第一篇:小学数学教学设计方程
方程的意义
一、学习内容分析
方程的意义选自人教版五年级上册,主要内容是方程的定义,属于数与代数领域。方程的意义是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。教学这一部分内容有助于培养学生抽象思维能力,也是培养学生抽象概括能力的过程,为以后学习解方程和列方程解答应用题打下良好的基础。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。
二、学习者分析
五年级的学生已经掌握了整数、小数、分数的认识,能够熟练计算整数、小数四则运算。学生对数与代数的知识和经验已经积累到相当的程度,需要对初一年级的数学知识和数学思想进行学习。但是方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
三、教学目标
四、教学重难点
五、教学过程
一、创设情境,引入课题 1.课件呈现,认识天平:
【出示天平】同学们,见过它吗?你们知道怎么用吗? 【情境】
【师生活动】学生回答,教师总结 【归纳】左右平衡,也就说明左右相等了 【追问】用一个什么式子表示 2.体验感受,观察积累:
【问题】这里有一个梨和一个苹果,如果把他们分别放在天平两边的托盘里,猜想一下会有几种情况发生?
【师生活动】学生个别回答,教师根据学生的回答板书:(1)梨的质量大于一个苹果的质量天平向左倾斜;(2)梨的质量等于一个苹果的质量天平保持平衡;(3)梨的质量小于一个苹果的质量天平向右倾斜
【追问】因为不知道不确定质量所以结果就会出现不同的结果。现在我告诉你它们的质量:梨60克,苹果110克,此时天平会是什么状态?能用一个式子表示出这一状态吗?
【师生活动】点名让学生个别回答,教师及时板书:60<110 【教师评价】真好!数学语言表达就是简练。
【追问】师:如果在天平左边梨质量是a克,用数学语言把你们认为天平的状态表达出来,写在本上。
【师生活动】学生独立完成,教师巡视。
【板书】60+a<110、60+a=110、60+a>110 【追问】这几个式子各表示什么情况?
【归纳】你看,简单的几个数学算式就表达了三种不同的情况,这就是数学语言的简约美。
3.观察算式,揭示课题
【追问】看看哪个式子表示相等?一起读出式子
【追问】仔细观察这个算式,你发现这个算式和我们以前学过的有什么不一样的地方吗? 【评价】真善于观察,今天我们就一起来学习这类问题 板书:简易方程
二、自主探究,形成概念 1.再举实例,铺垫孕伏
【问题】还是这架天平,刚才你们发现了平衡,现在教师这里有一杯500克的果汁,和一罐125克的牛奶,如果把它们分别放在天平两边会出现什么情况? 【师生活动】学生回答,教师补充。
【追问】那么你能让这架天平平衡吗?也可以用数学算式表达。【学请预设】
方案1:在右边再放3罐。【追问】可以吗?谁能说清楚?
【板书】500=125×4或500=125+125+125+125 【归纳】这是一种策略,改变右边的质量。受他的启发还有别的办法的吗? 方案2:刚才我还听有的同学说喝375克就行。大家说行吗?不过还真的有人喝了一口,不过这一口到底是多少我们不知道,怎么办?
【师生活动】教师引导学生用字母表示,用数学算式表示说明,写在本子上。【师生活动】教师巡视,抽有代表性的同学上来板书 【板书】500-x <125, 500-x=125, 500-x >125 【追问】哪个式子表示了天平左右两边平衡了? 500-x=125 2.观察式子,归纳定义
【问题】仔细观察下列式子,你发现了什么?(1)500=125×4或500=125+125+125+125(2)500-x=125(3)60+a=110
【师生活动】学生回答,教师补充
【归纳】含有未知数的等式叫做方程。【板书】 3.分析定义,理解概念
【问题】你认为判断方程需要几个条件? 【师生活动】教师从方程的定义,引导学生回答:(1)表示相等的式子。(2)必须含有字母(未知数)。
三、牛刀小试,巩固概念
1.试一试,观察天平判断是否可以写出方程,说明理由。
2.做一做:下面哪些是式子是方程?
3.举一举:你会自己举出一些是方程的式子活例子
(1)小红的年龄是x岁,老师比小明大30岁,今年老师的年龄是38岁。(2)逐个呈现3个足球,每个a元,共花180元。你能用方程表示吗?(1)小芳一个星期共跑了2.8km,每天跑s米。
(2)一盒水果糖共a颗,平均分给25个小朋友,每人得3颗,正好分完。(3)小芳集邮共60张,小明集邮共48张。小芳给了小明x张后两人的集邮张数一样多。
四、总结提升
数学史:三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中记载了用一组方程解决实际问题的史料。直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:同学们,今天这节课上大家都积极的进行了思考,从中你学到了什么?还想知道些有关方程的哪些知识? 板书设计: 方程的认识
含有未知数的等式叫做方程
60+a=110 500-x=125 60+a<110、60+a>110 60 <110
500-x <125 500-x >125, 等式
500=125×4 500=125+125+125+125
第二篇:【教学设计】方程的意义_数学_小学
《方程的意义》教学设计
教学内容:
人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。教学目标:
1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。教学重点:
抓住“等式”“含有未知数”两个关键词初步建立方程的概念。教学难点:
方程与等式的关系;方程中等量关系的建立。学情分析:
用字母表示数,对小学生来说比较抽象,学生理解起来会有一定的难度。特别是用含有字母的式子来表示数量关系,更让学生感到困难。让学生从具体的、确定的数过度到用字母表示抽象的、可变的数,对学生来说是认识上的一个飞跃。因此在教学中,教师要充分利用学生原有的相关认识基础,使学生从具体实例到一般意义的抽象概括逐渐过渡。
学生在学习这部分内容时,往往不会将含有字母的式子看作是一个量,如:苹果2元一斤,香蕉比苹果贵x 元,2+x 既表示苹果价格与香蕉价格之间的数量关系,也表示香蕉的价格,很多学生认为这只是一个式子,不是结果。而这正是学生学习简易方程的基础,所以要先学习用字母表示一个特定的数,再学习用字母表示一般的数,也就是用字母表示运算定律和计算公式,让学生有了一定的基础后,再学习用含字母的式子表示数量和数量关系,这样由易到难,便于学生在数学认知上有更高的飞跃。教学活动及时间安排:
一课时
教学准备:
课件 教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):同学们,今天老师给同学们带来了一个新朋友,他能体现公平、公正,你认识他吗?(天平)同学们知道天平的用途吗?
一般我们在称东西时,在天平的左边放上要称的东西,右边放上砝码,称为左物右码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数
学符号来表达,就是──(等号)。
二、探究新知
(一)天平演示,初步感知等与不等。1.出示天平图。
小丽和小红天平正在使用天平称量物品,但是她们在称量时出现了困难,你们愿意帮祝她吗?现在这种状态,你能用一个式子来表示吗?
(50+50=100)
2.小丽和小红天平正在使用天平称量水杯,你知道水杯多重吗?(100g)
3.(出示天平图和图)如果向水杯里倒入水,一杯水有多重,你知道吗?向左倾斜表示什么?如果水的质量用xg表示,那么杯子和水共重多少呢?(100+x)g 4.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。
100+x=200;100+x>200;100+x<200。(分别板书)
这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。
5.我们来看一看,还有没有其他的情况。可能会出现什么样的情况?用式子来表示。100+x>200;100+x<300
(二)分类整理,理解等式概念
1.来看看究竟是哪种情况?先出示天平图,谁能用式子来表示一下。
100+x=250。
2.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?
3x=2.4;100+x=250;像100+x=250,3x=2.4……这样,含有未知数的等式叫方程。你能再举些方程的例子吗?写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)
(板书:像100+x=250,3x=2.4……这样,含有未知数的等式叫方程。)3.判断:
2x+3<99是方程。()13+2x>80是方程()56+5=11是方程。()x+20=50是方程。()3x=87是方程。()是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)4.看图列出方程。(先请学生独立思考,再同桌进行交流。)x+20=50+20;x+0.5=2.5;3x=36;2x=50;x+73=166;
(三)概念辨析,理清等式与方程之间的关系
1.这些天平图你能用式子表示吗? 请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)?
2.请你用方程表示下面的数量关系。学生练习并进行反馈。
三、实践反思,巩固提高
1.这两个式子是否是方程呢? 反馈分析:
(1)式1:一定是。为什么?
(2)式2:一定是等式,可能是方程。
(3)思考:等式和方程有什么联系呢?学生反馈。(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)(4)引导得出:等式包括方程,等式不一定是方程,而方程必定是等式。
四、总结回顾,介绍历史
1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)2.教师介绍方程的相关知识。板书设计:
方程的意义
100+X<200
100+X=200
100+X>200
100+X=250
3X=2.4 含有未知数(x,y,……)的等式叫做方程。
作业设计:
练习十一第1题。方程的意义课后反思:
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
1、对等式与方程的关系突出得不够。
2、对学生“说”的训练不够,应该给学生更多的表述的机会。
3、自己的课堂语言还不够准确、不够丰富,有待于提高。
第三篇:四年级数学《方程》教学设计
四年级数学《方程》教学设计
四年级数学《方程》教学设计
【学习内容】
义务教育课程标准实验教科书北师大版四年级下册第五单元66-67页
【教材分析】
《方程》是在学生已经学过用字母表示数、等量关系的基础上展开的,为下面等式的性质和解方程的教学作铺垫,有着承前启后的重要作用。同时,方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。
【学情分析】
“方程”是小学四年级第八册第七单元的第三节课,学生已经有了上节课用字母表示数、等量关系的知识经验。但学生是第一次接触方程,对于“方程”这个词,不少学生在正式学习之前就听说过,但并不清楚什么样的式子才是方程。因用算术思想解决问题在学生的头脑中已经根深蒂固了,方程的学习是引导学生由算术思想向代数思想过渡的重要使命。
【学习目标】
1.结合具体情境了解方程的意义,会用方程表示简单情境中的等量关系。
2.经历将现实问题抽象成等式与方程的过程,积累将等量关系符号化的活动经验。
3.在丰富的问题情境中感受生活中存在大量的等量关系,体验数学与生活的密切联系。
【学习重难点】
了解方程的意义,会用方程表示简单情境中的等量关系
【教学过程】
一、导入新课
三国时,曹冲利用称出船上石头的重量这种方法称出了一头大象的重量。今天我们也要就来学习用他的这个策略解决一些数学问题。
【设计意图:通过故事诱导学生独立思考探究的欲望,激发学生的学习兴趣,在故事中渗透运用等量关系解决问题】
二、自学探究
1.帮助学生对等量关系积累思维经验
在现代生活中,我们也需要经常测量物体的重量。测量物品质量就要借助工具天平
(1)大家看看天平上有什么
(2)天平现在的状态是平衡的那说明什么呢?
(3)怎么表示这个等量关系呢?
(板书:10克=樱桃的质量+2克)
2.交流展示:
(1)数学问题中的等量关系分别是什么?
(2)仔细观察,这三个等量关系中都有一个未知的量你知道是什么吗?
3.如果用x表示樱桃的质量,你能用式子表示天平中的等量关系么?请你试着在作业纸上写一写。(板书:x+2=10或10=x+2)
4.你能用含有字母的等式表示另外两组等量关系么?(板书:4Y=2000 200+2z=2000
三、讨论解疑
通过刚才的学习,你还有什么不明白的地方吗?观察这些式子,他们有什么共同的特点?小组讨论交流
【设计意图:通过讨论,不但增进了学生之间的交流,沟通,形成了互帮互助班级学习氛围,并通过优帮差的途径对方程有了更深刻的认识。】
你们真的很善于发现,他们就是我们今天所要认识的新朋友,(板书:方程)
现在我要反问大家了,什么是方程呢?用你自己的话说说什么叫方程。
板书:像这样含有未知数的等式叫做方程)
四、知识反馈
经过我们的探索发现大家认识了方程,下面让我们走进今天的智慧城堡吧!
1、看图形列出方程。(出示课件)
未知数最爱和我们捉迷藏了,你能从图中找到它吗?先思考数量关系,再列出方程。
2、看文字列出方程。(出示课件)
从图中跑出来,躲到文字中去了。请你们先找出数量关系,再列出方程。
(1)一辆公共汽车到站时,有5人下车,8人上车,车上还剩下15人。车上原来有x人,那么()
(2)用正方形摆大门,每5个正方形摆1个大门,用95个正方形摆出了x个大门,那么()
【设计意图:伴随着线段图、直观图、文字信息的一一呈现,逐渐引导学生对相等关系的表达,从情境中抽象出数学问题、用数学符号建立方程,这一过程培养了学生的抽象思维能力。】
五、课堂总结
把你在这节课获得的知识,和同学们交流一下。我们生活中的衣食住行各方面都隐含很多的等量关系,并且都能用方程表示出来,只要你有一双慧眼,你就会发现你身边无处不在的数学问题。
第四篇:数学《实际问题与方程》教学设计
数学《实际问题与方程》教学设计
数学《实际问题与方程》教学设计1
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的`方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
数学《实际问题与方程》教学设计2
教材分析
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的`探究方式。
教学目标
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点
重点:利用增长率问题中的数量关系,列出方程解决问题
难点:理清增长率问题中的数量关系
数学《实际问题与方程》教学设计3
教学目标
1、通过学习初步掌握列方程解决问题的方法及步骤,会解稍复杂的方程。
2、体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。
3、用情境教学,把解决问题融入一种故事情境,通过本节课的学习,激发学生学习兴趣,增强应用价值的意识,受到人文教育。
教学重难点
掌握列方程解决问题的方法及步骤,会解稍复杂的方程。体验到用列方程解决问题的优越性,能够根据题目特点选择合适的方法解决问题。
教学过程
准备题:(课件出示)
1、用含有字母的式子表示下列数量
(1)比ⅹ的3倍多5
(2)比ⅹ的4倍少2
(3)2个ⅹ与34的和
(4)ⅹ的5倍与9的差
说说你解方程的思路?
2、解下列方程。
3x=147y—34=71
3、根据下面叙述说说相等关系,并写出方程。
小鹏有x岁,老师有35岁,比小鹏岁数的3倍少1岁。
一、情境激趣,导入新课
出示足球
1、实物引趣:问:喜欢踢足球的请举手(评价),对这个足球的构成有所了解的请举手(交流评价)。小小足球的完美构成引起了数学家、建筑学家、美学家极大的兴趣,都从中发现了自己研究的价值。今天我们就以一位数学家的眼光来发现这个足球在构成中隐藏着的数学秘密,好不好?请同学们观察主题图,寻找你所需要的信息。解决问题
足球上黑色的皮都是五边形,白色的皮都是六边形的,
黑色皮共有12块,白色皮比黑色皮的2倍少4块。共有多少块白色皮?怎样列算术式计算?
12×2—4
=24—4
=20(块)
答:共有20块白色皮。
2、合作探究
(1)请同学们观察主题图,寻找你所需要的信息。
例1:足球上白色皮共有20块,比黑色皮的'2倍少4块,共有多少块黑色皮?
(2)汇报交流:你知道了那些信息?足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?”
审题,寻找解决问题的有用信息。
揭示课题:今天我们学习用方程解答这类问题。
教师板书:稍复杂的方程
分析、找出数量之间的相等关系。白色皮和黑色皮有什么关系?
学生小组讨论,
汇报结果。
可能出现的等量关系是:
黑色皮的块数2—4=白色皮的块数
黑色皮的块数2—白色皮的块数=4
黑色皮的块数2=白色皮的块数+4
(3)同桌讨论怎样把x表示什么写清楚。
(4)怎样列出方程。
(5)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。
师板书学生的方程并选择2x—4=20讨论它的解法
课件演示:2ⅹ—20=4的解法。
学生小组讨论解法汇报交流师板书:
变式练习:
足球上黑色的皮都是五边形的,白色的皮都是六边形。白色皮共有20块,比黑色皮的2倍
多4块。共有多少块黑色皮?
(6)引导学生总结
列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答案。
二、学以致用,拓展练习
同学们,运用刚才学到的本领,我们到数学王国里闯一闯,有信心吗?
1、姐姐今年20岁,刚好比弟弟年龄的2倍还多4岁,弟弟今年多少岁?
2、只列方程不解答。
要求独立完成,同桌检查,交流展示。
3、解下列方程,独立完成后,全班讲评。
4、北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是都是平方米?
独立完成,集体讲评。
5、共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?独立完成,集体讲评。说说理由。
三、小结
通过这节课的学习,你有哪些收获和遗憾?
师:我们要用数学的眼睛看生活中的事物,要留心生活中的数学问题,善思善学,学好数学。
板书:
稍复杂的方程
黑色皮的块数2—4=白色皮的块数2x—4=20
黑色皮的块数2—白色皮的块数=42x—20=4
黑色皮的块数2=白色皮的块数+42x=20+4
数学《实际问题与方程》教学设计4
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题、
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念、
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点、
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法、
(5)进一步理解数形结合的思想方法、
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质、曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序、前者回答什么是曲线方程,后者解决如何求出曲线方程、至于用曲线方程研究曲线性质则更在其后,本节不予研究、因此,本节涉及曲线方程概念和求曲线方程两大基本问题、
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想、
②本节的难点是曲线方程的概念和求曲线方程的方法、
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系、曲线与方程对应关系的.基础是点与坐标的对应关系、注意强调曲线方程的完备性和纯粹性、
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备、
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则、
(4)从集合与对应的观点可以看得更清楚:
设表示曲线上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合、
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做、同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得、教学中对课本例2的解法分析很重要、
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程、”
(5)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”、
教学设计示例
课题:求曲线的方程(第一课时)
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题、
(2)进一步理解曲线的方程和方程的曲线、
(3)初步掌握求曲线方程的方法、
(4)通过本节内容的教学,培养学生分析问题和转化的能力、
教学重点、难点:求曲线的方程、
教学用具:计算机、
教学方法:启发引导法,讨论法、
教学过程:
【引入】
1、提问:什么是曲线的方程和方程的曲线、
学生思考并回答、教师强调、
2、坐标法和解析几何的意义、基本问题、
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何、解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程、
(2)通过方程,研究平面曲线的性质、
事实上,在前边所学的直线方程的理论中也有这样两个基本问题、而且要先研究如何求出曲线方程,再研究如何用方程研究曲线、本节课就初步研究曲线方程的求法、
【问题】
如何根据已知条件,求出曲线的方程、
数学《实际问题与方程》教学设计5
教学目标:
知识与技能:
1、结合具体的情景,使学生掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。
2、学生通过学习两积之和的数量关系来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。
过程与方法:
培养学生的比较、分析能力和类比学习的能力。
情感态度与价值观:
学生在利用迁移、类推的方法,在解决问题的过程中,体会数学与现实生活的密切联系。
教学重难点:
分析数量关系,列出含有小括号的方程并解答。
教学准备:
教具准备:多媒体
学具准备:答题纸
教学过程:
一、联系生活、导入新课:
师:秋天是收获的季节,天气慢慢变凉,而且比较干燥,同学可以多吃些水果缓解干燥,你喜欢吃什么水果呢?(引入准备题)
生自由发言(三人左右)
师结合东营气候的实际情况作出评价。
二、合作交流、探究新知:
(一)1、师:我们看看妈妈买了些什么水果?仔细观察,你能得到那些信息?
(出示P77例3图片)
2、观察图片你能提出什么样的问题?
(生:苹果每千克多少钱?)
师:你能根据其中的条件找出数量间相等的关系吗?组内互相议一议,派代表发言。
3、生独立列方程,说说为什么这样列,并求解。(一生上台演板)
师:请你把思考方法给大家讲讲,其他同学可以互相补充、纠正。
方法一:
方法二:还可以这样列方程:
师:请同学认真观察这个方程怎么解?小组内先讨论,再派代表发言。
师:把(2、8+X)看作一个整体,两边同时除以2,先求出2、8+X是多少,再算X等于多少。
4、同学把这个方程解完,学生演板后,教师组织讲评。
5、同桌互相说一说第二种等量关系和解这个方程的方法。
说一说列方程解应用题的一般步骤
6、练习:解方程
(二)教学例4
1、引入例题。出示例4的条件:
地球的表面积为5、1亿平方千米,其中,海洋面积约为陆地面积的2、4倍。
教师:现在又能提出哪些数学问题?
引出例题。
2、比较例题与求地球表面积的.复习题,有什么区别。
引导学生回答:数量关系相同,条件与问题交换了位置。
请学生说出数量关系,教师板书:
陆地面积+海洋面积=地球的表面积5、1亿平方千米
↓
陆地面积×2、4
3、讨论:有两个未知数,怎么办?
①怎样设未知数?
②怎样列方程?
学生分组讨论,教师巡视,酌情参与讨论。
4、交流各种解法。
引导学生从便于思考、便于解方程两方面进行比较。
5、重点讨论下列解法。
解:设陆地面积为x亿平方千米。(设海洋面积为x可以吗?哪个更方便?)
那么海洋面积为2、4x亿平方千米。(这是用了哪个条件?)
x+2、4x=5、1(这是用了哪个条件?)
(1+2、4)x=5、1(这是用了什么运算定律?)
让学生自己把方程解完,得x=1、5。
提问:另一个未知数怎样求?根据是什么?
5、1-1、5=3、6(利用和的关系)
2、4x=1、5×2、4=3、6(利用倍数关系)
6、引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5、1亿平方千米:
1、5+3、6=5、1
验算海洋面积与陆地面积的倍数关系是否等于2、4:
3、6÷1、5=2、4
(三)用同样的方法教学例5
三、巩固应用
1、你会解下列方程吗?
5+1、5×5=17、5
(-3)÷2=8、5
2、两辆汽车同时从相距237千米的两个车站相向开出,经过3小时辆车相遇。一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?
3、你能根据给出的方程编应用题吗?
(26+)×3=150
四、课堂总结
通过本节课的学习你有什么收获?
板书设计:
数学《实际问题与方程》教学设计6
教学目标
1、知识与技能:让学生掌握形如ax±bx=c的方程,掌握设未知数的方法,并会正确地解答。
2、过程与方法:让学生通过乘法分配律来解答形如ax±bx=c的方程。
3、情感、态度与价值观:通过观察、分析、比较的方法,提高学生逻辑思维能力。
教学重难点
教学重点:教会学生用方程解决实际问题。
教学难点:分析、找出数量间的相等关系,正确列出方程。
教学过程
一、复习。
1、解方程。4X+5=543×2、1+2X=13、40、3X÷2=94(X+8)=20
2、果园里有桃树45棵,杏树的棵数是桃树的`3倍,两种树一共有多少棵?
(1)分析:本题有两种什么树?它们的数量关系是什么?
(2)独立解答。
二、新授。
教学例4。地球的表面积为5、1亿平方千米,其中,海洋面积约为陆地面积的2、4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
问题:从图中你得到了哪些数学信息?
活动要求:读读例题→思考问题→小组讨论→分享展示
1、分析题目的已知条件和问题。今天的题目有2个未知数。为了解答方便,通常设一倍数为X。
2、列方程并解答。
数量关系:陆地面积+海洋面积=地球表面积
方法一:解:设陆地面积为x亿平方千米,那么海洋面积为2、4x亿平方千米。
x+2、4x=5、1
方法二:解:设陆地的面积为x亿平方千米。那么海洋面积为(5、1-x)亿平方千米。
x+(5、1-x)=5、1
方法三:解:设海洋面积为x亿平方千米,那么陆地面积为2、4÷x亿平方千米。
(x÷2、4)+x=5、1
海洋面积÷陆地面积=2、4
方法四:解:设陆地面积为x亿平方千米,那么海洋面积为2、4x亿平方千米。
(5、1-x)÷x=2、42、4x=5、1-x
方法五:解:设陆地的面积为x亿平方千米,那么海洋面积为2、4x亿平方千米。
2、4x÷x=2、4
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2、4X亿平方千米。X+2、4X=5、1(1+2、4)X=5、1
(这是用了什么运算定律?)乘法分配律让学生自己把方程解完,得X=1、5。
提问:另一个求知数怎样求?根据是什么?5、1-1、5=3、6
(利用和的关系)2、4X=1、5×2、4=3、6
(利用倍数的关系)引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5、1亿平方千米。1、5+3、6=5、1验算海洋面积与陆地面积的倍数关系是否等于2、4。3、6÷5、1=2、4
答:、、、、、、
3、练习:将题目中的“地球的表面积为5、1亿平方千米”改为“海洋面积比陆地面积多2、1亿平方千米”学生独立列方程解答。
数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2、4X亿平方千米。
2、4X-X=2、1
(2、4-1)X=2、1
4、比较两道题有哪些相同?哪些不同?
5、小结:今天学习的应用题,是已知两种数量的倍数关系,以及它们的和或差,求这两种数量各是多少?列方程时,通常根据倍数关系,设一倍数为X,另一个数用含有字母的式子表示,再根据这两种数量的和或差,找出数量之间的等量关系,就可列出方程,并解答方程,求出得数。
三、学生独立完成例5妈妈今年的年龄是我的3倍,妈妈说,我比你大24岁。
问题:能读懂他的想法吗?从题目中他找到了怎样的等量关系?
独立完成,然后订正,课件出示。
四、完成课本78-79页的做一做
五、小结:
这节课学习了什么?还有什么问题?
六、作业:
P80练习十七中的第5--10题。
板书设计:
稍复杂的方程(三)数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米,那么海洋面积可以表示为2、4X亿平方千米。X+2、4X=5、1(1+2、4)X=5、13、4X=5、13、4X÷3、4=5、1÷3、4X=1、5
数学《实际问题与方程》教学设计7
一、教学内容:
人教版五年级上册数学第五单元《实际问题与方程》例4,第78页
二、教学目标:
1、会根据两个未知量的关系,列出含有两个未知数的方程,理解和掌握列方程解这类问题的等量关系和解题方法。
2、学生在观察、分析、抽象,概括和交流的过程中,进一步体会方程的思想。
3、通过不同方法的渗透,培养学生的类推和迁移的思想,激发学生学习数学的兴趣。
三、教学重点:
列方程解答含有两个未知数的实际问题。
四、教学难点:
准确地找出等量关系,列出方程。
五、教学准备:
微课视频,懿文德软件课件
六、教学过程:
(一)激趣导入
播放爸爸去哪儿主题曲,师提问:同学们都看过爸爸去哪儿么?好看么?你们最喜欢哪位小朋友啊?
预设:1、看过,很好看,我最喜欢
2、没看过
师:今天啊,老师给你们请来了一位特殊的朋友,她要教我们学习用方程解决实际问题,你们欢迎么?
预设:欢迎。
(二)探究新知
1、微课讲解
将一道跟例题相关的题目以微课的形式进行分析和讲解。
师:请大家认真地听这位朋友讲解,她有任务要交给你们呢。
出示题目:果园里种着桃树和杏树一共180棵,桃树的棵树是杏树的3倍,桃树和杏树各有多少棵?
进行讲解:这道题目和我们之前学的不太一样,要求两个未知量。我可以设杏树的棵树为180棵,那么桃树的棵树可以表示为3x棵。分析题目,得到等量关系为:杏树棵树+桃树棵树=总棵树,列出方程为x+3x=180,运用乘法分配律,(1+3)x=180,4x=180,根据等式的性质4x÷4=180÷4,x=45,将x=45代入方程左边=45+3×45=45+135=180=方程右边,所以x=45是方程的解。杏树的棵树已经求出来了,那么桃树的棵树可以用总棵树-杏树棵树=180-45=135(棵),再根据问题将答话写完整,这道题目就完整的算完了。接下来,请大家积极地开动你的小脑筋,完成我接下来给你们出的题目,看谁的方法又好又多,那谁就获得优先选取大礼包的权利。小朋友们,你们听懂了么?(将这个过程录成微课的形式,使同学们能够认真地听,并积极地动脑思考)
师:同学们听懂这位朋友讲解的了。
预设:1、听懂了。
2、没听懂。
师:这道题目跟我们之前学习的不太一样,不是求谁设谁,而是有两个未知量,我们要根据题目具体分析怎么设未知量。接下来,请同学完成下面这道题目,自己先进行独立思考,然后小组内进行讨论和交流,我们看看哪个小组的方法又多又好。
2、新知探究
(1)出示例题:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍,地球上的海洋面积和陆地面积分别是多少亿平方千米?
(2)师:同学们你们知道地球表面积是由什么组成的么?播放地球动态图,使学生认识到地球表面积由海洋面积和陆地面积组成。
(3)师:请同学们根据刚才视频讲解的例题,开动自己的小脑筋,想想这道题可以怎么做?做完之后,小组之间进行交流。(师巡视指导)
(4)下面哪个小组来和大家交流一下做法呢?
预设1:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
海洋面积+陆地面积=地球表面积
2.4x+x=5.1
(2.4+1)x=5.1
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设2:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
地球表面积-陆地面积=海洋面积
5.1-x=2.4x
5.1-x+x=2.4x+x
5.1=(2.4+1)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设3:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-2.4x=x
5.1-2.4x+2.4x=x+2.4x
5.1=(1+2.4)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设4:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
海洋面积+陆地面积=地球表面积
x+实际问题与方程教学设计=5.1
预设5:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-x=实际问题与方程教学设计
师:同学们都积极的开动了自己的小脑筋,也都做的很棒,下面请大家比较一下这几种方法,你们认为哪种方法最好呢?
预设:第一种方法最好,解方程的过程最简单。
师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。
师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?
(3)总结方法
1、设(找出未知数,用字母x表示)
2、找(找出题目中的等量关系)
3、列(根据等量关系列出方程)
4、解(运用等式的性质解方程)
5、验(将解出的结果代入方程检验)
6、答(完整地写好答话)
师:是的,用方程解决实际问题我们常用的就是你这六个步骤,请同学们要牢记哦。接下来,老师考考大家,看看你们掌握的`怎么样,你们有没有信心接受我的挑战呢?
三、巩固练习
1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()
A、解:设梨树为x棵,则苹果树为5x棵。
B、解:设苹果树为x棵,则梨树为5x棵。
C、解:设苹果树为x棵,则梨树为实际问题与方程教学设计棵。
通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。
2、找出下列各题中的等量关系
(1)小红和小军一共存了235元,小红存的钱数是小军的1.5倍,小红和小军分别存了多少元?
实际问题与方程教学设计等量关系:
(2)植物园里种着松树和柏树,松树的棵树是柏树的2.5倍,柏树比松树少84棵,松树和柏树分别有多少棵?
实际问题与方程教学设计等量关系:
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。
四、课堂小结
通过本节课的学习:
实际问题与方程教学设计收获是
实际问题与方程教学设计遇到的困惑是
五、作业布置
请同学们完成一份关于保护地球的手抄报
第五篇:方程教学设计
“方 程”教学设计
【教学内容】
认识方程
【教学内容分析】
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想。代数思维是数学学习的“核心思想”,本课教学内容是学生从算术思维到代数思维的过渡。【教学目标】
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.学生在观察、思考、分析、抽象、概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成模型思想。
3.在学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
【教学重点】
结合具体情境理解方程的意义,用方程表示简单的等量关系。
【教学难点】
从算术思维到代数思维的过渡。【教学准备】
纸质天平鸡蛋板贴 橘子板贴 袋子板贴 多媒体课件
【教学过程】
一、依托天平理解相等 1.出示板贴:纸质天平
谈话:今天我们要在用字母表示数的基础上,学习一个新的知识——方程,学习它有个重要的伙伴我们一定要请出来。(板贴:天平)
谈话:对天平你有哪些了解? 预设:称质量、比较物体的质量。2.理解相等的关系
(出示板贴: 100克砝码,60克鸡蛋,40克橘子)
谈话:现在天平的左边放一个60克的鸡蛋和一个40克的橘子,右边是100克的砝码。天平怎么样了?能用你的小天平演示一下吗?
谈话:你能够用数学语言记录出你看到的天平现象吗? 预设:一个鸡蛋的质量+一个橘子的质量=100克 谈话:这个关系能用数学式子表示出来吗?
谈话:像这样40+60=100的式子我们叫它等式。谁还能说几个等式? 小结:等号不仅表示运算结果,还可以表示相等的关系。3.理解不相等的关系
(操作板贴:取下橘子,天平不平衡)
谈话:如果把这个橘子拿下去了,天平会怎样?用式子怎样表示? 预设:60<100,100>60.谈话:这样不相等的式子叫不等式。能再说几个不等式吗?
小结:大于小于号可以表示不相等的关系。4.含有字母的等式与不等式
谈话:同学们,如果把这个袋子放进天平的左盘,你想一想,这个天平会怎么样?可能会出现不同的情况?用你的小天平演示一下吧。谈话:袋子有多重我也不知道,能用数学式子表示吗? 预设:60+x=100,60+x<100 , 60+x>100。
二、借助“天平” 理解等量关系
谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了。同学们,你心里还有天平吗?老师把一个大天平,化作了40个小天平送到了每个同学的心里。心中有了这个天平就能帮助我们解决问题。1.研究5x=800 出示课件:
谈话:看图,这幅图里有天平吗?把老师送给你们藏在心里的那个天平拿出来,想想有什么样的相等关系?
预设:5个苹果的质量等于800克
谈话:你能用数学式子表示出来吗? 预设:5x=800。
谈话:能说说这个式子表示什么意思吗?
小结:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。2.研究2y+200=1000 出示课件:
谈话:看图,谁来说说这幅图的意思?
谈话:这里有天平吗?用你的天平找找这道题中的相等关系,同位互相说说看。
预设:两个大杯子的盛奶量+200 =1000。谈话:能用式子表示吗? 预设:2y+200=1000,谈话:2y表示什么?
评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
还有其他关系吗?
预设: 1000—2y=200,1000—200=2y 追问:你是怎么想的?
小结:同学们,在刚才的两道题中图中没有天平,可是同学们依然能自己找到天平,不仅用手势表示出了相等的关系,而且还很有创造性,能用字母表示未知数,参与运算,写出了相等的式子。
三、式子分类 认识方程 1.式子分类,揭示方程的意义。谈话:同学们这么聪明,能给黑板上这些算式分分类吗?想一想,可以按照什么标准来分类,以小组为单位讨论讨论吧。
预设:等式、不等式、有字母、没有字母。
谈话:通过大家的分类,我把这些式子分成了四类,看这一类(圈出方程那一组),这些式子有什么突出特点?
小结:像这样的含有未知数的等式叫做方程。(板书定义)未知数和等式是构成方程的两个要素,判断一个式子是不是方程就根据这两点。2.揭示等式与方程的关系。
谈话:同学们,黑板上既有方程又有等式,你觉得他们是怎样的关系呢?试着说一说。
学生汇报:等式大,方程小;等式里包含着方程„„ 小结:等式表示的范围很大,方程只是其中的一部分。
四、巩固拓展 应用概念
谈话:刚才我们认识了新朋友——方程,你认识他吗? 1.应用概念,判断方程 判断下面的式子是否是方程。
x+5 15+5=20 2x +3〉10 36-x=9×3 2.应用概念,解决问题。
谈话:今天我们认识了方程,方程在哪儿?方程就在我们的生活中。(1)
谈话:能用方程表示出来吗?能说说这个方程的意思吗?(2)
谈话:能用方程表示吗?还有其他的方程吗? 预设: 2x+9=35,35-2x=9,35-9=2x
小结:同学们仔细观察,善于思考,找到了这么多等量关系。(3)出示课件:
谈话:生活中常遇到这样的问题,这里面有方程吧,谁找到了? 预设: x-5+8=15 3.应用概念,讲方程故事
谈话:大家都有能够根据数学情境写方程了,反过来,你能编方程故事吗?
预设:身高 体重 年龄„„
五、回顾反思 总结提升
1.谈话:这节课学习到这,你学习了什么,是怎样获得的? 2.课件出示:实践作业。
根据今天学习的知识,写一篇数学日记: 1.今天学习的收获。2.生活中的方程故事。3.小资料:
早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国的数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。