第一篇:新材料在军工用品方面的应用现状和发展趋势
新材料技术在军工方面的应用现状及发展趋势
武晓博
摘 要:军用新材料按其用途可分为结构材料和功能材料两大类,广泛应用于航空、航天、兵器和船舰等领域中。文章对二者进行了综述,并就及其在军工领域的相关应用;并讨论了其今后的发展趋势。
关键词:新材料技术;军工;结构材料;功能材料 引言
国无防不立,民无防不安。作为一个国家、一个民族,最重要的无非两件大事:一个是发展问题,一个是安全问题。国防是人类社会发展与安全需要的产物,它是关系到国家和民族生死存亡的根本大计。
现代国防以军事力量为核心,还包括有关的非军事力量;它重视国家的战争潜力,特别是战时的动员效率;它还是以经济和科技为主的综合实力的竞争。材料技术作为国家科技发展规划中最为关键的领域之一,与信息技术、生物技术、能源技术一起,被公认为是当今社会及今后相当长时间内总揽全局的高新技术。材料高新技术还是支撑当今人类文明的现代工业关键技术,用于军事领域的军用新材料技术是发展高新技术武器的物质基础,也是一个国家国防力最最重要的物质基础。
出于自身利益及世界形势的考量,每个国家都需要且必须建立强大的国防。因而开发具有自主知识产权的现代化尖端武器,对国家安全而言就显得尤为重要。而就目前现有的材料品种、规格、性能及冶炼工艺方式已远远不能满足高新武器发展的需求,有时甚至成为制约武器研究开发的“瓶颈”,在这种背景下,军用材料技术便应运而生。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。2 新材料技术在军工方面的应用
军用新材料按其用途可分为结构材料和功能材料两大类,广泛应用于航空、航天、兵器和船舰等领域中。
2.1 军用结构材料
随着现代科学技术的发展,武器装备的技术密集程度越来越高,正在从机械化战争向信息化战争演变,武器装备向精确制导方向发展。因此,对军用材料提出了更高、更新的要求。2.1.1 镁合金[1] 镁合金作为最轻的工程金属材料,具有比重轻、比强度及比刚度高、阻尼性及导热性好,电磁屏蔽能力强、以及减振性好等一系列独特的性质,极大的满足了航空航天、现代武器装备等军工领域的需求。
镁合金在军工装备上有诸多应用,如坦克座椅骨架、车长镜、炮长镜、变速箱箱体、发动机机滤座、进出水管、空气分配器座、机油泵壳体、水泵壳体、机油热交换器、机油滤清器壳体、气门室罩、呼吸器等车辆零部件;战术防空导弹的支座舱段与副翼蒙皮、壁板、加强框、舵板、隔框等弹箭零部件;歼击机、轰炸机、直升机、运输机、机载雷达、地空导弹、运载火箭、人造卫星等飞船飞行器构件。
镁合金重量轻、比强度和刚度好、减振性能好、电磁干扰、屏蔽能力强等特点能满足军工产品对减重、吸噪、减震、防辐射的要求。在航空航天和国防建设中占有十分重要的地位,是飞行器,卫星,导弹,以及战斗机和战车等武器装备所需的关键结构材料。2.1.2 铝合金
铝合金一直是军事工业中应用最广泛的金属结构材料之一。铝合金材料具有密度低、强度高、加工性能好等特点,作为结构材料,因其加工性能优良,可制成各种截面的型材、管材、高筋板材等,以充分发挥材料的潜力,提高构件刚、强度。所以,铝合金是武器轻量化首选的轻质结构材料。
铝合金的发展趋势是追求高纯、高强、高韧和耐高温,在军事工业中应用的铝合金主要有铝锂合金、铝铜合金和铝锌镁合金。
新型铝锂台金应用于航空工业中,预计飞机重量将下降8%~15%;铝锂合金同样也将成为航天飞行器和薄壁导弹壳体的候选结构材料。随着航空航天业的迅速发展,铝锂合金的研究重点仍然是解决厚度方向的韧性差和降低成本的问题。2.1.3 结构陶瓷
常用的结构陶瓷材料主要包括:氧化铝、氧化铅、氮化硅、碳化硅、氮化铝及其复合材料等。由于结构陶瓷材料通常具有高强、高硬、耐高温、耐腐蚀、耐磨损的特性,因而在国防、军工领域具有广泛的应用。
陶瓷材料是当今世界上发展晟快的高技术村料,它已经南单相陶瓷发展到多相复合陶瓷。结构陶瓷材料因其耐高温、低密度、耐磨损及低的热膨胀系数等诸多优异性能,在军事工业中有着良好的应用前景。
利用结构陶瓷的高硬度、高耐磨性可以制备陶瓷刀具、陶瓷轴承、防弹装甲、各种阀门、耐磨衬里、密封环;利用结构陶瓷的耐高温性能可以制备高温陶瓷热交换器、汽车尾气过滤器、燃气轮机高温过流部件;利用结构陶瓷的透明性可以制备透明灯管、导弹窗口材料等[2]。2.1.4 超高强度钢
超高强度钢是屈服强度和抗拉强度分别超过1200MPa和1400MPa的钢,它是为了满足飞机结构上要求高比强度的材料而研究和开发的。
超高强度钢不仅具有高的抗拉强度,还具有一定塑性和韧性、小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等优点,在航空工业的应用越来越广泛。
超高强度钢大量用于制造火箭发动机外壳,飞机机身骨架、蒙皮和着陆部件以及高压容器和一些常规武器。由于钛合金和复合材料在飞机上应用的扩大,钢在飞机上用量有所减少,但是飞机上的关键承力构件仍采用超高强度钢制造。目前,在国际上有代表性的低合金超高强度钢300M,是典型的飞机起落架用钢。此外,低合金超高强度钢D6AC是典型的固体火箭发动机壳体材料。超高强度钢的发展趋势是在保证超高强度的同时,不断提高韧性和抗应力腐蚀能力。2.1.5 先进高温合金
高温合金在600~1200℃高温下能承受一定应力并具有抗氧化或抗腐蚀能力的合金,具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按基体元素来分,高温合金又分为铁基、镍基、钴基等高温合金。铁基高温合金使用温度一般只能达到750~780℃,对于在更高温度下使用的耐热部件,则采用镍基和难熔金属为基的合金。镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。若以150MPA~100H持久强度为标准,而目前镍合金所能承受的最高温度>1100℃,而镍合金约为950℃,铁基的合金<850℃,即镍基合金相应地高出150℃至250℃左右。所以人们称镍合金为发动机的心脏。目前,在先进的发动机上,镍合金已占总重量的一半,不仅涡轮叶片及燃烧室,而且涡轮盘甚至后几级压气机叶片也开始使用镍合金。与铁合金相比,镍合金的优点是:工作温度较高,组织稳定、有害相少及抗氧化搞腐蚀能力大。与钴合金相比,镍合金能在较高温度与应力下工作,尤其是在动叶片场合。2.1.6 复合材料
复合材料是指两种以上不同性质或不同结构物质组合而成的材料,通常由基体材料与增强剂组成。先进复合材料比通用复合材料具有更高综合性能,它包括树脂基复合材料、金属基复合材料、陶瓷基复合材料和碳基复合材料等,它在军事工业的发展中起着举足轻重的作用。先进的复合材料具有高强度、高模量、耐烧蚀、抗侵蚀、抗核、抗粒子云、透波、吸波、隐身、抗高速撞击等一系列优点,是国防工业发展中最重要的一类工程材料。
复合材料正在迅速发展成为航天航空工业的基本结构材料。高性能聚合物基复合材料在航空航天工业的用量占其全部用量的80%。由于碳纤维具有高比强度、比模量、低热膨胀系数和高导热性等独特性能,因而由其增强的复合材料用作航空航天结构材料,减重效果十分显著,显示出无可比拟的巨大应用潜力。例如,碳纤维增强树脂烬复合材料用做航天飞机舱门、机械臂和压力容器等,此外,还将其在火箭与导弹的减重、飞机的主承力结构,在雷达波隐身材料方面,除涂层外,复合材料作为结构隐身材料正日益引起人们的关注,主要为碳纤维增强热固性树脂基复合材料(如C/EP、C/PI或C/BMI)和热塑性树脂基复合材料(C/PEEK,C/PPS),目前已经得到了某些应用[3]。
2.1.7 金属间化合物
金属间化合物具有长程有序的超点阵结构,保持很强的金属键结合,使它们具有许多特殊的理化性质和力学性能。金属间化合物具有优异的热强性,近年来已成为国内外积极研究的重要的新型高温结构材料。在军事工业中,金属间化合物已被用于制造承受热负荷的零部件上;在兵器工业领域,坦克发动机增压器涡轮材料为K18镍基高温合金,因其比重大、起动惯量大而影响了坦克的加速性 能,应用钛铝金属闻化合物及其由氧化铝、碳化硅纤维增强的复合轻质耐热新材料,可以大大改善坦克的起动性能,提高战场上的生存能力。此外,金属问化合物还可用于多种耐热部件,减轻重量,提高可靠性与战技指标。
2.2 军用功能材料[4] 功能材料是指利用声、光、电、磁、热、化、生化等效应,将能量从一种形式转化为另一种形式的材料。功能材料很多,如光电功能材料、贮氢功能材料、阻尼减震材料、隐身材料等。2.2.1 光电功能材料
光电功能材料是指在光电子技术中使用的材料,它能将光电结合的信息传输与处理,是现代信息科技的重要组成部分。光电功能材料在军事工业中有着广泛的应用。碲镉汞、锑化铟是红外探测器的重要材料;硫化锌、硒化锌、砷化镓主要用于制作飞行器、导弹以及地面武器装备红外探测系统的窗口、头罩、整流罩等。氟化镁具有较高的透过率、较强的抗雨蚀、抗冲刷能力,它是较好的红外透射材料。激光晶体和激光玻璃是高功率和高能量固体激光器的材料,典型的激光材料有红宝石晶体、掺钕钇铝石榴石、半导体激光材料等。2.2.2 贮氢功能材料
某些过渡簇金属,合金和金属问化合物,由于其特殊的晶格结构的原因,氢原子比较容易透入金属晶格的四面体或八面体间隙位中,形成了金属氢化物,这种材料称为贮氢材料。
在兵器工业中,坦克车辆使用的铅酸蓄电池因容量低、自放电率高而需经常充电,此时维护和搬运十分不便。放电输出功率容易受电池寿命、充电状态和温度的影响,在寒冷的气候条件下,坦克车辆起动速度会显著减慢,甚至不能起动,这样就会影响坦克的作战能力。贮氢合金蓄电池具有能量密度高、耐过充、抗震、低温性能好、寿命长等优点,在未来主战坦克蓄电池发展过程中具有广阔的应 用前景。
2.2.3 阻尼减震材料
阻尼是指一个自由振动的固体即使与外界完全隔离,它的机械性能也会转变为热能的现象。采用高阻尼功能材料的目的是减震降嗓,因此阻尼减震材料在军事工业中具有十分重要的意义。2.2.4 隐身材料
现代攻击武器的发展,特别是精确打击武器的出现,使武器装备的生存力受到了极大的威胁,单纯依靠加强武器的防护能力已不实际。采用隐身技术,使敌方的探测、制导、侦察系统失去功效,从而尽可能地隐蔽自己,掌握战场的主动权,抢先发现并消灭敌人,己成为现代武器防护的重要发展方向。隐身技术的最有效手段是采用隐身材料。
隐身材料有毫米波结构吸波材料、毫米波橡胶吸波材料和多功能吸波涂料等,它们不仅能够降低毫米波雷达和毫米波制导系统的发现、跟踪和命中的概率,而且能够兼容可见光、近红外伪装和中远红外热迷彩的效果。
近年来,国外在提高与改进传统隐身材料的同时,正致力于多种新材料的探索。晶须材料、纳米材料、陶瓷材料、手性材料、导电高分子材料等逐步应用到雷达波和红外隐身材料,使涂层更加薄型化、轻量化。纳米材料因其具有极好的吸波特性,同时具备了宽频带、兼容性好、厚度薄等特点,发达国家均把纳米材料作为新一代隐身材料加以研究和开发;国内毫米波隐身材料的研究起步于上世纪80年代中期,研究单位主要集中在兵器系统。经过多年的努力,预研工作取得了较大进展,该项技术可用于各类地面武器系统的伪装和隐身,如主战坦克、155毫米先进加榴炮系统及水陆两用坦克等。
目前,世界上正在研制的第四代超音速歼击机,其机体结构采用复合材料、翼身融合体和吸波涂层,使其真正具有了隐身功能,而电磁波吸收型涂料、电磁屏蔽型涂料已开始在隐身飞机上涂装;美国和俄罗斯的地对空导弹正在使用质、宽频带吸收、热稳定性好的隐身材料。可以预见,隐身技术的研究和应用已成为世界各国国防技术中最重要的课题之一。3 军用新材料技术的发展趋势
从今后军工企业发展趋势来看,用于军事工业的新材料要求具有较高的技术含量,世界范围内的军用新材料正向高功能化、超高功能化、复合轻量和智能化的方向发展。军事高技术的发展要求材料不再是单一的结构材料。在这种条件下,军用复合材料应运而生。2l世纪复合材料的发展方向是低成本、高性能、多功能和智能化。
我国军用材料经过多年发展,已取得长足进步,但也存在“多、杂、散”的问题,系列化、通用化较差,影响了军用材料科研的整体效益和对于武器装备研制生产的保障能力,为此需要建立适合我国国情的军用材料体系[5]。
回首过去,国防建设和兵器工业的发展得益于材料科学的发展,展望未来,材料科学的进步将给国防建设提供强有力的保障。
参考文献
[1] 张志民.镁合金在国防军工领域的应用.中国有色金属工业协会镁业分会第十二届年
会,2009.[2] 齐龙浩.先进结构陶瓷材料的研究与应用.中国(宁波)新材料与产业化国际论坛,2007.[3] 吴良义.航空航天先进复合材料现状.第十三次全国环氧树脂应用技术学术交流会,2009.[4] 李照勇,王效荣.军用新材料技术的研究与应用.国际材料科学与工程学术研讨会,2005.[5] 才鸿年.国际材料科学与工程学术研讨会.中国工程院化工·冶金与材料工程学部第六届学术会议,2007.
第二篇:新材料在军工方面的研究现状和发展趋势
新材料在军工方面的研究现状及发展趋势
摘要:新材料在军工领域已经得到了广泛的应用,这里综述了军工结构材料以及功能材料的研究现状,最后展望了新材料在军工方面的发展趋势。关键字:新材料, 军工, 研究现状,结构材料,功能材料,发展趋势
The status quo and development trend of new materials in aspects of the military-industrial(Wang Hongwei Material Science and Engineering Institute in North University of China)Abstract: The new materials has been widely used in the military-industrial,here reviewed the status quo of research of Structural materials and functional materials in aspects of the military-industrial.Finally, here prospect the development trend of the new materials in aspects of the military-industrial.Key words: new materials, military-industrial, the status quo of research, structural materials, functional materials, the trends of development
在现代工业、国防和高新技术发展中,新材料已成为一项共性关键技术,并且正在成为当代和下世纪初最重要、发展最快的科学技术之一。国防科技工业常常是新材料技术成果的优先使用者,同时也是一些重要高性能新材料的需求牵引者。新材料技术的研究开发对于国防科技工业和武器装备的发展有着决定性的意义,新材料是指那些新出现或正在发展中的具有传统材料所不具备的优异性能的材科,而军工新材料则是指用于制造各种先进武器装备或用于武器装备改造的新材料[1]。
1.军工新材料的分类
按照物化成的武器装备,军工新材料可分成航空材料、航天材料、兵器材料、舰船材料、核武器及核动力装置材料、动能、定向能武器材料以及军用电子材料等。按照材料的主要用途,军工新材料可分为结构材料和功能材料两大类。其中,结构材料又可分为金属结构材料,陶瓷结构材料、高分子结构材料和复合材料;功能材料则可分为磁性材料、电子和光学材料、防热材料、抗核、抗激光、抗粒 子云侵蚀材料、隐身材料、阻尼材料、推进剂、炸药或高能量密度材料以及新出现的智能材料、功能梯度材料等。近年来,还出现了结构/功能一体化及多功能化的趋势。
2.军工新材料的特点
军工新材料与传统材料相比具有一些新的特点,这些特点对于发展高技术武器装备具有十分重要的意义。
(1)质量轻,强度高,弹性模量大,这为发展小型化、轻量化核武器、导弹、卫星、火箭和具有高机动性能的坦克、飞机等武器装备创造了条件。
(2)具有耐高温、高压、高速、高燃速、高热流、强腐蚀、强振动、强辐射和原子氧辐照等极端恶劣环境的性能,这为发展极端环境下使用导弹、火箭和可重复使用航天器及长寿命的火炮、飞机等武器装备奠定了基础。
(3)具有吸波、消声、降噪、吸能、减少红外特征等隐身功能和抗核、抗激光、抗粒子云侵蚀等防护功能或多种功能兼备的特性,这对提高坦克、飞机、导弹、舰艇和航天器等武器装备的生存能力和突防能力具有重要意义。
(4)具有优异的光、电、磁性能,这些性能是确保武器装备的控制、制导、导航、通信、电子战的准确性和有效性并向智能化方向发展,实现高精度、高效率、高可靠性要求的前提。3.新材料在军工方面的研究现状
军工新材料按其用途可分为结构材料和功能材料两大类,广泛应用于航空、航天、兵器和船舰领域中[2]。3.1 军工结构材料
随着现代科学技术的发展,武器装备的技术密集程度越来越高,正在从机械化战争向信息化战争演变,武器装备向精确制导方向发展。因此,对军用材料提出了更高、更新的要求。
3.1.1 超高强度钢和先进高温合金
超高强度钢是屈服强度和抗拉强度分别超过1200MPa和1400MPa的钢,它是为了满足飞机结构上要求高比强度的材料而研究和开发的。超高强度钢大量用于制造火箭发动机外壳,飞机机身骨架、蒙皮和着陆部件以及高压容器和一些常规武器。由于钛合金和复合材料在飞机上应用的扩大,钢在飞机上用量有所减少,但 2 是飞机上的关键承力构件仍采用超高强度钢制造。目前,在国际上有代表性的低合金超高强度钢300M,是典型的飞机起落架用钢。此外,低合金超高强度钢D6AC是典型的固体火箭发动机壳体材料。超高强度钢的发展趋势是在保证超高强度的同时,不断提高韧性和抗应力腐蚀能力。3.1.2 钛合金
钛合金具有轻质高强、耐热性好、并有较高的疲劳寿命和优良的抗腐蚀性能等优点。在军民用飞机上的应用不断增长。钛合金用量占美国第四代战斗机F-22结构重量的41%,占俄罗斯第三代战斗机苏-27结构重量的18%左右。预计到下世纪初,这种趋势将继续保持。钛合金在飞机上起初只用于发动机热影响区的非承力零件。从60年代开始用于承力构件.包括飞机机身的加强框、中央翼盒、进气道框架、发动机支掸梁等.机翼的梁、肋等,起落絮的主、前起支柱等.发动机的压气机盘件、叶片、机匣、鼓筒等。3.1.3 镁合金
镁合金是以镁为基加入其他元素组成的合金,是目前实际应用中最轻的金属结构材料,具有密度小、强度高、阻尼性、切削加工性和铸造性能好的优点,因此镁合金是武器轻量化极为重要的的轻质结构材料[3]。(1)镁合金材料在航空航天工业中的研究现状
航空材料减重带来的经济效益和性能的改善十分显著, 商用飞机与汽车减重相同质量带来的燃油费用节省, 前者是后者的近100 倍。而战斗机的燃油费用节省又是商用飞机的近10 倍, 更重要的是其机动性能改善可以极大提高其战斗力和生存能力。
随着镁合金制备技术的发展,材料的性能如比强度、比刚度、耐热强度、蠕变等性能不断提高,其应用范围也不断扩大。目前其应用领域包括各民用、军用飞机的发动机零部件、螺旋桨、齿轮箱、支架结构以及火箭、导弹、卫星的一些零部件。如用ZM2制造WP7各型发动机的前支撑壳体和壳体盖;用ZM3镁合金制造J6飞机的WP6发动机的前舱铸件和WP11的离心机匣;用ZM4镁合金制造飞机液压恒速装置壳体、战机座舱骨架和镁合金机轮;以稀土金属钕为主要添加元素的ZM6 铸造镁合金已扩大用于直升机WZ6发动机后减速机匣、歼击机翼助等重要零件; 研制的稀土高强镁合金MB25、MB26已代替部分中强铝合金, 在歼击机上获得应 3 用。
(2)镁合金材料在用于现代兵器零部件方面的研究现状
采用镁合金及镁基复合材料替代武器装备的中、低强度要求的铝合金零件和部分黑色金属零件,可进一步实现武器装备轻量化。表1给出了镁合金材料在武器装备零部件中的研究应用情况。
表1 镁合金材料在武器装备零部件中的研究应用情况
装备名称 枪械武器
零部件名称
机匣、弹匣、枪托体、下机匣、提把、前护手、弹托板、瞄准座等 坦克座椅骨架、机长镜、炮长镜、变速箱箱体、发动机滤座、进出水管、装甲车辆 空气分配器座、机油泵壳体、水泵壳体、机油热交换器、机油滤清器壳体、气门室罩、呼吸器等
导弹 导弹舱体、舵机本体、仪表舱体、舵架、飞机翼片
火炮及弹药 供弹箱、牵引器、脚踏板、炮长镜、轮毂、引信体、风帽、火药筒等 光电产品 计算机及通军用计算机、通讯器材箱体、壳体、板类等零件
信器材 镜头壳体、红外成像仪壳体、底座等
此外,镁合金材料还可用于解决零件老化、变形和变色的问题。目前, 轻武器、光电及通讯器材产品、战车仪表盘等采用工程塑料制造。工程塑料尤其是纤维增强塑料的比强度最高, 但弹性模量、比刚度远小于镁合金, 且难以回收, 环境适应性差, 易磨损和老化变形、变色, 还影响武器战术性能。镁合金替代工程塑料能从根本上克服工程塑料的这些缺陷。表2给出了镁合金替代工程塑料在武器装备零部件上的研究应用情况。
表2 镁合金替代工程塑料在武器装备零部件方面的研究应用情况
装备名称 枪械武器 光电产品 军用器材
零部件名称
弹匣、护盖体、附件筒、前护手等 镜头壳体、瞄具壳体、夜视仪壳体等
种类仪表盘、通讯器材箱体、壳体零件、军用头盔等
3.1.4 复合材料
复合材料是指两种以上不同性质或不同结构物质组合而成的材料,通常由基 4 体材料与增强剂组成。先进复合材料比通用复合材料具有更高综合性能,它包括树脂基复合材料、金属基复合材料、陶瓷基复合材料和碳基复合材料等,它在军事工业的发展中起着举足轻重的作用。先进的复合材料具有高强度、高模量、耐烧蚀、抗侵蚀、抗核、抗粒子云、透波、吸波、隐身、抗高速撞击等一系列优点,是国防工业发展中最重要的一类工程材料。3.1.5 结构陶瓷
陶瓷材料是当今世界上发展晟快的高技术村料,它已经由单相陶瓷发展到多相复合陶瓷。结构陶瓷材料因其耐高温、低密度、耐磨损及低的热膨胀系数等诸多优异性能,在军事工业中有着良好的应用前景。3.2 军工功能材料
功能材料是指利用声、光、电、磁、热、化、生化等效应,将能量从一种形式转化为另一种形式的材料。功能材料很多.如光电功能材料、贮氢功能材料、阻尼减震材料、隐身材料等[4]。3.2.1 光电功能材料
光电功能材料是指在光电子技术中使用的材料,它能将光电结合的信息传输与处理,是现代信息科技的重要组成部分。光电功能材料在军事工业中有着广泛的应用。碲镉汞、锑化铟是红外探测器的重要材料:硫化锌、硒化锌、砷化镓主要用于制作飞行器、导弹以及地面武器装备红外探测系统的窗口、头罩、整流罩等。氟化镁具有较高的透过率、较强的抗雨蚀、抗冲刷能力,它是较好的红外透射材料。激光晶体和激光玻璃是高功率和高能量固体激光器的材料,典型的激光材料有红宝石晶体、掺钕钇铝石榴石、半导体激光材料等。3.2.2 储氢功能材料
某些过渡簇金属,合金和金属问化合物,由于其特殊的晶格结构的原因,氢原子比较容易透入金属晶格的四面体或八面体间隙位中,形成了金属氢化物,这种材料称为贮氢材料。在兵器工业中,坦克车辆使用的铅酸蓄电池因容量低、自放电率高而需经常充电,此时维护和搬运十分不便。放电输出功率容易受电池寿命、充电状态和温度的影响,在寒冷的气候条件下,坦克车辆起动速度会显著减慢,甚至不能起动,这样就会影响坦克的作战能力。贮氢合金蓄电池具有能量密 度高、耐过充、抗震、低温性能好、寿命长等优点,在未来主战坦克蓄电池发展 5 过程中具有广阔的应用前景。3.2.3 阻尼减震材料
阻尼是指一个自由振动的固体即使与外界完全隔离,它的机械性能也会转变为热能的现象。采用高阻尼功能材料的目的是减震降嗓。因此阻尼减震材料在军事工业中具有十分重要的意义。3.2.4 隐身材料
现代攻击武器的发展,特别是精确打击武器的出现,使武器装备的生存力受到了极大的威胁,单纯依靠加强武器的防护能力已不实际。采用隐身技术,使敌方的探测、制导、侦察系统失去功效。从而尽可能地隐蔽自己,掌握战场的主动权。抢先发现并消灭敌人,己成为现代武器防护的重要发展方向。
现代隐形技术,除了外型设计上采用先进的方法,进行热红外线和自身电磁隐形外,主要是使用新型吸收波材料,即在飞机表面涂抹能大量吸收雷达波的新型介质材料,将雷达电磁波吸收,使雷达无法发现。为应付不同雷达的不同工作方式,现在的隐形飞机已经开始有选择地使用吸收材料。目前,美、英等国正进行主动抵消技术的研究,即利用吸收材料,先吸收大部分的雷达波,剩下少量的反射波再利用主动抵消技术将其全部抵消,雷达就会完全失去作用。
近年来.国外在提高与改进传统隐身材料的同时,正致力于多种新材料的探索。晶须材料、纳米材料、陶瓷材料、手性材料、导电高分子材料等逐步应用到雷达波和红外隐身材料,使涂层更加薄型化、轻量化。纳米材料因其具有极好的吸波特性,同时具备了宽频带、兼容性好、厚度薄等特点,发达国家均把纳米材料作为新一代隐身材料加以研究和开发;国内毫米波隐身材料的研究起步于上世纪80年代中期,研究单位主要集中在兵器系统。经过多年的努力,预研工作取得了较大进展,该项技术可用于各类地面武器系统的伪装和隐身,如主战坦克、155毫米先进加榴炮系统及水陆两用坦克等。目前,世界上正在研制的第四代超音速歼击机,其机体结构采用复合材料、翼身融合体和吸波涂层,使其真正具有了隐身功能,而电磁波吸收型涂料、电磁屏蔽型涂料已开始在隐身飞机上涂装;美国和俄罗斯的地对空导弹正在使用轻质、宽频带吸收、热稳定性好的隐身材料。可以预见,隐身技术的研究和应用已成为世界各国国防技术中最重要的课题之一。
综上所述,对于国防兵器工业来说,对材料的基本要求是提高武器威力,减 6 轻重量、延长寿命、降低成本。因此,新型材料的发展与否、先进与否直接影响到我国的国防建设。我公司在军用新材料研制方面取得了长足的发展,先后成功研制了14MnNi、58SiMn等一系列新钢号,特别是某军品用材料,国内现有材料的强度已无法满足其正常工作。公司科技人员与钢厂共同研制了低合金超高强度钢管,保证了产品对原材料高强度、高韧性和抗应力腐蚀能力。4.军工新材料的发展趋势
从今后军工企业发展趋势来看,用于军事工业的新材料要求具有较高的技术含量,世界范围内的军用新材料正向高功能化、超高功能化、复合轻量和智能化的方向发展。
随着军事工业对高强度、低密度材料需求的日益迫切,钛合金的产业化进程显著加快。在国外,先进飞机上钛材重量已达到飞机结构总重的30%-35%。军事高技术的发展要求材料不再是单一的结构材料.在这种条件下。军用复合材料应运而生。2l世纪复合材料的发展方向是低成本、高性能、多功能和智能化。
纳米技术是现代科学和技术相结合的产物,它不仅涉及到现有的一切基础性科学技术领域,而且在军事工业中有着广泛的应用前景[5]。随着未来战争突发性的急剧增大,各种探测手段越来越先进。为适应现代战争的需要,隐身技术在军事领域占有十分重要的地位。纳米材料对雷达波的吸收率较高,从而为兵器隐身技术的发展提供了物质基础。
参考文献
[1] 卢清萍.新材料概论[M].长沙:中南大学出版社,2009.[2] 李丽,王斌.军用新材料技术的应用进展[J].科学时代,2010,(3):26-27 [3] 唐全波等.镁合金在先进兵器中的应用[J].先进制造与材料应用技术,2007,15(4):45-47 [4] 彭艳萍.军用新材料的应用现状及发展趋势[J].材料导报,2000,14(2):14-16 [5] 江惠民.纳米技术及其在新材料领域中的应用与展望[J].中国陶瓷,2003,39(6):49-51
第三篇:新材料在军工方面的研究现状和发展趋势
新材料在军工方面的研究现状和发展趋势
摘要:随着现代军事科技的不断发展,促使各国对武器装备的性能提出了更高的要求。由于军用新材料能够满足武器材料强韧化、轻量化、多功能化和高效化的发展要求,促使军工新材料的研究十分繁荣。本文主要综述了国内外军用结构新材料和功能新材料的研究进展,并对未来军用新材料的研究趋势进行了总结。关键词:军用新材料,钛合金,高强度钢,纳米隐身材料,磁性材料 前 沿
新材料是指那些新出现或正在发展中的具有传统材料所不具备的优异性能的材料。新材料的研制、开发与应用不仅构成对高技术发展的推动力,而且也成为衡量一个国家科技水品的高低的重要标志。因此,新材料是技术革命与创新的基石,是社会现代化的先导。现代高新技术对新材料的依赖越来越多,这使得发达国家和发展中国家都争相将新材料列为高新技术优先发展的领域和关键技术,各国都采取各种措施,力争抢占新材料技术的“制高点”[1]。
新材料的出现一方面对经济有着巨大的促进作用,自从20世纪80年代以来,新材料在整个世界贸易中所占的比例逐年递增,而且还促进了与新材料相关产业的飞速发展。因为有了新材料做基础,信息、生物工程、新能源、激光、海洋开发和空间技术作为促进生产、振兴经济、增强综合国力的高技术群和高知识密集型产业能够繁荣发展[1]。由此可见,新材料是未来经济发展的支柱性力量。另一方面,新材料的出现和应用又为国防安全提供了保证。国防科一直都是高、精、尖技术的集合,新材料是高技术的先导和基础。纳米材料出现使微型武器出现在战场,先进高分子材料出现使洲际导弹的出现成为可能,新型锂离子电池材料的出现让“无人机”出现在人们的视野,而非晶软磁合金材料大大提高了一些精密武器的工作环境。由此可见,新材料也是军事工业发展的重要促进力量,是新型武器装备的物质基础, 也是当今世界军事领域的关键技术。所以,对新材料在军工方面的研究现状总结和发展趋势的展望,对促进我国军事工业的发展有重大意义。军用结构材料
军用新材料按材料性能和用途可分为结构材料和功能材料两大类, 主要应用于航空工业、航天工业、兵器工业和船舰工业中。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀和抗辐射等性能要求, 目前在军事领域应用的结构材料主要有以下几类。2.1 先进金属结构材料
2.1.1 变形镁合金
变形镁合金有很高的比强度、比刚度和塑性,是航空航天领域中最有前途的金属结构材料之一,座舱架、吸气管、导弹舱段、壁板、蒙皮、直升机上机闸等大都采用镁理合金制件。有研究表明采用镁合金部件代替铝合金,可以解决铝合金机翼的疲劳问题。目前,对于镁合金的研究和开发已基本成熟,多个品牌的变形镁合金已经开发出来。例如:耐热镁合金、耐蚀镁合金、阻燃镁合金、高强韧镁合金以及超轻变形Mg-Li合金。其中,镁锂合金的研究十分活跃,美国、日本、俄罗斯在理论和应用开发方面都做了不少研究,我国也有一些单位进行前期研究,如东北大学和哈尔滨工业大学。目前主要应用在歼击机和枪械方面。如喷气式歼击机“洛克希德F-80”以及“B-36”轰炸机都应用这类镁合金。耐热镁合金目前主要在往稀土镁合金方向研究,如美国开发的QE22和 WE44镁合金具有相当高的高温强度,以运用到直径1m的“维热尔”火箭壳体的制作上,提高了其飞行性能。阻燃镁合金目前的研究也是向稀土化方向发展。这方面上海交通大学轻合金精密成型国家工程研究中心研究成果丰硕,他们开发出的加入铍和稀土元素的镁合金已成功的应用到了轿车变速箱壳盖的工业试验,相信在武器要求强量化背景下,这种镁合金在军事工业上会有很大的应用前景[2]。2.1.2 先进钛合金
钛是20世纪80 年代走向工业化生产的一种重要金属。也是一种对经济和国防具有重要意义的新型金属。钛合金与镁合金相似,它密度小、强度高、耐高温和抗腐蚀性好等优点,在航空航天和军事领域中获得了广泛应用,包括军用、民用飞机、航空发动机、导弹。舰艇、核反应堆以及轻型火炮等。为了扩大钛合金在军事方面的用途,主要进行了以下几个方面的研究[3]。(1)高强韧性,美国开发的Ti1023钛合金抗拉强度高、断裂韧性高、耐疲劳性好、锻造性能优良,已应用在B777飞机起落架系统和火箭发动机推进剂储箱和导管等部件。另外美国钛金属公司Timet分部研制的一种新型抗氧化、超高强钛合金β21S在690℃具有良好的抗氧化性能,可在540℃下长期工作。冷、热加工性能优良,可制成0.064mm的箔材。已被美国国家宇航局确定用作硅/钛复合材料的基体材料,并将用于美国航天飞机的机身和机翼壁板。(2)耐高温性,这项工作开始于20世纪50年代初期,英国、美国和俄罗斯在这方面具有先进水平,英国的IMI829、IMI834钛合金,美国的Ti100、俄罗斯的BT18Y、BT36、BT37已经用在了军用飞机发动机上。(3)阻燃性,20世纪80年代美国的两 2 家公司研制出对持续燃烧不敏感的钛合金Alloy C(Ti-1270),它具有较高的室温强度,并具有良好的室温和高温塑性、蠕变和疲劳性能,已用于F119发动机。我国研制的Ti-40阻燃性能与美国的Ti-1270相当,也用于我国新型的战斗机发动机上。我国的600℃高温钛合金TI60还处于研制阶段。2.1.3超高强度钢
超高强度钢是屈服强度和抗拉强度分别超过1200 Mpa 和1400 Mpa的钢, 它是为了满足飞机结构上要求高比强度的材料而研究和开发的。Aermetl00是美国Carpenter技术公司研制的高合金超高强度钢。已披用于F-
22、F-18E/F等先进飞机的起落架。美国近期又开发出一种后继钢,称Aermet 310,比Aermet100强度高10%,KIc达70MPa。SFGHITEN、NANOHITEN、ERW和HISTORY是日本JFE公司最近开发出的几种高强度钢。其中SFGHITEN为含Nb系列高强度IF钢板,主要应用对象是汽车车身外板, NANOHITEN是强度级别为780MPa的热轧钢板,其特点是塑性好、扩孔率高,具有优良的翻边成形性能和稳定的力学性能。可应用于各类加强件、臂类与梁类零件。ERW和HISTORY是JFE针对飞机悬架系零部件开发的高强度钢管,强度级别也是780 MPa。该材料具有良好的液压成形性能。已开始应用于飞机悬架系统的臂类零件。Stelco公司最近开发出了一种代号为SteIR MM的高强度微合金,具有良好的断裂韧性,经试验其断裂韧性比普通钢高22%左右,并已投放市场。国内发动机、直升机传动材料技术十分落后,北京航空材料研究院已自主开发出适应某型号飞机发动机的刚强度钢[4]。2.1.4 金属间化合物
金属间化合物材料技术仍处在探索发展阶段,美国GE公司将Ti-48Al-2Nb-2Crγ型合金精铸成CF6—80CZ发动机涡轮叶片.地面试车取得成功。惠普公司也拟根据Caesar计划在F119发动机上试车。对镍铝化台物也在进行广泛的研究工作,俄罗斯近年开发成功了BKHA-1B和BKHA-2M.前者以Nl3Al为基、后者以N3Al+NaAl为基。已分别用于发动机静子叶片和导向叶片涂层材料。国外在铌基体中加入Si,形成Nb3Si或Nb 3Si2金属间化合物。作为增强体,形成Nb-Si复合材料,其耐温能力比单晶合金提高
200~300℃[5]。
2.2 复合材料
材料科学的发展造就了高强度、高模量、低比重的碳纤维,从而掀开了先进复合材料的时代。日本于1955年首先发明了聚丙烯腈(PAN)基碳纤维,并于60年代初进入工业化生产,70年代中期诞生了以碳纤维为增强相的先进复合材料。碳基 3 增强具有无可比拟的高比强度及高比刚度性质及耐腐蚀、耐疲劳特性,非常适用于航空飞机和航天飞机。PAN 碳基纤维较早时候是T300级别的用于武器装备上,20世纪60年代末,美国开发出了硼纤维增强的环氧树脂复合材料,1971年成功应用于F-14战斗机尾翼上,此后又有F-
15、F-
16、米格-
29、幻影2000、F/A-18等复合材料尾翼问世。此时一般一架军用飞机的垂尾、平尾全采用复合材料,可占总重的5%左右。经过以后的发展,目前的飞机上复合材料用量到20%~50%不等,如美国的B-2战斗机大约占50%左右,机身大部分为复合材料[5]。
复合材料除了在军用飞机上有突出贡献,在导弹弹头上也大量应用,复合材料最早应用在导弹弹头的是层压玻璃/酚醛复合材料,后来发现不足,产生了模压高硅氧/酚醛。目前,科学家开发出了更好的碳/碳复合材料, 碳/碳复合材料具有低密度(<2.0g/cm3)、高比强、高比模量、高导热性、低膨胀系数,以及抗热冲击性能好、尺寸稳定性高等优点,是目前在1650℃以上应用的唯一备选材料,最高理论温度更高达2600℃,因此被认为是最有发展前途的高温材料。近期研制的导弹头帽几乎都采用了碳/碳复合材料。目前为了提高导弹的打击能力,由开发出碳/酚醛复合材料用作导弹弹头的防热层。另外在固体火箭发动机的喷管上,复合材料也不短改进,从最早的金属到后来的金属/非金属,现在一开始使用碳/碳复合材料,使导弹的性能得到很大的提高[6]。
陶瓷及陶瓷基复合材料具有高耐热性、低密度、良好的高温抗氧化性、抗腐蚀性和耐磨性等优点,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和降低燃料消耗具有重要作用。因此,高温结构陶瓷及其陶瓷基复合材料(CMC)的研究成为高推重比航空发动机的关键技术之一。美国早在1995年就用陶瓷基复合材料制造出了发动机燃烧室浮璧,并成功应用于XTC-65核心机中;法国在大量研究工作的基础上,将陶瓷基复合材料技术用于Rafale飞机的M88燃气涡轮发动机喷嘴阀;英国罗罗公司对陶瓷基复合材料的第一步目标是发展能在1200℃工作的陶瓷基复合材料,使现在的遄达发动机减重10%左右。目前,陶瓷基复合材料一直在改性研究上,碳纤维改性是最近研究的热点,用日本碳素公司生产的Hi-Nicalon纤维及道康宁公司开发的Sytramic纤维改性获得了较好结果[7][8]。军用功能材料
3.1 纳米隐身材料
美、俄、法等军事强国都把纳米隐身材料作为新一代的隐身材料进行探索和研究, 并对纳米材料的微波电磁谱理论、材料系列、制备方法、性能表征等进行了系统 研究, 研制出了多种不同结构的纳米隐身材料, 取得了实质性进展。
1995年, 日本采用纳米碳管与磁性吸收剂复合, 设计了纳米材料吸波涂层, 吸波性能有一定的提高, 在此基础上, 具有更明显的形状、磁晶、应力各向异性的二维纳米结构磁性金属薄膜逐渐引起了人们的重视。
20世纪末, 美国研制出的“超黑粉”纳米隐身材料, 对雷达波吸收率达到99%, 这种“超黑粉”纳米隐身材料实际上是用纳米石墨做吸收剂制成的石墨热塑性复合材料和石墨环氧树脂复合材料, 不仅吸收率大, 而且在低温下仍保持良好的韧性。
2000年俄罗斯成功利用了纳米晶体膜的高磁损耗和高磁导率特性, 制备了20nm 的超薄型多层膜毫米波吸波材料 , 具有良好的隐身效果。
法国研制的一种磁性多层膜宽频带纳米隐身材料, 它是由粘结剂和纳米级微屑填充材料构成, 能够吸收超高频的电磁波, 纳米级由超薄不定型磁性薄层及绝缘层构成, 非晶态磁性材料层为具有高磁导率的铁磁性材料, 层厚度为3nm,绝缘层为碳或者无机材料, 厚度为5nm,在50MHz~50GHz频率范围内具有良好的吸波性能[9][10]。
国内从20世纪80年代末也一直关注纳米材料用于雷达波隐身的可能性, 在纳米隐身机理的理论研究和实验研究方面均有所进展。成都电子科技大学研制的纳米针形磁性金属粉多层纳米膜复合吸波材料, 通过改变纳米针形磁性金属粉成分, 可以有效地控制其频率特性, 有利于展宽吸收频带。南京大学、华中科技大学在纳米物性研究的基础上, 理论上论证了采用纳米磁性多层膜提高隐身材料吸波效果的可行性, 并采用磁控溅射技术试制了纳米晶薄膜, 在4GHz~6GHz, 磁导率μ"可达到 40左右, 比磁性微米吸收剂提高了10倍[10]。
3.2 磁性材料
磁性材料作为新材料的一种,也是发展非常迅速的基础功能材料,其功能、结构、用途也是十分广泛的。而其在军事领域中的广泛应用更是成为各国强化军事优势的重要手段。
美国作为军事大国,其科技十分发达,在微波领域尤其如此。美国军方2003年与IBM等公司合作研究用于雷达报警系统、全球定位系统、舰载防御导弹、PAC-3导弹等的磁性材料,取得可喜进展。2004年IBM微电子公司发布了两条标准IC生产线,包括功率放大器和电压控制振荡器。2006年8月,美国东北大学研制出一种磁性材料。这种磁性陶制薄膜材料具有一种自发磁矩,可以有效降低雷达对磁体的需求。美国新近成立的VIDA产品公司集中研究高Q、宽调谐滤波器、振荡器和频率合成器的军事和商业应用。在新武器电磁炮方面,美国也已经取得了成果。
在日本,对磁性材料的研究也十分活跃。大同特殊钢公司近年开发出挠性电磁波吸收体“DPR”系列,其主要特点是高温环境下抗电磁干扰,可满足电子机器、光纤通信多方面需求。日立金属公司生产的“Finemet”纳米晶磁性材料,主要用于电子机器防干扰共态扼流圈。户佃工业公司与明治大学共同研制成由Co、Ni和氧化铁组成的只有30~40nm的纳米磁粉,可获得239~542kA/m(3000~6800 Oe)的矫顽力,并可以在50℃保持1 000h的热稳性。川崎钢铁公司新近开发出电磁线材,可用于倒相电路中的变压器或扼流圈,满足了电磁器件小型化、异型化需求。
印度从2003年1月起实施“萨姆尤科塔”电子战计划。计划中用的重要设施一拉简德拉相控阵雷达,由印度巴拉特电子有限公司生产。该技术的有效使用寿命将持续到2020年。印度陆军官员称,首批26辆电子战车辆已交付陆军并投入使用。韩国也在加紧研发。目前磁性材料的领域主要有软磁铁氧体、永磁铁氧体、磁介质、非晶磁芯等方面。俄罗斯SPA Ferrite公司研制的磁性材料已用于毫米波器件,大功率器件,铁氧体移相器上,SRPC“ISTOK”公司研制的材料在嵌入式微带和带线环行器和隔离器,同轴环行器,毫米波波导环行器和隔离器,高功率毫米波和厘米波环行器上广泛应用。
在欧洲,欧盟研究了微波真空器件用碳纳米管,微波与先进CMOS(补充型金属氧化物)技术集成,微电机系统集成相阵天线等。英国Belfast大学高频电子研究小组的典型研究项目包括毫米波前端和集成自追踪天线用的灵敏结构,其中关键技术是研制具有低反射损耗的空间移相器。英国Loughborough大学的无线通信研究小组主要研究天线与无线系统,包括在移动和卫星通信系统、微波和毫米波工程中的应用[11][12]。
3.3 电子信息材料
2006年8月, 美国乔治亚州技术学院研制出一种新型液晶聚合体材料(LCP), 并正在实验测试。这种超薄、像塑胶一样的材料具有轻质和柔软的特性, 比传统材料的性能更优异, 可应用于电路板、相控阵天线等各种领域。
2006年10月, 美国利弗莫尔·伯克利国家实验室研制出一种能够提高太阳能电池板功率的新型半导体材料。应用该材料能比传统材料获取更多频谱的太阳能, 利用率可达45%, 而传统的单晶半导体材料是25%, 传统的多晶半导体材料为39%, 有望替代在卫星上应用的昂贵的锌锰碲合金材料。
美国IBM公司和乔治亚州技术学院联合研制出一种新型硅-锗半导体材料。采用此材料制造成的晶体管运行频率超过500GHz。经过实验测试, 材料性能在超低温度 6 下仍然达到预定的期望值。该材料制成的超高频率硅-锗半导体材料电路可应用于通信、防务、航天、遥感等诸多潜在的应用领域[13]。研究展望
新材料的研究发展水平与一个国家的高技术以及国防建设的发展有着密切关系。而新材料在军工的研究任然十分活跃,目前的国内外研究水平已经取得了不少的成果,但是,在要求武器装备轻量化、性能高效化、智能化的现在,新材料还应该向以下趋势发展。
(1)在金属结构材料方面,主要发展高纯度、高强度、高韧性和耐高温以及低密度的金属结构材料,积极开发低成本合金。
(2)超高强度钢的发展趋势是在保证超高强度的同时, 不断提高韧性和抗应力腐蚀能力。
(3)对于金属间化合物应该致力于研究合金化和复合化研究,用以解决其低温脆性和高温强度偏低的缺陷。
(4)目前陶瓷结构材料存在的主要问题是脆性高、成本高和加工困难, 发展方向是采用CVI 技术和纳米技术制造高性能陶瓷。
(5)复合材料方面,应该加大新型复合材料的开发,提高材料的环保性能,可靠性能,智能性。
(6)军用功能材料的未来发展趋势是功能复合型材料,因此,各种功能材料在复合功能材料的研究是很有必要的。
总的来说,军用新材料的发展趋势是种类增多, 成本降低, 性能提高。材料通用化和标准化以及新型的加工工艺手段可以提高产品的使用寿命并且可以简化维修,也是未来军用材料研究的重点[14]。
参考文献
[1] 郑子樵.新材料概论[M].长沙:中南大学出版社,2009 [2] 张治民.变形镁合金应用研究与发展[A].中国有色金属工业协会镁业分会第十三届年会论文集[C], 银川, 2010.[3] 黄德民.新材料在现代鱼雷技术中的应用于发展[J].鱼雷技术,2004.12(2)[4] 彭艳萍.军用新材料的应用现状及发展趋势(待续)[J].材料导报,2000.14(1)[5] 李晓红.浅谈航空新材料与飞机、发动机的发展[J].中国军转民,2008.10 [6] 张卫东.装甲材料的发展历程[J].国外坦克,2006.10 [7] 陈统.新材料在兵器中的应用[J].现代兵器,1990 [8] 刘薇,杨军.装甲防护材料的研究现状及发展趋势[J].热加工工艺,2011.40(2)
[9] 于海涛,庄海燕,等.纳米隐身材料的研究进展及发展趋势[J].材料开发与应用,2011.26(1)[10] 赖高惠.军用纳米技术[J].化工新材料,2006.34(3)
[11] 杨仁富,马昌贵.国外军事领域磁性材料研究动态[J].新材料产业,2005.4 [12] 翁兴园,张继松,王燕明.非晶软磁合金材料的市场前景和发展方向[J].材料导报,2003.5 [13] 王家胜.2006年世界航天新材料发展综述[J].中国航天,2007,03 [14] 李汉海,唐振宇,梁龙喜.野战工事新材料技术应用的发展[A] 中国±木工程学会防护工程分会第九次学术年会论文集[C],北京,2004.
第四篇:新材料在军工方面的研究现状和发展趋势
新材料在军工方面的研究现状和发展趋势
摘要:随着现代军事科技的不断发展,促使各国对武器装备的性能提出了更高的要求。由于军用新材料能够满足武器材料强韧化、轻量化、多功能化和高效化的发展要求,促使军工新材料的研究十分繁荣。本文主要综述了国内外军用结构新材料和功能新材料的研究进展,并对未来军用新材料的研究趋势进行了总结。关键词:军用新材料,钛合金,高强度钢,纳米隐身材料,磁性材料 前 沿
新材料是指那些新出现或正在发展中的具有传统材料所不具备的优异性能的材料。新材料的研制、开发与应用不仅构成对高技术发展的推动力,而且也成为衡量一个国家科技水品的高低的重要标志。因此,新材料是技术革命与创新的基石,是社会现代化的先导。现代高新技术对新材料的依赖越来越多,这使得发达国家和发展中国家都争相将新材料列为高新技术优先发展的领域和关键技术,各国都采取各种措施,力争抢占新材料技术的“制高点”[1]。
新材料的出现和应用又为国防安全提供了保证。国防科一直都是高、精、尖技术的集合,新材料是高技术的先导和基础。纳米材料出现使微型武器出现在战场,先进高分子材料出现使洲际导弹的出现成为可能,新型锂离子电池材料的出现让“无人机”出现在人们的视野,而非晶软磁合金材料大大提高了一些精密武器的工作环境。由此可见,新材料也是军事工业发展的重要促进力量,是新型武器装备的物质基础, 也是当今世界军事领域的关键技术。所以,对新材料在军工方面的研究现状总结和发展趋势的展望,对促进我国军事工业的发展有重大意义。军用结构材料
军用新材料按材料性能和用途可分为结构材料和功能材料两大类, 主要应用于航空工业、航天工业、兵器工业和船舰工业中。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀和抗辐射等性能要求, 目前在军事领域应用的结构材料主要有以下几类。
2.1 先进金属结构材料
2.1.1 变形镁合金
变形镁合金有很高的比强度、比刚度和塑性,是航空航天领域中最有前途的金属结构材料之一,座舱架、吸气管、导弹舱段、壁板、蒙皮、直升机上机闸等大都采用镁理合金制件。有研究表明采用镁合金部件代替铝合金,可以解决铝合金机翼 的疲劳问题。目前,对于镁合金的研究和开发已基本成熟,多个品牌的变形镁合金已经开发出来。例如:耐热镁合金、耐蚀镁合金、阻燃镁合金、高强韧镁合金以及超轻变形Mg-Li合金。其中,镁锂合金的研究十分活跃,美国、日本、俄罗斯在理论和应用开发方面都做了不少研究,我国也有一些单位进行前期研究,如东北大学和哈尔滨工业大学。目前主要应用在歼击机和枪械方面。如喷气式歼击机“洛克希德F-80”以及“B-36”轰炸机都应用这类镁合金。耐热镁合金目前主要在往稀土镁合金方向研究,如美国开发的QE22和 WE44镁合金具有相当高的高温强度,以运用到直径1m的“维热尔”火箭壳体的制作上,提高了其飞行性能。阻燃镁合金目前的研究也是向稀土化方向发展。2.1.2 先进钛合金
钛是20世纪80 年代走向工业化生产的一种重要金属。也是一种对经济和国防具有重要意义的新型金属。钛合金与镁合金相似,它密度小、强度高、耐高温和抗腐蚀性好等优点,在航空航天和军事领域中获得了广泛应用,包括军用、民用飞机、航空发动机、导弹。舰艇、核反应堆以及轻型火炮等。为了扩大钛合金在军事方面的用途,主要进行了以下几个方面的研究。(1)高强韧性,美国开发的Ti1023钛合金抗拉强度高、断裂韧性高、耐疲劳性好、锻造性能优良,已应用在B777飞机起落架系统和火箭发动机推进剂储箱和导管等部件。(2)耐高温性,这项工作开始于20世纪50年代初期,英国、美国和俄罗斯在这方面具有先进水平,英国的IMI829、IMI834钛合金,美国的Ti100、俄罗斯的BT18Y、BT36、BT37已经用在了军用飞机发动机上。(3)阻燃性,20世纪80年代美国的两家公司研制出对持续燃烧不敏感的钛合金Alloy C(Ti-1270),它具有较高的室温强度,并具有良好的室温和高温塑性、蠕变和疲劳性能,已用于F119发动机。我国研制的Ti-40阻燃性能与美国的Ti-1270相当,也用于我国新型的战斗机发动机上。2.1.3超高强度钢
超高强度钢是屈服强度和抗拉强度分别超过1200 Mpa 和1400 Mpa的钢, 它是为了满足飞机结构上要求高比强度的材料而研究和开发的。Aermetl00是美国Carpenter技术公司研制的高合金超高强度钢。已披用于F-
22、F-18E/F等先进飞机的起落架。美国近期又开发出一种后继钢,称Aermet 310,比Aermet100强度高10%,,其特点是塑性好、扩孔率高,具有优良的翻边成形性能和稳定的力学性能。可应用于各类加强件、臂类与梁类零件。ERW和HISTORY是JFE针对飞机悬架系零部件开发的高强度钢管,强度级别也是780 MPa。该材料具有良好的液压成形性能。已 2 开始应用于飞机悬架系统的臂类零件。国内发动机、直升机传动材料技术十分落后,北京航空材料研究院已自主开发出适应某型号飞机发动机的刚强度钢。2.1.4 金属间化合物
金属间化合物材料技术仍处在探索发展阶段,美国GE公司将Ti-48Al-2Nb-2Crγ型合金精铸成CF6—80CZ发动机涡轮叶片.地面试车取得成功。惠普公司也拟根据Caesar计划在F119发动机上试车。对镍铝化台物也在进行广泛的研究工作,俄罗斯近年开发成功了BKHA-1B和BKHA-2M.前者以Nl3Al为基、后者以N3Al+NaAl为基。已分别用于发动机静子叶片和导向叶片涂层材料。国外在铌基体中加入Si,形成Nb3Si或Nb 3Si2金属间化合物。作为增强体,形成Nb-Si复合材料,其耐温能力比单晶合金提高
200~300℃。
2.2 复合材料
材料科学的发展造就了高强度、高模量、低比重的碳纤维,从而掀开了先进复合材料的时代。碳基增强具有无可比拟的高比强度及高比刚度性质及耐腐蚀、耐疲劳特性,非常适用于航空飞机和航天飞机。PAN 碳基纤维较早时候是T300级别的用于武器装备上,20世纪60年代末,美国开发出了硼纤维增强的环氧树脂复合材料,1971年成功应用于F-14战斗机尾翼上,此后又有F-
15、F-
16、米格-
29、幻影2000、F/A-18等复合材料尾翼问世。此时一般一架军用飞机的垂尾、平尾全采用复合材料,可占总重的5%左右。经过以后的发展,目前的飞机上复合材料用量到20%~50%不等,如美国的B-2战斗机大约占50%左右,机身大部分为复合材料。
复合材料除了在军用飞机上有突出贡献,在导弹弹头上也大量应用,复合材料最早应用在导弹弹头的是层压玻璃/酚醛复合材料,后来发现不足,产生了模压高硅氧/酚醛。目前,科学家开发出了更好的碳/碳复合材料, 碳/碳复合材料具有低密度(<2.0g/cm3)、高比强、高比模量、高导热性、低膨胀系数,以及抗热冲击性能好、尺寸稳定性高等优点,是目前在1650℃以上应用的唯一备选材料,最高理论温度更高达2600℃,因此被认为是最有发展前途的高温材料。近期研制的导弹头帽几乎都采用了碳/碳复合材料。目前为了提高导弹的打击能力,由开发出碳/酚醛复合材料用作导弹弹头的防热层。另外在固体火箭发动机的喷管上,复合材料也不短改进,从最早的金属到后来的金属/非金属,现在一开始使用碳/碳复合材料,使导弹的性能得到很大的提高。
陶瓷及陶瓷基复合材料具有高耐热性、低密度、良好的高温抗氧化性、抗腐蚀性和耐磨性等优点,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和 3 降低燃料消耗具有重要作用。因此,高温结构陶瓷及其陶瓷基复合材料(CMC)的研究成为高推重比航空发动机的关键技术之一。美国早在1995年就用陶瓷基复合材料制造出了发动机燃烧室浮璧,并成功应用于XTC-65核心机中;法国在大量研究工作的基础上,将陶瓷基复合材料技术用于Rafale飞机的M88燃气涡轮发动机喷嘴阀;英国罗罗公司对陶瓷基复合材料的第一步目标是发展能在1200℃工作的陶瓷基复合材料,使现在的遄达发动机减重10%左右。目前,陶瓷基复合材料一直在改性研究上,碳纤维改性是最近研究的热点,用日本碳素公司生产的Hi-Nicalon纤维及道康宁公司开发的Sytramic纤维改性获得了较好结果。军用功能材料
3.1 纳米隐身材料
美、俄、法等军事强国都把纳米隐身材料作为新一代的隐身材料进行探索和研究, 并对纳米材料的微波电磁谱理论、材料系列、制备方法、性能表征等进行了系统研究, 研制出了多种不同结构的纳米隐身材料, 取得了实质性进展。
1995年, 日本采用纳米碳管与磁性吸收剂复合, 设计了纳米材料吸波涂层, 吸波性能有一定的提高, 在此基础上, 具有更明显的形状、磁晶、应力各向异性的二维纳米结构磁性金属薄膜逐渐引起了人们的重视。
20世纪末, 美国研制出的“超黑粉”纳米隐身材料, 对雷达波吸收率达到99%, 这种“超黑粉”纳米隐身材料实际上是用纳米石墨做吸收剂制成的石墨热塑性复合材料和石墨环氧树脂复合材料, 不仅吸收率大, 而且在低温下仍保持良好的韧性。
2000年俄罗斯成功利用了纳米晶体膜的高磁损耗和高磁导率特性, 制备了20nm 的超薄型多层膜毫米波吸波材料 , 具有良好的隐身效果。
法国研制的一种磁性多层膜宽频带纳米隐身材料, 它是由粘结剂和纳米级微屑填充材料构成, 能够吸收超高频的电磁波, 纳米级由超薄不定型磁性薄层及绝缘层构成, 非晶态磁性材料层为具有高磁导率的铁磁性材料, 层厚度为3nm,绝缘层为碳或者无机材料, 厚度为5nm,在50MHz~50GHz频率范围内具有良好的吸波性能
[9][10]。
国内从20世纪80年代末也一直关注纳米材料用于雷达波隐身的可能性, 在纳米隐身机理的理论研究和实验研究方面均有所进展。成都电子科技大学研制的纳米针形磁性金属粉多层纳米膜复合吸波材料, 通过改变纳米针形磁性金属粉成分, 可以有效地控制其频率特性, 有利于展宽吸收频带。南京大学、华中科技大学在纳米物性研究的基础上, 理论上论证了采用纳米磁性多层膜提高隐身材料吸波效果的可行性, 并采用磁控溅射技术试制了纳米晶薄膜, 在4GHz~6GHz, 磁导率μ"可达到 40左 右, 比磁性微米吸收剂提高了10倍。
3.2 磁性材料
磁性材料作为新材料的一种,也是发展非常迅速的基础功能材料,其功能、结构、用途也是十分广泛的。而其在军事领域中的广泛应用更是成为各国强化军事优势的重要手段。
美国作为军事大国,其科技十分发达,在微波领域尤其如此。美国军方2003年与IBM等公司合作研究用于雷达报警系统、全球定位系统、舰载防御导弹、PAC-3导弹等的磁性材料,取得可喜进展。2004年IBM微电子公司发布了两条标准IC生产线,包括功率放大器和电压控制振荡器。2006年8月,美国东北大学研制出一种磁性材料。这种磁性陶制薄膜材料具有一种自发磁矩,可以有效降低雷达对磁体的需求。美国新近成立的VIDA产品公司集中研究高Q、宽调谐滤波器、振荡器和频率合成器的军事和商业应用。在新武器电磁炮方面,美国也已经取得了成果。
在欧洲,欧盟研究了微波真空器件用碳纳米管,微波与先进CMOS(补充型金属氧化物)技术集成,微电机系统集成相阵天线等。英国Belfast大学高频电子研究小组的典型研究项目包括毫米波前端和集成自追踪天线用的灵敏结构,其中关键技术是研制具有低反射损耗的空间移相器。
3.3 电子信息材料
2006年8月, 美国乔治亚州技术学院研制出一种新型液晶聚合体材料(LCP), 并正在实验测试。这种超薄、像塑胶一样的材料具有轻质和柔软的特性, 比传统材料的性能更优异, 可应用于电路板、相控阵天线等各种领域。
2006年10月, 美国利弗莫尔·伯克利国家实验室研制出一种能够提高太阳能电池板功率的新型半导体材料。应用该材料能比传统材料获取更多频谱的太阳能, 利用率可达45%, 而传统的单晶半导体材料是25%, 传统的多晶半导体材料为39%, 有望替代在卫星上应用的昂贵的锌锰碲合金材料。
美国IBM公司和乔治亚州技术学院联合研制出一种新型硅-锗半导体材料。采用此材料制造成的晶体管运行频率超过500GHz。经过实验测试, 材料性能在超低温度下仍然达到预定的期望值。该材料制成的超高频率硅-锗半导体材料电路可应用于通信、防务、航天、遥感等诸多潜在的应用领域。研究展望
新材料的研究发展水平与一个国家的高技术以及国防建设的发展有着密切关系。而新材料在军工的研究任然十分活跃,目前的国内外研究水平已经取得了不少 的成果,但是,在要求武器装备轻量化、性能高效化、智能化的现在,新材料还应该向以下趋势发展。
(1)在金属结构材料方面,主要发展高纯度、高强度、高韧性和耐高温以及低密度的金属结构材料,积极开发低成本合金。
(2)超高强度钢的发展趋势是在保证超高强度的同时, 不断提高韧性和抗应力腐蚀能力。
(3)对于金属间化合物应该致力于研究合金化和复合化研究,用以解决其低温脆性和高温强度偏低的缺陷。
(4)目前陶瓷结构材料存在的主要问题是脆性高、成本高和加工困难, 发展方向是采用CVI 技术和纳米技术制造高性能陶瓷。
(5)复合材料方面,应该加大新型复合材料的开发,提高材料的环保性能,可靠性能,智能性。
(6)军用功能材料的未来发展趋势是功能复合型材料,因此,各种功能材料在复合功能材料的研究是很有必要的。
总的来说,军用新材料的发展趋势是种类增多, 成本降低, 性能提高。材料通用化和标准化以及新型的加工工艺手段可以提高产品的使用寿命并且可以简化维修,也是未来军用材料研究的重点。
参考文献
[1] 郑子樵.新材料概论[M].长沙:中南大学出版社,2009 [4] 彭艳萍.军用新材料的应用现状及发展趋势(待续)[J].材料导报,2000.14(1)[5] 李晓红.浅谈航空新材料与飞机、发动机的发展[J].中国军转民,2008.10 [6] 张卫东.装甲材料的发展历程[J].国外坦克,2006.10 6
第五篇:成人用品发展趋势分析
成人用品发展趋势分析
根据杜蕾斯2012年全球性调查报告显示,58%的中国被调查者希望可以为性生活增添一些情趣,其中角色扮演(20%),SM(18%)最受欢迎。网易针对5000人的调查显示,九成人不反感成人用品,市场正在成熟。有1000亿的市场需求难以被满足。现在的问题,不是市场够不够大,而是怎么去满足现有饥渴的市场。人们对性生活质量的重视,以及性不和谐成为离婚第一大原因,使得越来越多的人有越来越强烈的意愿借助成人用品来提高性生活品质,而成人用品带来的强烈的性体验,使人们一旦开始使用,就会形成依赖,从而重复购买不同款式产品以不断追求新的体验。
未来的5年左右的时间内,80后将进入30岁的年龄带,成为各个行业的主要消费群体,这个群体更少观念束缚,更重视自我享受,所以,过去成人用品行业发展的主要束缚因素—社会观念束缚—将随着80后成为消费主流而根本性消除。
如果问一个身经百战的投资商,问他如今做什么生意最划算?他一定会不假思索地告诉你:成人用品店。别以为这是一个不值一提的行业,曾经的难于启齿已经变成如今受到国家政策保护的行业,成人用品行业正处于前所未有的市场高度之巅。据国内一项权威机构的调查表明,2009年,我国成人用品行业的销售数量又攀上一个全新的高度,成人用品加盟呈现一派大好形势,枕边界色成人用品连锁专卖店广受人们关注。
枕边界色的负责人表示,其实,有投资远见的加盟商早就将眼光对准了这一块堪称暴利的行业蛋糕。枕边界色成人用品加盟带给投资商的利益是毋庸置疑的,来自河北的投资商李先生就曾这样表示,经营枕边界色成人用品店带给他的利润是经营其他行业的数十倍,较之之前的打工收入,提高幅度更是令人瞠目结舌。这样的高回报也使得李先生的朋友纷纷加入到加盟枕边界色品牌之中,并收获不菲,提前完成了自己的创业计划。
其实,成人用品店的风靡绝非偶然。中国有13亿人口,成年人占70%以上,随着中国社会物质文明和精神文明的高速发展,计生用品、性保健用品已经被90%以上的成年人接受。在男性中年人中有83%的人有购买成人用品的经历。因此,枕边界色成人用品在国内无疑具有巨大的市场,进入这一投资领域具有得天独厚的良机。
虽然其他行业利润也都巨大,但是想脱颖而出太难,更别说能垄断一方,成为地方行业领军人物,但是这一切在枕边界色成人用品领域就可以实现。因为国民对性福生活品质的追求,加之这几年全球关于艾滋病、性病等病症的深度报道,使得成人用品的重视程度得到了前所未有的提高。成人用品加盟投资额相对小,单店成本低,才有机会多开店,利用密集开店垄断一方,使得投资者有钱可赚,成为市场的香饽饽顺理成章,这也是枕边界色成人用品店持续火爆、得到各方媒体高度关注的原因之一。
在经历了大约10年的培育期和5-8年的成长期后,成人用品加盟行业的复合增长率高达63%,高居朝阳行业之首。预计2013-2020年,成人用品加盟将呈现爆发式增长,由于全世界对于成人用品行业的关注不断提升,加之我国对于成人用品行业的准入门槛不断提高,加入这个行业将面临更大的机遇和挑战。因此,有志于此行业的朋友应该迅速抓住商机,选择好的项目投资,尽快实现开门红,将财富赢取在起跑线上。