第一篇:飞机结构疲劳与断裂分析发展综述
飞机结构疲劳与断裂分析发展综述
通过这学期对航空航天博览课的学习和老师耐心的讲解,我对飞机结构有了进一步的了解。由于本学期还学习了材料力学,所以对于飞机结构疲劳强度与断裂分析发展现状与发展趋势做了进一步的了解与探讨.由于领空权对于任何一个国家都是非常重要的,飞机的先进性,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现,所以对于飞机结构疲劳与断裂分析进行探讨和研究是非常有必要的.疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。
断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。
飞机结构在实际使用中,要不断承受交变载荷的作用。但是,早期设计给及只是从静强度上考虑,只要通过计算和试验证明飞机结构能够承受得住设计载荷(实际使用中所出现的最大载荷乘以安全系数),就认为飞机结构具有足够的强度。由于飞机结构承受交变载荷的作用,某些构建常常出现疲劳性能也较好。因此,飞机结构的疲劳问题并不突出,疲劳强度问题没有引起足够的重视。直到50年代前
期,世界各国的飞机强度规范中对疲劳强度都还没有具体要求,不要求进行全尺寸结构疲劳试验。但是,随着航空事业的不断发展,飞机的性能不断提高,适用寿命延长,新结构、新材料不断出现,飞机结构在使用中疲劳破坏与安全可靠之间的矛盾逐渐显露出来了。
断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。
许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。
疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标。
疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。
例如:在齿轮设计中,当接触疲劳强度不满足要求时,假定不再更换材料的前提下,可以用如下方法进行弥补:
1、增加齿轮的齿宽(增加轮齿的接触面积)
2、轮齿进行高频淬火(或中频淬火)、渗碳、渗氮(提高轮齿的表面硬度)
3、磨齿(降低齿轮运行中因为接触强度不足而致使齿面发生胶合、斑蚀的危险性能)
50年代以前,在飞机结构疲劳寿命问题没有引起足够的重视。那事,飞机机构是单纯采用静强度设计准则与刚度设计准则进行设计的。
从50年代开始,基于以往的经验教训个科学技术的进步,以及给及使用要求的不断提高,在飞机安全和寿命 的设计思想上发生了很大的变化。50年代中期,逐渐发展起以安全寿命为设计准则的设计和评估思想。这是给及结构设计思想上的一次重大变革。
但是,安全寿命设计思想是以结构件无初始损伤的假设为基础的。显然,这是理想化的情况。事实上,结构件可能存在这样或那样出事缺陷。因此,安全寿命设计思想并不能保证飞机安全可靠。于是,在1960年提出了破损安全设计概念。从60年代初期到70年代初期,飞机结构设计采用破损安全与安全寿命相结合的设计思想,这种设计
思想可以在这个时期的国外民用机设计规范中看到。这种破损安全与安全寿命相结合的设计思想,这带有一定的局限性,远不足以解决安全和寿命问题。
随着断裂力学和其他科学的发展,出现了损伤容限和耐久性设计。1969年美国空军开始规定催飞机结构采用损伤容限和耐久性设计。1978年美国联邦航空局(FAA)规定在民用机上采用损伤容限和耐久性设计来代替原来的破损安全与安全寿命设计。损伤容限和耐久性设计思想的核心是:承认结构件中存在初始缺陷的可能性,控制损伤的扩展。从而,使飞机结构在规定期内具有规范要求的抗破坏能力和经济耐用的品质。损伤容限设计和耐久性设计更是一次变革性质的设计思想发展。
航空工业作为技术密集、知识密集的高技术产业,集材料、机械、发动机、空气动力、电子、超密集加工、特种工艺等各种前沿技术之大成。目前,国际航空技术发达国家早已实施损伤容限耐久性规范,并成为国际适航性条例要求。然而,在飞机结构的三维损伤容限耐久性预测设计方面,由于研究队伍严重萎缩,国际上的实质性进展非常缓慢,三维损伤容限耐久性技术的发展停滞不前。与此同时,现代飞机大量使用三维整体结构,已有技术与需求的矛盾更加突出。
这一现状的存在,使得国内外的设计者们在已有技术基础上不得不依靠更加实际、但耗资巨大的全机试验和各级全尺寸部件试验来检验飞机结构的损伤容限和耐久性,虚拟试验的科学基础欠缺。近年随着计算机容量逐渐满足三维断裂分析的需要,国际上三维试验和数值
研究骤增,多尺度研究骤增,虚拟试验的概念形成并得以应用。有影响和代表水平的工作主要出自美国NASA以Newman为主的研究组、英国Sheffield大学Code公司及其研究组、法国宇航院(ONERA)、瑞典航空研究实验室(FOI,德文首字)研究组,荷兰国防动力研究实验室、澳大利亚国防科技组织(DSTO)等[5-8]。但是其损伤容限耐久性技术依据的理论基础仍然是二维疲劳断裂理论,未取得本质上的突破,考虑三维约束的疲劳寿命分析模型也都是建立在大量经验参数基础上的。近年,我国某飞机设计行业以及相关单位已成功实现全数字化设计、制造,一些重点型号工程在设计阶段就已全面实施损伤容限与耐久性规范,开展了大量全尺寸静力、疲劳/耐久性和损伤容限试验,建立起宝贵的经验和高素质的队伍以及组织管理体系。然而,基于试验来保证性能的经验设计方法存在明显的局限:全尺寸试验之前主要是经验估计,如各种安全系数法,对经验积累依赖严重,不利创新发展;试验或一定要设法满足设计要求,否则发现问题后更改设计困难,代价很高;全尺寸试验只能检验最薄弱环节,不能真实考核整体结构的设计水平,尤其是优化程度;全机试验只能检验一种工况(如标准载荷谱、实验室环境和周期、抽取的单一的制造质量样本等,代价高昂但实际效果远不是人们认为的那么一锤定音式的决定一切。因此,发展基于三维损伤容限与耐久性科学基础的预测设计技术已变得十分必要和迫切。破飞机结构三维损伤容限和耐久性核心技术可望取得的突
发展基于先进的三维疲劳断裂理论和自主知识产权的三维损伤容限和耐久性关键技术,解决从材料性能到三维复杂结构性能的跨越。下面我将对几种材料进行了解。首先说到陶瓷,人们很自然想到它的特点就是脆性。十几年前,如果把它用于工程领域的承力件,是任何人都不可能接受的,直到现在说到陶瓷复合材料,也可能还会有些人不清楚,认为陶瓷和金属原本就是两种不相关的基本材料,但是自从人们巧妙地将陶瓷和金属结合后,才使人们对这种材料的概念发生了根本的变化,这就是陶瓷基复合材料。
陶瓷基复合材料在航空工业领域是一种非常有发展前途的新型结构材料,特别是在航空发动机制造应用中,越来越显示出它的独到之处。陶瓷基复合材料除了具有重量轻,硬度高的优点以外,还具有优异的耐高温和高温抗腐蚀性能。目前陶瓷基复合材料在承受高温方面已经超过了金属耐热材料,并具有很好的力学性能和化学稳定性,是高性能涡轮发动机高温区理想的极好材料。
目前世界各国针对下一代先进发动机对材料的要求,正集中研究氮化硅和碳化硅增强陶瓷材料,并取得了较大进展,有的已开始应用在现代航空发动机中。例如美国验证机的F120型发动机,它的高压涡轮密封装置,燃烧室的部分高温零件,均采用了陶瓷材料。法国的M88-2型发动机的燃烧室和喷管等也都采用了陶瓷基复合材料。据专家估计,到2000年陶瓷材料将占高性能涡轮发动机重量的30%。
金属间化合物
高性能、高推重比航空发动机的研制,促进了金属间化合物的开发与应用。如今金属间化合物已经发展成为多种多样的族,它们一般都是由二元三元或多元素金属元素组成的化合物。金属间化合物在高温结构应用方面具有巨大的潜力,它具有高的使用温度以及比强度、导热率,尤其是在高温状态下,还具有很好的抗氧化,搞腐蚀性和高的蠕变强度。另外由于金属间化合物是处于高温合金与陶瓷材料之间的一种新材料,它填补了这两种材料之间的空档,因而成为航空发动机高温部件的理想材料之一。
目前在航空发动机结构中,致力于研究开发的主要是以钛铝(TiAl、)和镍铝()等为重点的金属间化合物。这些钛铝化合物与钛的密度基本相同,但却有更高的使用温度。例如和 TiAl的使用温度分别为816℃和982℃。
金属间化合物原子间的结合力强,晶体结构复杂,造成了它的变形困难,在室温下显现出硬而脆的特点。目前经过多年的试验研究,一种具有高温强度和室温塑性与韧性的新型合金已经研制成功,并已装机使用,效果很好。例如美国的高性能F119型发动机的外涵机匣、涡轮盘都是采用的金属间化合物,验证机F120型发动机的压气机叶片和盘均采用了新的钛铝金属间化合物。
碳/碳复合材料
C/C基复合材料是近年来最受重视的一种更耐高温的新材料。到目前为止,只有C/C复合材料是被认为唯一可做为推重比20以上,发动机进口温度可达1930-2227℃涡轮转子叶片的后继材料,是美国21
世纪重点发展的耐高温材料,世界先进工业国家竭力追求的最高目标。
C/C基复合材料,即碳纤维增强碳基本复合材料,它把碳的难熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。由于它具有重量轻、高强度,优越的热稳定性和极好的热传导性,是当今最理想的耐高温材料,特别是在1000-1300℃的高温环境下,它的强度不仅没有下降,反而有所提高。在1650℃以下时依然还保持着室温环境下的强度和风度。因此C/C基复合材料在宇航制造业中具有很大的发展前途。
C/C基复合材料在航空发动机上应用的主要问题是抗氧化性能较差,近几年美国通过采取一系列的工艺措施,使这一问题不断得到解决,逐步应用在新型发动机上。例如美国的F119发动机上的加力燃烧室的尾喷管,F100发动机的喷嘴及燃烧室喷管,F120验证机燃烧室的部分零件已采用C/C基复合材料制造。法国的M88-2发动机,幻影2000型发动机的加力燃烧室喷油杆、隔热屏、喷管等也都采用了C/C基复合材料。
飞机制造技术正沿着生产工艺依赖经验型向工艺模拟、仿真、实时监控、智能化制造方向发展;零件加工成形连接技术向增量成形、高速切削、高能束加工、精密成形等低应力、小变形、长寿命结构制造方向发展;从单个零件制造,向整体结构制造技术及近无余量制造技术发展;飞机制造技术从手工劳动、半机械化、机械化向数控化、柔性化、自动化技术方向发展;从一般铝合金结构的制造向以钛合金为代表的高性能轻合金结构、复合材料结构制造技术方向发展;向材料制备与构件成形同时制造发展;制造技术向信息化、数字化及设计/制造一体化方向发展,现代飞机制造技术正处在一个新的变革时代,它将为新一代飞机研制提供更先进的技术。
通过这学期对航空航天博览课的学习,我更加了解到飞机结构疲劳强度与断裂的未来发展的形势,对于材料的研究以及强度,刚度,稳定性方面的分析是非常重要的,所以我一直努力的学好材料力学。争取在这领域有所发展。
第二篇:飞机结构疲劳强度与断裂发展现状与发展趋势
飞机结构疲劳强度与断裂发展现状与发展趋势
领空权对于任何一个国家都是非常重要的,飞机的先进,是领空权的保证.飞机更是国家的国防的重要力量,提高飞机的性能更是每个军事大国追求的目标.飞机的结构抗疲劳强度与断裂强度是飞机性能的重要体现.通过这学期的学习,和老师耐心的讲解,我对我国飞机结构疲劳强度与断裂发展现状与发展趋势有了更进一步的了解.疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。
断裂是指飞机结构被断错或发生裂开.讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。
许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。
疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
疲劳失效是金属材料常见的失效形式,特别是轴类,连杆,轴承类等零件,长期在应力下工作的工件材料都要求较高的疲劳强度,这样的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标
航空工业作为技术密集、知识密集的高技术产业,集材料、机械、发动机、空气动力、电子、超密集加工、特种工艺等各种前沿技术之大成。目前,国际航空技术发达国家早已实施损伤容限耐久性规范,并成为国际适航性条例要求。然而,在飞机结构的三维损伤容限耐久性预测设计方面,由于研究队伍严重萎缩,国际上的实质性进展非常缓慢,三维损伤容限耐久性技术的发展停滞不前。与此同时,现代飞机大量使用三维整体结构,已有技术与需求的矛盾更加突出。
这一现状的存在,使得国内外的设计者们在已有技术基础上不得不依靠更加实际、但耗资巨大的全机试验和各级全尺寸部件试验来检验飞机结构的损伤容限和耐久性,虚拟试验的科学基础欠缺。近年随着计算机容量逐渐满足三维断裂分析的需要,国际上三维试验和数值研究骤增,多尺度研究骤增,虚拟试验的概念形成并得以应用。有影响和代表水平的工作主要出自美国NASA以Newman为主的研究组、英国Sheffield大学Code公司及其研究组、法国宇航院(ONERA)、瑞典航空研究实验室(FOI,德文首字)研究组,荷兰国防动力研究实验室、澳大利亚国防科技组织(DSTO)等[5-8]。但是其损伤容限耐久性技术依据的理论基础仍然是二维疲劳断裂理论,未取得本质上的突破,考虑三维约束的疲劳寿命分析模型也都是建立在大量经验参数基础上的。近年,我国某飞机设计行业以及相关单位已成功实现全数字化设计、制造,一些重点型号工程在设计阶段就已全面实施损伤容限与耐久性规范,开展了大量全尺寸静力、疲劳/耐久性和损伤容限试验,建立起宝贵的经验和高素质的队伍以及组织管理体系。然而,基于试验来保证性能的经验设计方法存在明显的局限:全尺寸试验之前主要是经验估计,如各种安全系数法,对经验积累依赖严重,不利创新发展;试验或一定要设法满足设计要 求,否则发现问题后更改设计困难,代价很高;全尺寸试验只能检验最薄弱环节,不能真实考核整体结构的设计水平,尤其是优化程度;全机试验只能检验一种工况(如标准载荷谱、实验室环境和周期、抽取的单一的制造质量样本等,代价高昂但实际效果远不是人们认为的那么一锤定音式的决定一切。因此,发展基于三维损伤容限与耐久性科学基础的预测设计技术已变得十分必要和迫切。破飞机结构三维损伤容限和耐久性核心技术可望取得的突
发展基于先进的三维疲劳断裂理论和自主知识产权的三维损伤容限和耐久性关键技术,解决从材料性能到三维复杂结构性能的跨越。
飞机制造技术正沿着生产工艺依赖经验型向工艺模拟、仿真、实时监控、智能化制造方向发展;零件加工成形连接技术向增量成形、高速切削、高能束加工、精密成形等低应力、小变形、长寿命结构制造方向发展;从单个零件制造,向整体结构制造技术及近无余量制造技术发展;飞机制造技术从手工劳动、半机械化、机械化向数控化、柔性化、自动化技术方向发展;从一般铝合金结构的制造向以钛合金为代表的高性能轻合金结构、复合材料结构制造技术方向发展;向材料制备与构件成形同时制造发展;制造技术向信息化、数字化及设计/制造一体化方向发展,现代飞机制造技术正处在一个新的变革时代,它将为新一代飞机研制提供更先进的技术。
参考资料: http://wenku.baidu.com/view/6aae14c3d5bbfd0a7956736c.html
第三篇:船舶与海洋工程结构物疲劳断裂分析研究现状及展望
船舶与海洋工程结构的疲劳及断裂分析研究现状与展望
摘要:由船海工程的发展趋势,进而引出疲劳裂纹分析在船海工程中;简述了疲劳分析以及断裂力学的研究现状以及存在的一些问题,浅谈对将来发展趋势的一些看法;然后过渡到当前的研究方法,即主要为数值计算方法;对当前数值计算的具体方法进行了概括,并浅谈发展趋势;列举了两个具体例子,即断裂力学原理在疲劳分析中的应用。关键词:船舶与海洋工程;疲劳分析;断裂力学;数值计算
1.引言
海洋产业作为未来世界经济的支柱产业之一,发展潜力非常巨大,世界海洋产业总产值逐年大幅上升。其中,随着能源问题的日益突出,海洋油气开发将是海洋工程最主要的应用领域。并且,在发展船舶与海洋工程的同时,由于其技术关联度大,技术含量高,可带动相关行业的科技进步和产业发展。因此,船海工程有相当广阔的发展前景。
当前,船舶与海洋工程发展趋势主要表现在以下方面。其一,船舶发展趋势是大型化、高速化。技术性能的不断提升促进了船舶运载能力和航速的大幅提高,由此船舶经济性、安全性、环保性明显提高。其二,设计方法不断进步,现代造船模式取代传统造船模式,建造技术装备也在不断发展。其三,海洋工程装备深水化。国外从事海洋工程开发已有一百多年的历史,积累了丰富的经验。发达国家研究的一些深海探测器可达水深已超过万米。
船海工程蓬勃发展,船海结构物发生事故的几率也大大增加。大型远洋船舶发生海损事故已是屡见不鲜。海洋环境复杂多变,海浪、大风、潮流、冰雪、海水腐蚀、地震、微生物、碰撞事故等,都会对海洋平台等结构物造成极大的破坏。更重要的是,船海工程结构物主要采用焊接工艺,由于焊接工艺的特点,焊缝本身不可避免地存在各种缺陷。在各种交变载荷的作用下,这些应力集中区更有可能发生疲劳破坏,造成灾难性的事故。因此,疲劳断裂分析的理论及应用领域和形式的发展就显得非常关键。
2.疲劳分析发展现状
2.1 基本概念 载荷值随时间作周期性或非周期性变化的载荷成为交变载荷,由于载荷的变化使试件或构件的材料内产生随时间变化的交变应力与交变应变。经足够的应力或应变循环作用后,损伤累计可使试件或结构材料产生裂纹,直至疲劳破坏。试件抵抗疲劳失效的能力成为材料的疲劳强度;结构抵抗疲劳失效的能力成为结构的疲劳强度。
疲劳失效有以下特征:疲劳破坏是一个累积损伤的过程,其失效过程都经历裂纹萌生、扩展和瞬时断裂三个阶段。不论构件是脆性材料还是塑性材料,疲劳破坏在宏观上常表现为无明显塑性变形的突然断裂,断口为脆性断口。疲劳断口可以看到明显的裂纹源、裂纹扩展区(光滑断面)和瞬时断裂区(粗糙断面)。
在工程中应用的疲劳分析方法可以分为三大类:S-N曲线法、断裂力学方法以及可靠性分析方法。
2.2 S-N曲线法、断裂力学方法
经典的疲劳分析方法基于S-N曲线和Palmgren-Miner线性累积损伤准则,用循环应力范围或塑性应变范围或总应变范围来描述疲劳破坏寿命。与S-N曲线法不同,疲劳分析的断裂力学方法以“损伤容限”原理作为设计基础。这个基本前提是认为损伤为一切工程构件所固有。疲劳寿命则定义为主裂纹从原始尺寸扩展到某一临界尺寸所需的疲劳循环次数或时间。采用断裂力学方法时,需要应用断裂力学的裂纹扩展经验规律。自从具有里程碑意义的PARIS公式提出之后,基于裂纹扩展规律的疲劳分析理论得到了长足的发展。
这两种方法各有优缺点。S-N曲线法可以避免裂纹尖端复杂应力场的分析,断裂力学方法则可更好的反映尺度效应以及可以对一个已有的裂纹提供一个更精确的剩余寿命估算方法。S-N曲线法和断裂力学方法在工程中得到了广泛的应用,成为两种相互补充的基本方法。2.3 可靠性分析方法
以上这两种方法都是在确定意义上使用的,在分析过程中,有关的参量的都认为是有确定数值。而实际上,工程中涉及到疲劳的有关因素都是随机的。比如,载荷、材料的随机性等。为此,可靠性方法开始被用来进行寿命评估。在该理论中,影响结构疲劳寿命的不确定因素都用随机变量或者随机过程来描述。一个结构的的疲劳寿命合格与否,用服役期内不发生疲劳破坏的概率来衡量。对于受大量不确定因素影响的工程结构的疲劳问题,用结构疲劳可靠性理论来加以研究是非常适当的。
虽然疲劳可靠性方法从理论上是最完善的,可以更合理的描述实际结构中的各种不确定因素,等价符合客观事实。但在工程实践中,由于缺乏充分的统计数据资料,使得可靠性分析中最关键的概率模型的建立也存在很大的分散性,这成为阻碍可靠性分析在工程实际中推广的重要原因。
因而目前常用的海洋工程疲劳强度分析还是主要采用操作起来简单的S-N曲线法,并结合断裂力学方法。
3.断裂力学的研究现状及发展
3.1 断裂力学的产生
长期以来,工程上对结构或构件的计算方法,是以结构力学和材料力学为基础的。通常都假定材料是均匀的连续体,没有考虑客观存在的裂纹和缺陷,计算时只要工作应力不超过许用应力,就认为结构是安全的,反之就是不安全的。安全系数并未考虑到其他失效形式的可能性,例如脆性断裂或快速断裂。普遍认为,选用较高的安全系数就能避免这种低应力断裂。然而,实践证明材料存在缺陷或裂纹的结构或构件,在应力值远低于设计应力的情况下就会发生全面失效。人们逐渐意识到,对含有裂纹的物体必须作进一步的研究。断裂力学就是在这个基础上产生的。
断裂力学从宏观的连续介质力学角度出发,研究含缺陷或者裂纹的物体在外界条件作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律。断裂力学的研究方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。
经典断裂力学的三个主要分支是:线弹性断裂力学、弹塑性断裂力学、断裂动力学。
3.2 线弹性断裂力学
Griffith通过研究,提出裂纹扩展的能量准则。能量理论将裂纹失稳扩展的临界条件表示为GI=GIc(GI微应变能释放率),即脆性断裂的G准则。GIc是材料常数,表征材料对裂纹扩展的抵抗能力,由试验确定。G.R.Irwin用弹性力学理论分析了裂纹尖端应力应变场后提出了三种类型裂纹(张开型、滑移型、撕裂型)尖端的应力场与位移场公式。公式中定义了一个包含一个应力强度因子K,对应三种裂纹分别为KⅠ、KⅡ、KⅢ。在线弹性断裂力学中,它是很重要的力学量,用来判断裂纹是否将进入失稳状态的一个指标。以应力强度因子表示的裂纹失稳扩展临界条件为:K=KIC ,称为K准则。KIC为裂纹临界状态下的应力强度因子,称为断裂韧度,也表示材料对于断裂的抵抗能力。
在弹性条件下,GICK准则是等效的。3.3 弹塑性断裂力学
由于裂纹尖端应力高度集中,在裂纹尖端附近必然首先屈服形成塑性区域。对于中、低强度钢的中小型结构件,薄壁结构,焊接结构的拐角和压力容器的接管处,在裂纹尖端附近,发生大范围屈服或全面屈服。这时,线弹性断裂力学的结论不再适用。由此研究大范围屈服断裂已成为发展弹塑性断裂力学的迫切任务。
Wells在大量实验的基础上,提出了弹塑性条件的断裂准则,COD准则:当裂纹尖端张开位移达到临界值C时,裂纹将开裂,即=C时,裂纹开裂。COD即裂纹受载后,在原裂纹尖端垂直裂纹方向上所产生的位移(Crack Opening Displacement)。C是材料弹塑性断裂韧性指标,为材料参数。
1968年,Rice提出了J积分理论。以J积分为常数并建立断裂准则。J积分是围绕裂纹尖端作闭合曲线的积分。J积分与裂纹扩展力GI的物理意义相同,进而建立J准则:当围绕裂纹尖端的J积分达到临界值JC时,即J=JC时,裂纹开始扩展。
COD准则应用到焊接结构和压力容器的断裂安全分析上非常有效,而且应用时比较简单,因而工程上应用较为普遍。J积分准则理论根据严格,定义明确,但在计算和实验上比较复杂。
弹塑性断裂力学的重要成就是HRR解。硬化材料I型裂纹尖端应力应变场的弹塑性分析是由Hutchinson,Rice,Rosengren解决的。它建立了塑性应力强
K2IC,因此对于线弹性断裂力学问题,采用G准则和
E度因子与J积分的定量关系,表明J积分可以作为描述硬化材料中裂纹尖端应力应变场强度的参量。HRR理论是J积分作为断裂力学判据的理论基础。3.4 断裂动力学
70年代,Sih与Loeber导出了外载随时间变化而裂纹是稳定情况的渐进应力场与位移场。Rice等多人先后导出了裂纹以等速传播情况的渐进应力场与位移场,并提出了裂纹稳定而外载随时间迅速变化情况下的裂纹开裂准则。3.5 断裂力学理论存在的一些问题及展望
经典断裂力学是建立在奇异性基础上的,即均基于裂纹顶端应力与应变为无限大的模式展开的。奇异性理论一直延续至今。但是奇异性断裂力学在物理上存在本质的缺陷。实际发现的裂纹,裂纹顶端曲率半径为有限值,裂纹顶端的应力应变也为有限值。这样,基于数学尖端裂纹和应力奇异性的物理量缺乏坚实的物理基础。为了完善理论,可采用比较符合实际的半圆形顶端的钝裂纹,而这又需要金相断裂力学的发展。
由于断裂力学能对材料和结构的安全性进行预测与估算,因而愈来愈受到重视。目前,线弹性断裂力学发展较为成熟,在工程实际中已经得到应用。弹塑性断裂力学虽然取得了一些进展,但仍有许多尚待深入研究的问题,它是当前断裂力学主要研究方向之一。断裂动力学,对于线性材料还有待完善,对于非线性材料,尚处于研究初期,也是断裂力学的主要研究方向。
4.当前的研究方法
在疲劳断裂分析的研究中,最主要的三大研究方法就是:理论、试验和数值计算。但是,只有极少数简单、特殊的断裂力学问题存在解析解,而试验方法操作起来比较麻烦,而且经济性不佳,因此绝大多数工程问题都借助数值计算的方法来进行研究。随着研究的日益深入,需要求解的问题日趋复杂化和多样化。使得如何建立高效、高精度的计算方法成为学者们研究的热点。由于计算机科学、计算数学和力学等学科的不断发展,用于解决疲劳断裂问题的数值计算方法不断涌现,它们正成为推动疲劳分析和断裂力学发展的有力工具。4.1 有限元法
普遍认为,有限元法的出现是计算力学诞生的标志。有限元法是建立在传统的Ritz法的基础上,利用变分原理导出代数方程组求解。它将连续介质离散成有限个单元来进行数值计算。有限元法实现了统一的计算模型、离散方法、数值求解和程序化设计方法,从而能广泛地适应求解复杂结构的力学问题。有限元法从诞生至今得到了迅猛的发展,成为用于结构和固体力学问题的首选方法。
当前断裂力学用有限元法取得了极大的研究进展。比如,采用自适应有限元法确定裂纹尖端的塑性区,在有限元法的基础上建立随机分析,用于动态问题的空-时有限元法等等。4.2 其他数值计算方法
由于有限元法同时也存在缺陷,比如随着计算精度要求的提高,有限元网格的划分将十分困难,计算量也会十分庞大。因此,学者们在研究过程中又逐渐创立了其他数值计算方法。主要有:边界元法、无网格法、数值流形方法、小波数值法等,此外还有位移不连续法、超奇异积分方程法、加权残数法、有限差分法扩展有限元法等,都取得了进展。4.3 数值计算方法的发展趋势
(1)并行数值计算方法。该方法是在工程计算规模大幅增加与计算机能力受到限制的矛盾日益突出的情况下产生的。
(2)解析法与数值法相结合。解析法与数值法相互结合、相互渗透将为研究提供一系列高效算法。
(3)多种计算方法有机结合。结构的形式很少是单一的,多种方法的耦合将会提高运算精度以及运算速度。
(4)数据处理自动化。为了提高效率,自适应有限元法和网格的自动划分与技术更新仍将是有限元研究中的一个热点。
(5)耦合场中的数值计算在一些领域也将越来越重要。
5.工程中的应用实例
5.1 海洋平台管节点疲劳性能研究
笔者正在完成的毕业设计的题目是:“导管架式海洋平台管节点疲劳强度分析”。以下是我在学习过程中遇到的一个实例,用断裂力学方法来求解管节点的疲劳寿命。
1.基本原则
从Paris公式
da/dN=cK
出发,则 Np=m1da 式中,c、m
a0c(K)maf为材料常数,由材料、焊接构件及管节点试验综合分析给出,建议:c=4.76410-12,m=3.152;K=YHa
式中,Y为管节点形状因子,由管节点试验和有限元计算给出。Y=Aa/T
B2.基型管节点形状因子
基型管节点形状因子Y0由基型管节点试验及有限元计算分析给出。不同载荷下形状因子为
轴向载荷:
Y00.49(a/T)0.38 面内弯曲载荷: Y00.56(a/T)0.41 面外弯曲载荷: Y00.52(a/T)0.40 基型管节点形状因子Y0见图
基型管节点形状因子Y0
3.修正因子M(1)厚度修正因子Mt 在裂纹扩展阶段,厚度修正因子为 Mt=(T/T0)0.25(2)焊缝修正因子Mw 焊缝局部应力集中对裂纹萌生影响很大,对裂纹扩展速率也有明显影响,必须考虑其对形状因子的修正。焊缝修正因子为
Mw=KL/KLO(3)应力分布修正因子M
应力分布不均匀性由几何参数决定,其修正因子为
(4)海水自由腐蚀修正因子 MH
海水腐蚀对管节点裂纹扩展速率影响同应力水平有关,海水自由腐蚀因子为 MH=H/S0.200.42
MSCF0/SCF0.167
0.125(5)阴极防护修正因子 MFH/S4.管节点形状因子
建立在基型管节点形状因子Y0修正的基础上,管节点形状因子为
YMFMHMMwMtY0MY0
BYMAa/T
为验证修正可靠性,把修正结果同试验结构相对比。自由腐蚀,在H192MPa下
修正法:
Y0.651(a/T)0.38
试验法:
Y0.684(a/T)0.39 阴极防护:在H192MPa下
修正法:
Y0.586(a/T)0.38
试验法:
Y0.588(a/T)0.377
可以看出修正结果同试验结果相一致,因此修正方案可靠。5.计算公式 由Paris公式
Np=a0afaf11=daa0cMYac(K)m0Hmda
式中,a0取1.5mm,af取T。5.2 海洋平台结构的安全寿命评估与维修决策
此部分内容来源于黄小平、崔维成、王庆丰所著《海洋平台结构的安全寿命评估与维修决策研究》。
海洋平台结构复杂,造价昂贵,一旦发生事故会造成不可估量的经济损失。因此保证安全性以及延长其服役期就显得至关重要。以上学着提出地基于疲劳断裂力学控制的评估方法适合于任何类型、处于任意使用阶段的结构安全寿命评估。其显著特点是可以方便地通过检测对评估结果进行验证,该特点可显著提高预报结果地可靠性和可信性。
该法克服了传统地安全寿命法的不足,不需要对平台结构过去的受载历史进行了解,只需知道目前平台结构的受损程度,以及今后平台受载情况,即可对海洋平台进行安全评估和断裂控制,并进一步计算其疲劳寿命。
海洋平台安全寿命评估及检修决策图 其原理详见该论文。
6. 总结与展望
本文介绍了船海工程的发展趋势,进而引出疲劳裂纹分析在船海工程中的应用。接下来简述了疲劳分析以及断裂力学的研究现状以及存在的一些问题,然后浅谈了对将来发展趋势的一些看法。然后过渡到当前的研究方法,即主要为数值计算方法。对当前数值计算的具体方法进行了概括,并浅谈发展趋势。在这之后,列举了两个具体例子,即断裂力学原理在疲劳分析中的应用,这也是疲劳分析的一个正在发展的重要方法。
最后,对船海工程疲劳断裂分析再次进行一下展望。第一部分已经提到过,由于船海工程加工工艺的特点,即焊接工艺的特点,疲劳断裂在船海工程中的应用将会有广阔的天地。理论的发展和应用离不开工程实际的需要,随着船海工程的发展需要,也必将促使学者们不断研究提出新理论,完善经典理论,并借助计算机科学的发展,大幅度提高数值计算的精度和效率。
参考文献:
【1】胡乃辉.浅析“十一五”船舶与海洋工程的发展前景.广东造船,2007(1).【2】张安哥,朱成九,陈梦成.疲劳、断裂与损伤.西南交通大学出版社,2006.【3】康颖安.断裂力学的发展与研究现状.湖南工程学院学报,Mar.2006,Vol.16.No.1.【4】Cui Weicheng.A Preliminary Review of Recent Developments in Life Prediction Methods of Marine Structure.船舶力学,1999(12):55-79.【5】赵永翔.应变疲劳可靠性分析的新进展与展望.机械工程学报,Dec.2002,Vol.38 Supp.【6】冒小萍,郎福元,柯显信.断裂力学的数值计算方法的研究现状与展望.【7】Hagedorn,Karl Edgar.Some aspects of fracture mechanics research during the last 25years[J].Steel research,1998,69:206-213.【8】谭开忍,肖熙,黄小平.非常规管节点疲劳寿命分析与计算.海洋工程,Aug.2005,Vol.23 No.3.【9】王庆丰,黄小平,崔维成.海洋平台结构的安全寿命评估与维修决策研究.江苏科技大学学报,Jun.2006,Vol.20,No.3.【10】石国理,姚木林,周敏健.海上平台管节点疲劳性能研究.中国造船,Feb.1994,No.1.
第四篇:飞机机翼结构分析
西安航空职业技术学院
毕业设计论文
飞机机翼结构分析
【摘要】
机翼是飞机的一个重要部件,其主要功用是产生升力。随着新材料、新技术、新工艺在飞机设计中的广泛应用,现代飞机机翼设计已有新的突破。本论文主要阐述了飞机机翼的功用及其翼面结构;机翼由副翼、前缘缝翼、襟翼、扰流板组成,从机翼的空气动力载荷到机翼的总体受力,详细的描述了机翼的外载特点;最后介绍了飞机机翼的典型构件并对其传力进行分析。
关键词:飞机 机翼结构 翼面
Abstract: The aircraft wing is an important component, whose main function is to generate lift.With new materials, new technology and new technology in aircraft design in the wide application of modern aircraft wing design has been a new breakthrough.This thesis describes the function of the aircraft wing and the wing structure;wing from the aileron, leading edge slats, flaps, spoilers composition, the aerodynamic loads from the wing to the wing's overall force, detailed description of the outer wings contain features;Finally the typical components of the airplane wing, and its force transmission analysis.Key words: airplane Wing structure Wing 1 西安航空职业技术学院
毕业设计论文
前言
航空技术是高度综合的现代科学技术。它综合运用了基础科学和应用科学的最新成就和工程技术的最新成果,是20世纪以来发展最迅速、应用最广泛、对人类社会生活影响最大的科学技术领域之一。
航空技术是一个国家科技先进水平的重要标志。对航空院校的学生来说,了解航空领域所涉及学科的基础知识,基本原理及发展概况,对开拓视野、扩大知识面以及今后的学习和工作都是很有帮助的。
对于新兴航空的领域,它融合科技、竞技、娱乐为一身,深受各年龄段人群的喜爱.对于青少年来说,它是一个及其新鲜的领域,通过查找资料对机翼的结构分析,培养严谨的工作风和良好的心理素质,增强了实践,求知,探索和创新的精神。
此论文主要介绍了飞机机翼的各方面内容,从而延伸到机翼所有的理论和事物都近乎一样,所以论题中以具体飞机的举例甚多,然而大多数飞机的机翼结构都相似,只不过是新瓶装旧酒,换装不换质。论述的内容之一就是机翼的组成及原理,加入了对机翼初步认识的元素,对机翼进行剖析和讲解,从机翼结构的分析到材料的应用,从飞行原理到力的解析,无不简单明白,由于才疏学浅,文中不足之处还望指出。
西安航空职业技术学院
毕业设计论文
目 录
1机翼的功用与设计要求.........................................................4 1.1机翼的功用...................................................................................................................................4 1.2翼面结构设计要求.......................................................................................................................4 2机翼的各部分装置介绍.........................................................6 2.1副翼...............................................................................................................................................6 2.2前缘缝翼.......................................................................................................................................6 2.3襟翼...............................................................................................................................................7 2.4扰流板...........................................................................................................................................8 3机翼的外载特点...............................................................9 3.1空气动力载荷...............................................................................................................................9 3.2其它部件、装载传来的集中载荷...............................................................................................9 3.3机翼结构的质量力.......................................................................................................................9 3.4机翼的总体受力...........................................................................................................................9 4翼面结构的典型构件..........................................................11 4.1蒙皮..............................................................................................................................................11 4.2长桁.............................................................................................................................................12 4.3翼肋.............................................................................................................................................12 4.4翼梁.............................................................................................................................................12 4.5纵墙.............................................................................................................................................13 5机翼典型结构的传力分析......................................................14 5.1空气动力的传递.........................................................................................................................14
5.1.1蒙皮将局部空气动力传给桁条和翼肋............................................................................14
5.1.2 翼肋将载荷传给翼梁腹板和蒙皮...................................................................................14 5.1.3蒙皮将翼肋传来的载荷传给机身....................................................................................14 5.1.4 翼梁将载荷传给机身隔框和缘条...................................................................................15 5.1.5翼梁缘条传递腹板传来的载荷........................................................................................15 5.2集中载荷的传递情况.................................................................................................................15 5.3机翼结构中力的传递过程.........................................................................................................16
6飞机机翼结构的发展..........................................................17 6.1 新材料的应用.........................................................................................................................17 6.2新技术的出现..........................................................................................................................17 6.3新工艺、新设备的发展..........................................................................................................17 结 束 语............................................................................................................................................18 谢 辞.................................................................................................................................................19 文 献.................................................................................................................................................20
西安航空职业技术学院
毕业设计论文
1机翼的功用与设计要求
1.1机翼的功用
机翼是飞机的一个重要部件,其主要功用是产生升力。当它具有上反角时,可为飞机提供一定的横侧安定性。除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。机翼上常安装有起落架、发动机等其它部件。现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。此外机翼内常安装有操纵系统和一些小型设备和附件。
图1-1 机翼的结构
1.2翼面结构设计要求
1.气动要求
翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。
2.质量要求
在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。西安航空职业技术学院
毕业设计论文
3.刚度要求
随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。高速飞行时,很小的变形就可能严重的恶化翼面的空气动力性能;刚度不足还会引起震颤和操纵面反效等严重问题。因此,对高速飞机和导弹,为满足翼面的气动要求,保证足够的刚度十分重要。4.气动加热要求
一般亚音速飞行器,所选用的结构材料是常用金属及非金属材料,不必考虑温度对材料的影响。高速飞行时,翼面将受到气动加热的影响,尤其是翼面前缘的起动加热问题尤为严重。因此当以大马赫数的速度飞行时,还要考虑气动加热对结构强度和刚度的影响。5.使用维修要求
翼面结构应便于检查、维护和修理。翼面内部通常铺设有相当数量的操纵系统零部件、燃油管路、电气线路和液压管路等,对这些系统和线路需要经常检查调整。当机翼结构作为整体油箱舱使用时,必须保证燃油系统工作的高度可靠性,包括油箱的密封可靠。对所有要求检查维护的部位都应该有良好的可达性,为此必须设置一定数量的开口,设计时要求处理好使用维护与结构质量之间的矛盾。
西安航空职业技术学院
毕业设计论文
2机翼的各部分装置介绍
2.1副翼
副翼是指安装在机翼翼梢后缘外侧的一小块可动的翼面。为飞机的主操作舵面,飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。翼展长而翼弦短。副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。对于航模不单是以上数据,它随飞行方式和动力装置变化。
2.2前缘缝翼
前缘缝翼是安装在基本机翼前缘的一段或者几段狭长小翼,主要是靠增大飞机临界迎角来获得升力增加的一种增升装置,航模则是将襟翼固定。前缘缝翼的作用主要有两个:
1.延缓机翼上的气流分离,提高了飞机的临界迎角,使得飞机在更大的迎角下才会发生失速;
2.增大机翼的升力系数。其中增大临界迎角的作用是主要的。这种装置在大迎角下,特别是接近或超过基本机翼的临界迎角时才使用,因为只有在这种情况下,机翼上才会产生气流分离。
图2-1 前缘缝翼的剖面
现代飞机的前缘缝翼没有专门的操纵装置,一般随襟翼的动作而随动,即为游动式。在飞机即将进入失速状态时,前缘缝翼的自动功能也会根据迎角的变化而自动开关。
图2-2 前缘缝翼
西安航空职业技术学院
毕业设计论文
在前缘缝翼闭合时(即相当于没有安装前缘缝翼),随着迎角的增大,机翼上表面的分离区逐渐向前移,当迎角增大到临界迎角时,机翼的升力系数急剧下降,机翼失速。当前缘缝翼打开时,它与基本机翼前缘表面形成一道缝隙,下翼面压强较高的气流通过这道缝隙得到加速而流向上翼面,增大了上翼面附面层中气流的速度,降低了压强,消除了这里的分离旋涡,从而延缓了气流分离,避免了大迎角下的失速,使得升力系数提高。
机翼能够产生升力是因为机翼上下存在着压力差。但是这是有前提条件的,就是要保证上翼面的的气流不分离。如果机翼的迎角大到了一定程度,机翼相当于在气流中竖起的平板,由于角度太大,绕过上翼面的气流流线无法连贯,会发生分离,同时受外层气流的带动,向后下方流动,最后就会卷成一个封闭的涡流,叫做分离涡。像这样旋转的涡中的压力是不变的,它的压力等于涡上方的气流的压力。所以此时上下翼面的压力差值会小很多,这样机翼的升力就比原来减小了。到一定程度就形成失速,对应的机翼迎角叫做失速迎角或临界迎角。
2.3襟翼
襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠 增大机翼的弯度来获得升力增加的一种增升装置。当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低着陆速度,缩短滑跑距离。在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。
图2-3 前缘襟翼 西安航空职业技术学院
毕业设计论文
2.4扰流板
有的称之为“减速板”、“阻流板”或“减升板”等,这些名称反映了它们的功能。扰流板分为飞行、地面扰流板两种,左右对称分布,地面扰流板只能在地面才可打开,实际上扰流板是铰接在机翼上表面的一些液压致动板,飞行员操纵时可以使这些板向上翻起,增加机翼的阻力,减少升力,阻碍气流的流动达到减速、控制飞机姿态的作用。8 西安航空职业技术学院
毕业设计论文
3机翼的外载特点
图3-1 机翼的外载荷
qa—空气动力分布载荷 qc—机翼质量力分布载荷 P—发动机或其他部件传来的集中载荷
R—机身支反力
3.1空气动力载荷
空气动力载荷qa是分布载荷,单位为Pa。它可以是吸力或压力,直接作用在机翼表面上,形成机翼的升力和阻力,其中升力是机翼最主要的外载荷。
3.2其它部件、装载传来的集中载荷
机翼上连接有其它部件(如起落架、发动机)、副翼、襟翼等各类附翼和布置在机翼内、外的各种装载(如油箱、炸弹)。除了在以翼盒作为整体油箱情况下燃油产生的是分布载荷外,由于这些部件、装载一般都是以有限的连接点与机翼主体结构相连,因此,不论是起落架传来的地面撞击力或副翼等翼面上的气动载荷,以及其上各部件、装载本身的质量力(包括重力和惯性力),都是通过接头,以集中载荷的形式传给机翼。其中有些力的数值可能很大。
3.3机翼结构的质量力
机翼本身结构的质量力为分布载荷,其大小与分布情况取决于机翼结构质量的大小和分布规律。它的数值比气动载荷要小得多。在工程计算中,它的分布规律可近似认为与弦长成正比。
3.4机翼的总体受力
机翼的各种外载,总要在机翼、机身连接处,由机身提供支持力来平衡。因 9 西安航空职业技术学院
毕业设计论文
此在上述载荷作用下,可把机翼看作是固定在机身上的一个“梁”。当机翼分成两半,与机身在其左右两侧相连时,可把每半个机翼看作支持在机身上的悬臂梁;若左右机翼连成一个整体时,则可把它看作支持在机身上的双支点外伸梁。这两种情况虽然在支持形式上有所不同,但对外翼结构来说,都可以看作悬臂梁。
前述各种外载在机翼结构中将引起相应的内力:剪力Q、弯矩M和扭矩Mt,统称为机翼的总体受力,如图3-2所示。
图3-2 机翼上所受的力矩和剪
a 机翼的总体内力 b 与外载相平衡的总体内力 Mn—由Qn引起的、作用在垂直面内的弯矩 Mh—由Qh引起的作用在弦平面内的弯矩
因为机翼的升力很大,且作用在机翼刚度最小的方向上;而阻力相对于升力要小得多,且作用在机翼刚度最大的弦平面内。因此在进行结构受力分析时,常着重考虑气动载荷沿垂直于弦平面的分量——升力引起的Qn、Mn等。10 西安航空职业技术学院
毕业设计论文
4翼面结构的典型构件
图4-1 机翼的典型结构元件
1—翼梁2—前纵墙3—后纵墙4—普通翼肋5—加强翼肋6—对接接头7—硬铝蒙皮8—长桁
4.1蒙皮
蒙皮的直接功用是形成流线形的机翼外表面。为了使机翼的阻力尽量小,蒙皮应力求光滑,为此应提高蒙皮的横向弯曲刚度,以减小它在飞行中的凹、凸变形。从受力看,气动载荷直接作用在蒙皮上,因此蒙皮受有垂直于其表面的局部气动载荷。此外蒙皮还参与机翼的总体受力——它和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁梁承受机翼的扭矩;当蒙皮较厚时,它常与长桁一起组成壁板,承受机翼弯矩引起的轴力。壁板有组合式或整体式(见图)。某些结构型式(如多腹板式机翼)的蒙皮很厚,可从几毫米到十几毫米,常做成整体壁板形式,此时蒙皮将成为承受弯矩最主要的,甚至是惟一的受力元件。
图4-2蒙皮
(a)金属蒙皮(b)整体蒙皮(整体壁板)
西安航空职业技术学院
毕业设计论文
4.2长桁
长桁是与蒙皮和翼肋相连的元件,如图所示。长桁上作用有动载荷。
图4-3各种长桁
在现代机翼中它一般都参与机翼的总体受力——承受机翼弯矩引起的部分轴向力,是纵向骨架中的重要受力元件之一。除上述承力作用外,长桁和翼肋一起对蒙皮起一定的支持作用。
4.3翼肋
普通翼肋(见图)构造上的功用是维持机翼剖面所需的气动外形。一般它与
图4-4腹板式翼肋
1—腹板2—周缘弯边3—与翼梁腹板连接的弯边4—减轻孔
A—前段B—中段C—后段a—上部分b—下部分
蒙皮、长桁相连,机翼受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂直方向的支持。同时翼肋又沿周边支持在蒙皮和梁(或墙)的腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的支承剪流。加强翼肋虽也有上述作用,但其主要是用来承受并传递自身平面内的较大的集中载荷或由于结构不连续(如大开口处)引起的附加载荷。
4.4翼梁
翼梁由梁的腹板和缘条组成,如图4-5所示,呈工字形或槽形。西安航空职业技术学院
毕业设计论文
图4-5 翼梁的构造
1—上缘条2—腹板3—下缘条4—支架
翼梁是单纯的受力件,缘条承受由弯矩M引起的拉压轴力。由支柱加固的腹板承受剪力Q并能承受由扭矩引起的剪流,是翼面周边形成闭室并在这两种情况下受剪。在有的结构形式中,它是翼面的主要的纵向受力件,承受翼面全部或大部份弯矩。翼梁大多在根部与中翼或机身固接。
4.5 纵墙
纵墙的构造与翼梁相似,但缘条比梁缘条弱的多,一般与长桁相近,根部与其他部分的连接方式为铰接。纵墙一般都不能承受弯矩,腹板主要用来承受剪力并传递倒连接接头,但与蒙皮组成封闭盒段以承受翼面的扭矩。纵墙还起到对蒙皮的支持,以提高蒙皮的屈曲承载能力。通常腹板没有减轻孔,为了提高临界应力腹板用支持型加强。后墙则还有封闭翼面内部容积的作用。普遍使用的纵墙结构如图。
图4-6 纵墙 1—腹板2—弱缘条 13 西安航空职业技术学院
毕业设计论文
5机翼典型结构的传力分析
5.1空气动力的传递
5.1.1蒙皮将局部空气动力传给桁条和翼肋
当蒙皮受到吸力作用时,通过铆钉把力传给桁条和翼肋,铆钉承受拉力;蒙皮受到压力作用时,气动力直接作用在桁条和翼肋上。无论在吸力或压力作用下,蒙皮都 要承受张力。作用在翼肋上的空气动力来自两方面:一方面是由直接与翼肋贴合的蒙皮传来的;另一方面,来自与翼肋相连的桁条。
5.1.2 翼肋将载荷传给翼梁腹板和蒙皮
如果忽略水平分力的作用,传到翼肋上的空气动力,可组合成一个垂直向上的合力作用于压力中心上。飞行中压力中心通常不与刚心重合。对于翼肋来说,相当于一 个作用于刚心上的力和力矩。刚心的定义是:横截面上有一个特殊的点,当外力作用线通过这一点时,不会使横截面转动。外力作用线不通过这一点,横截面就会绕该点转动,这个点称为该横截面的刚心。机翼各横截面的刚心的连线称为机翼的刚心轴。作用在刚心上的力,要使翼肋沿垂直方向移动,而翼肋是固定在翼梁腹板上的,在翼肋沿垂直方向移动的时候,就把这个力传给腹板,使两根翼梁弯曲。由于作用在刚心上的力不会使翼肋转动,在翼肋平面上,两根翼梁的弯曲变形程度相同,因此,翼肋传给前后梁腹板的力与前后梁的抗弯刚度成正比。前后梁腹板对翼肋的反作用力,分别与作用力ΔQ
1、ΔQ 2相等。在传力的过程中,蒙皮和翼肋之间存在着相互支持、相互传力的关系:
1.蒙皮沿垂直表面的方向很容易变形(即刚度很小),当它受到吸力和压力时,要依靠翼肋的支持,并把空气动力传给翼肋。
2.蒙皮在自己平面内不容易变形(即刚度较大),当翼肋受到外力矩时,蒙皮能够对翼肋起支持作用,因而翼肋就将外力矩传给蒙皮。
5.1.3蒙皮将翼肋传来的载荷传给机身
翼肋以剪流形式传给蒙皮的力矩,要使机翼产生扭转变形,它对机翼来说是扭矩。机翼扭转时,蒙皮截面上会产生沿合围框周缘的剪流。剪流形成的内力矩与截面外端所有翼肋传给蒙皮的扭矩平衡。这时,机翼各部分的蒙皮都要产生剪切变形。翼根处的扭矩传给机身的方式,由翼根部分的构造来决定。如果翼根部分没有开大舱口,机翼蒙皮与机身是沿整个接合周缘连接的,扭矩就能通过蒙皮以剪流的形式沿接合周缘传给机身。如果翼根部分开有大舱口,机翼只是通过翼梁与机身隔框相连,那末蒙皮就只能将扭矩以剪流的形式传给开口边缘的加强 西安航空职业技术学院
毕业设计论文
翼肋,并有使加强翼肋旋转的趋势。这时加强翼肋的两个支点(前后梁腹板),对它产生一对大小相等、方向相反的反作用力,形成反力偶来阻止它旋转。同时,加强翼肋也就对前后梁腹板各产生一个作用力,把扭矩以力偶形式传给翼梁。前后翼梁则将扭矩产生的作用力,在机翼与机身的连接点处,传给机身隔框。
5.1.4 翼梁将载荷传给机身隔框和缘条
翼梁腹板一方面与机身隔框连接,另一方面还以纵向的铆钉与缘条相连。各个翼肋通过铆缝传给腹板的力,要使翼梁腹板承受剪切作用。翼根截面的剪力,由机翼与机身隔框相连的铆钉或螺栓产生反作用力来平衡。此外,翼肋传来的力,还要使翼梁各截面承受弯矩。这个弯矩是通过腹板和缘条连接的两排纵向铆钉传到缘条上去的。
5.1.5翼梁缘条传递腹板传来的载荷
当翼肋传给腹板的力的方向向上时,腹板沿纵向铆缝传给上缘条的剪流是由翼尖指向翼根的,它要使由前后梁的上缘条、上缘条之间的蒙皮和桁条组成的上部壁板向翼根方向移动。上部壁板各构件的截面上要产生压缩的轴向内力,来阻止壁板移动,并与缘条上的纵向剪流平衡。下缘条上纵向剪流的方向相反,下部壁板各个构件要产生拉伸的轴向内力。传到缘条上的纵向剪流不能完全由缘条本身产生的轴向力来平衡,它还要通过铆钉将一部分力传给蒙皮;而传到蒙皮上的那一部分力,也不能完全由蒙皮产生的轴向力来平衡,它又要将一部分力通过铆钉传给桁条。在些传力过程中,壁板上的铆钉都要沿铆缝方向受到剪力。弯矩以纵向剪流的形式传给上、下缘条以后,是由上、下壁板来承受的。
5.2集中载荷的传递情况
机翼上的集中载荷,如部件的质量力、偏转副翼和放下襟翼时产生的空气动力、飞机接地时起落架受到的撞击力等,通常都直接作用在某个翼肋上。翼肋受到集中载荷后,按翼梁的抗弯刚度成比例地传给各个腹板,而把这个载荷引起的扭矩传给蒙皮。蒙皮和腹板受到翼肋传来的作用力以后,再把它们传给缘条和机身。翼梁腹板和蒙皮都是薄壁构件,如果载荷集中地作用在薄壁的某一部位,它就容易损坏。但是,翼肋能以剪流的形式将载荷分散地传给蒙皮和腹板。分散集中载荷也是翼肋在机翼结构中的作用之一。传递较大的集中载荷的翼肋,通常都是加强的。它们的结构强度较大,同腹板、蒙皮的连接也比普通翼肋结实很多,一般是两排或三排直径较大的铆钉连接。但当飞机作剧烈的机动飞行或粗猛着陆后,加强翼肋上的部件固定接头,以及加强翼肋与腹板、蒙皮连接的铆钉仍可能 西安航空职业技术学院
毕业设计论文
因受力过大而损坏。对这些部位,应当特别注意检查,修理这些部位时,也要特别注意保持其强度。有些飞机机翼上的集中载荷,是通过固定接头上的螺钉或铆钉直接作用在翼梁上的。这时,集中载荷由翼梁腹板和缘条直接传给机身。维护工作中,对这些固定接头,也应加强检查。
5.3机翼结构中力的传递过程
机翼结构中力的传递过程,可以简要归纳如下:
1.蒙皮上的局部空气动力,由桁条或直接同翼肋贴合的蒙皮传给翼肋。2.翼肋将空气动力和集中载荷,按梁的抗弯刚度成正比地传给腹板,将它们对刚心扭矩传给蒙皮。蒙皮将扭矩传给与机身接合的周缘螺钉(或开口边缘的加强翼肋)。
3.腹板把各个翼肋传来的剪力,传给机身隔框;把这些力产生的弯矩,通过纵向排列的铆钉传给上下缘条。
4.机翼翼梁的缘条,连同桁条和蒙皮,把由纵向铆钉传来的力,传给机身的连接接头。16 西安航空职业技术学院
毕业设计论文
6飞机机翼结构的发展
6.1 新材料的应用
1.复合材料一般被设计成叠层结构,根据纤维的排列方向不同,构成了复合材料各项异性的特点,明显地表现在力学性能、刚度特性方面,利用这一特点,进行优化剪裁设计,可以获得高效率、低重量的航空结构。复合材料的组件化、整体化设计,可以大大减少零件数量,减少连接件和连接过渡区附加重量、减少装配,是减轻结构重量、降低成本的有效技术途径。自20世纪70年代中期起,美国各大航空公司率先在各自新研制军机上采用复合材料机翼结构;欧洲随后效仿。我国在1995年试飞成功带整体油箱复合材料机翼,现已装机试用。目前战斗机机翼结构,复合材料的用量已占机翼结构重量的1/3~1/2,甚至更多。
2.由于,钛合金、铝合金的比强度、比刚度高、比重小,可设计,也是现代飞机机翼设计中减轻结构重量的重要途径。
3.新一代纳米材料是本世纪的前沿技术之一,对航空技术带来深刻影响。这是因为它比非纳米金属有更高的拉伸强度、疲劳性能和塑性,而且重量轻。美国NASA对可重复使用的空天飞机的研究表明,以铝合金的重量为100%计算,用普通的碳纤维增强复合材料可减重55%,碳纳米管增强复合材料则可减重82%。
6.2新技术的出现
现代飞机机翼设计采用了各种新技术,由原来静强度设计发展到疲劳寿命设计、损伤容限和耐久性设计、可靠性设计。计算机与有限元法相结合,运用计算机辅助设计,ANSYS、NASTRAN有限元分析等先进手段,追求最佳几何尺寸,使机翼设计更加精确、合理,充分发挥结构效率,得到重量轻效率高的结构。整体油箱技术的应用,减少了传统油箱的隔板,大大减轻了机翼结构重量。
6.3新工艺、新设备的发展
整体、蜂窝胶接、翼身融合体等承载能力大、重量轻的先进结构,相继研制了大吨位的水压机、整体壁板拉伸机、多坐标数控铣床以及大型热压等先进设备。还开发了机翼整体壁板喷丸成形、超长蒙皮的滚弯成形、整体油箱密封、强化工艺、激光加工、自动铆接装配等技术。
随着新材料、新技术、新工艺在飞机设计中的广泛应用,机翼结构重量在飞机结构重量中所占比重越来越小。在满足强度条件下,机翼结构是集现代新材料、新技术、新工艺于一身,可以预见,随着时代的发展,机翼结构重量比例将会进一步下降。西安航空职业技术学院
毕业设计论文
结 束 语
这次毕业设计是对我们大学三年学习的一次重要的检验,也是对我们在三年的学习是否达到一定的水平,是否合格的一次考核。在这段难忘的毕业设计的时期里我感受到了研究一个课题的乐趣,这也是我学习飞机制造专业以来第一次比较系统的制作的设计,当然,在设计的过程中遇到了许多的困难,但是我坚信,只要坚持加努力,就一定能完成任务。每解决一个困难的时候,心里就会感到很高兴,并且也在开发过程中得到了一次难能宝贵的经验。
我的毕业设计即将成功结束,在将近两个多月的设计时间里,我克服了重重障碍,并加之不断的推敲钻研,在这段日子里,我学到了很多东西,重新巩固了原来的知识,甚至学到了那些没有在大学课堂里学到的知识,为今后的工作和再学习指明了方向。能有现在这样的成果,离不开老师和同学们的鼓励和帮助。
西安航空职业技术学院
毕业设计论文
谢 辞
本设计在杨琼老师的悉心指导和严格要求下认真完成,从课题选择、方案论证到具体设计和调试,无不凝聚着杨老师的心血和汗水,在三年的专科学习和生活期间,也始终感受着指导老师的精心指导和无私的关怀,我受益匪浅。在此向杨老师表示深深的感谢和崇高的敬意。
不积跬步何以至千里,此设计能够顺利的完成,也归功于三年来各位任课老师的认真负责,使我能够全面的、很好的掌握和运用专业知识,并在设计中得以体现。正是有了他们的悉心帮助和支持,才使我的毕业论文工作顺利完成,在此向西安航空职业技术学院,航空维修工程系的全体老师表示由衷的谢意。感谢他们三年来的辛勤栽培。
西安航空职业技术学院
毕业设计论文
文 献
[1] :曹建华、白冰如.飞机构造.北京.国防工业出版社.2010年(1-49页)
[2] :杨华宝.飞机原理与构造.西安.西北工业大学出版社.2002年8月(112-150页)[3] :王志瑾、姚卫星.飞机结构设计.北京.国防工业出版社.2004年(124-130页)[4] :陶梅贞.现代飞机结构综合设计.西安.西北工业大学出版社.2001年(142-150页)[5] :许玉赞.飞机结构学.北京.中国科学图书仪器公司出版.1953年(86-89页)
第五篇:飞机结构与系统教学大纲
《飞机结构与系统基础》课程教学大纲
课程名称:飞机构造基础 计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础 课程性质:专业课 课程类型:必修课
一、课程的性质和任务
本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程
二、课程特色
本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。
本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解.
三、知识能力培养目标
(一)基本知识
飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。
(二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。
(三)自学能力
培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。
四、课程内容和要求 见附表
五、考核方法和成绩评定
(一)考核方法
本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34末占总成绩的60%。
(二)成绩评定
1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况
六、教学参考书
《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 《航空电气》盛乐山主编
《民用航空器维修人员指南》(机体部分)
七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。