术。
1.多气门技术:每缸3-5个气门(大多为4气门),可提高功率,改善燃烧质量,如捷达王5气门、丰田8A4气门等。
2.双顶置凸轮轴(D.HC)可提高转速、提升可靠性。
3.可变气门正时(VVT):根据不同转速调节气门时,可节省燃油,改善排放,如本田VTEC、丰田VVT-i等。
4.汽油机增压:可提高升功率,在排量不变的情况下,可提高功率,如帕萨特1.8T轿车。
5.可变进气道长度(VIM):在不同转速下使用不同进气道长度,保证在任何工况下都有较好的充气效率,如奥迪A6。
6.停缸技术:在输出功率减小时,使一部分气缸停止工作,可节省燃油,如通用开拓者EXT 2005款有8个气缸,需要时可使4个气缸一停止工作。
7.全铝发动机:使用铝缸体、缸盖、活塞等,可减小质量,节省燃油,如日本铃木1.3L、1.4L汽油机。
8.智能驱动气门(SVA):取代传统凸轮轴,每一个气门挺杆上有一个独立的驱动器,可以减少20%油耗及污染物,如:法国法雷奥公司已设计出样机,2009年可大批量投产。9.可变压缩比汽油机:将传输功率与压缩比控制功能进行整合,压缩比可变。2005年法国MCE-5公司己开发出样机。
10.汽油机直喷(GDI)和稀薄燃烧技术:将高压汽油直接喷射到气缸内,周围为稀薄混合气,实现分层燃烧,可提高燃料经济性,节油约20%,如丰田皇.冠3.0L V6汽油机(国产皇冠无GDI技术)。
11.可控燃烧速率系统(CBR):两个进气道,有一个是切向进气的,另一个是中性的。喷油器向两个进气道喷入等量的燃油。改变进气口封闭控制阀的位置,可调节气缸内空气涡流强度和混合气浓度,实现稀薄燃烧;
12.发动机控制用ECU已达32位,匹配参数超过6000个。
二、国内汽油机技术现状及发展水平
我国早期汽油机大多是引进和测绘仿制产品,如:一汽解放载货车用CA6102、BJ2020车用BN492Q、南汽轻型货车用6427等。之后随着中外合资企业的建立及技术引进,我国汽车行业已生产多种机型,例如:切诺基BJ498Q、BJ698Q(2.5L、4.0L);桑塔纳AEE(1.8L);帕萨特AWL(1.8L);北京现代伊兰特B4GB(1.8L);天津一汽夏利TJ376Q(LOL);长安奥拓JL368Q(0.8L);广州丰田凯美瑞(丰田2.4L);广州本田雅阁(2.0L、2AL、3.0L);广州本田飞度(1.3L、1.5L);东风日产(1.6L、1.8L、2.0L);一汽轿车引进技术生产的克莱斯勒CA488(2.2L);沈阳航天三菱引进的三菱4G63、4664(2.0、2.4L)和4669系列汽油机;东安动力引进的三菱4G1(1.3L、1.6L),4G9(1.8L、2.0L);东风悦达起亚千里马(1.6L),以及国内沈阳新光、保定长城等企业生产的491Q(丰田4Y),吉利生产的JL376(LOL)、JL479(1.3、1.50、JL481(1.8L)汽油机等。
在技术应用方面,大多数引进机型和合资企业生产的机型都采用一些国外先进技术。1.天津丰田8A、5A,东风本田,北京现代,奇瑞SQR372(0.8L)、SQR481Q(1.6L),神龙公司爱丽舍(1.6L)等都使用多气门和DOHC技术。
2.东风本田发动机,天津丰田发动机有限公司生产的花冠、皇冠汽油机,东风日产,北京现代等生产的汽油机型都引进可变气门技术(VTEC、VVT-i、CVVT等)。特别是奇瑞公司,在AVL公司帮助下开发的自主品牌1.6LSQR481H和2.0L SQR484H汽油机使用了VVT可变气门技术,吉利也开发出了带可变技术的自主品牌汽油机。
3.汽油机直喷(GDI)发动机国内尚未批量生产,但奇瑞公司在AVL公司帮助下开发的自主品牌2.0L SQR484J汽油机使用了GDI技术。
4.全铝发动机国内产品较多,如长安铃木雨燕1.3L汽油机、东风本田发动机的产品、上海大众POLO发动机等,奇瑞动力1.6L SQR481F(已投产)和SQR481 H及未投产的SQR484J、SQR681 V(2.4L)、SQR684V(3.0L)都是全铝发动机。
5.国内奇瑞公司已投产的自主品牌SQR481H(1.6L)具有CBR系统,奇瑞公司其他样机中不少机型也装有CBR系统。
6.国内引进的已投产机型中已有不少机型采用涡轮增压技术:如PASSAT 1.8T、宝来1.8T等;华晨金杯在德国FEV公司帮助下开发的1.8T汽油机,也是增压机型(配装中华轿车)。
7.停缸技术、智能气门、可变压缩比等技术尚未在国内生产的汽油机中采用。
8.发动机电喷管理系统(EMS)国内主要有联合电子有限公司、北京万源德尔福发动机管理系统公司,分别是中方与德国BOSCH公司和中方与美国德尔福公司的合资企业。同时,还有马瑞利、电装和摩托罗拉等企业生产。
9.汽油机电喷系统中传感器、电控喷油泵等国内己批量生产;汽油机排气系统中三效催化转化器及陶瓷芯等,国内己批量生产,如:大连华克吉来特、天津卡达克高新技术公司等生产三效催化转化器;在苏州的日本独资企业NGK(苏州)环保陶瓷有限公司生产国Ⅲ、国Ⅳ汽油机用三效催化转化器陶瓷芯等。
三、汽车产量持续增加引发系列问题
全球汽车总保有量将从目前的约8亿辆增加到2020年的12亿辆,21世纪中叶,将达38亿辆,其中,发展中国家汽车保有量将增长15倍以上。目前全球每年新生产的各种汽车约6400万辆,按平均每辆车年消耗10到15桶石油及石油制品计算,汽车的石油消耗量每年达85至127亿桶,约占世界石油产量的一半。石油资源的开采每年达几十亿吨,经过长期的现代化大规模开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的开采水平,仅仅可以维持60到100年左右。2007年我国进口石油1.9亿吨,预计到2020年前后我国的石油进口量有可能超过日本,成为亚太地区第一大石油进口国。国务院发展研究中心预测,预计到2010年和2020年,我国汽车消耗石油为1.38亿吨和2.56亿吨,约占全国石油总消耗量的43%和67%。因此能源危机是我们必需面对的重要问题。
汽车拥有量的增长带来了许多问题,如健康威胁、环境污染、气候变化、能源短缺和交通拥挤等。目前空气污染在城区已经成为非常严重的问题,汽车的有害物排放对人类的生存环境形成了一种公害性的破坏,据资料显示,市区的大气污染物60%来自于汽车尾气。全球变暖、气候变化正在吸引人们更大的注意力,与之相对应的二氧化碳排放将成为汽车制造商要解决的主要问题。2010年左右,发展中国家能源的供需平衡问题将会导致世界石油价格的波动,在保证环保的同时,使用替代能源的汽车将成为汽车制造商开发的重点。2008年,欧盟要求轿车CO2排放达到140克/公里,对于汽油车,对应油耗将达到6升/100公里以下;2012年,CO2排放要求达到120克/公里。因此,降低油耗、降低排放将是汽车行业目前急需解决的问题。
四、汽油机技术的发展趋势
由于汽油机的燃油经济性比柴油机差,所以降低汽油机的能耗已经成为汽车界当前必须要解决的一个问题。具有理论空燃比的均质混合气的燃烧理论在火花点火发动机上被广泛使用,它的最大优点是可以实用三效催化器来降低CO、HC和NOx等废气的排放。不足之处是不能获得较高的燃油经济性,为了提高发动机的热效率和降低废气排放,燃烧技术在不断地发展。汽油机经历了由完全机械控制的化油器供油为主到采用电控喷射、缸内直喷、电辅助增压和电动气门、可变压缩比、停缸等技术的变化,汽油机发展的最终方案将采用综合汽油机和柴油机优点的燃烧控制技术。
目前最有代表性的三大汽油机技术是:
a.汽油直喷技术。开发车用具有汽油机优点同时具有柴油机部分负荷高燃油经济性优点的发动机是主要的研究目标。汽油缸内直喷是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷汽油机(Gasoliine Direct Injection, GDI)为代表的新型混合气形成模式的研究和应用,极大地提高了汽油机的燃油经济性。以日本为代表的非均质直喷技术面临燃烧稳定性和后处理等问题,同时以欧洲为代表的均质直喷技术正在兴起。
b.电动气门与无凸轮发动机。发动机可变气门正时技术(Variable Valve Timing, VVT)是针对在常规车用发动机中,因气门定时固定不变而导致发动机某些重要性能在整个运行范围内不能很好的满足需要而提出的。VVT技术在发动机运行工况范围内提供最佳的配气正时,较好地解决了高转速与低转速,大负荷与小负荷下动力性与经济性的矛盾,同时在一定程度在一定程度上改善了排放性能。随着环境保护和人类可持续发展的要求,低能耗和低污染已成为汽车发动机的发展目标。VVT技术由于自身的优点,日益受到人们重视,尤其是当今电子技术的飞速发展,促进了VVT技术从研究阶段向实用阶段发展。电动气门具有与电控喷射同等重要的意义,它将给发动机空气系统控制和循环过程管理带来一系列技术变革,如取消节气门、可变压缩比、部分停缸等。
c.燃烧方式的混合。传统的火花点火发动机的燃烧过程在火焰传播中,火焰前锋的温度比未燃混合气高很多。所以这种燃烧过程虽然混合气时均匀的,但是温度分布仍是不均匀,局部的高温会导致在火焰经过的区域形成NOx。柴油机的燃烧过程是扩散型的,燃烧过程中燃烧速率由混合速率决定,点火在许多点发生,这种类型的燃烧过程混合和燃烧都是不均匀的,NOx在燃烧较稀的高温区产生,固体微粒在燃料较浓的高温区产生。在均质充量压缩点燃(Homogeneous Charge Compression Ignition, HCCI)过程中,理论上是均匀的混合气和残余气体,在整个混合气体中由压缩点燃,燃烧是自发的、均匀的并且没有火焰传播,这样可以阻止NOx和微粒的形成。这种汽油机均质与柴油机压燃混合的燃烧方式,以燃料技术和控制技术为基础,综合汽油机和柴油机两种燃烧方式优点的均质压燃HCCI内燃机技术正在兴起。
汽车产量持续的发展面临着许多问题,降低燃油消耗量和二氧化碳排放将成为汽车制造商要解决的主要问题。随着汽油机电子控制系统性能的提高,相信在不久我们将使用上更节能、更高性能的汽车。