纳米材料的结构及其热力学特性的研究与应用

时间:2019-05-13 07:06:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《纳米材料的结构及其热力学特性的研究与应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《纳米材料的结构及其热力学特性的研究与应用》。

第一篇:纳米材料的结构及其热力学特性的研究与应用

纳米材料的结构及其热力学特性的研究与应用

张成12721617

(上海大学材料科学与工程学院,上海 200072)

摘要:文章简要地概述了纳米材料的结构和基本效应,分别从纳米材料的热容、晶格参数、及纳米材料参与反应时反应体系的化学平衡吸附能等方面对纳米材料热力学的研究进展进行了阐述,并对热力学在纳米材料中的应用做了介绍,同时对其应用前景进行了展望。关键字:纳米材料;热力学;效应;结构

Development and Application forTheStructure and ThermodynamicFunctions of TheNanomaterials

ZhangCheng 12721617(School of Materials Science and Engineering,Shanghai University,Shanghai 200072,china)Abstract: The structure of the nanometer materials and the characterristics of nano material are briefly introduced in this paper.The thermodynamics properties of nanomaterials are usually different from the status of bulk materials.Thus,it is very important to stuty the thermodynamics of nanomatericals.The review focuses the status of research on thermodynamics of nanomaterials including heat capacity, lattice parameters and other thermodynamic functions.In addition, the development of thermodynamics in this field is introduced with the prospection for its application.Keywords:nanomaterials;thermodynamics;structure;functions

1.前言

纳米材料已成为材料科学和凝聚态物理领域中一个研究热点。这是由于它不仅具有独特的结构特征(含有大量的内界面),能为深入研究固体内界面结构与性能提供良好的条件,而且它还表现出一系列优异的物理、化学及力学性能,能为提高材料的综合性能发展新一代高性能材料创造优异的条件。

纳米热力学(nanothermodynamics)这个名词最早正式出现在2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时使用了这一名词[1],Giebultowicz在nature上撰文认为纳米尺度热力学为热力学这一传统理论提供了新的发展契机[2]。美国加利福尼亚大学的Hill是最早真正涉足纳米热力学这一领域的科学家,他的一系列工作为纳米热力学理论的应用奠定了基础[3-5]。事实上,近年来已经有科研工作者利用这一理论得出了一些传统 热力学理论难以

图1.纳米颗粒材料的SEM图

Fig.1 Scanning electron microscope picture of nanoparticles materials

2.2 纳米材料的结构

材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。

对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异

纳米材料主要由纳米晶粒和晶粒界面两部分组成。纳米晶粒内部的微观结构与传统的晶体结构基本一致,只是由于每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变。尽管每个晶粒都非常小,但与传统粗晶材料类似,其内部同样会存在着各种点阵缺陷:如点缺陷、位错、孪晶界等。在纳米材料中,点缺陷及位错等低维缺陷很不稳定,经充分弛豫后,很难在纳米晶粒中继续存在。而面缺陷则相对比较稳定,即使在纳米微粒中也可以有孪晶界存在[8]。

纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。界面原子密度低,界面上邻近原子配位数发生变化,界面原子间距差别大。

纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例

表面能。随着纳米粒子尺寸的减小,比表面积急剧加大,表面原子数及比例迅速增大。例如,粒径为5nm时,比表面积为180m2/g,表面原子的比例为50%;粒径为2nm时,比表面积为450m2/g,表面原子的比例为80%。由于表面原子数增多,比表面积大,原子配位数不足,存在未饱和键,导致了纳米颗粒表面存在许多缺陷,使这些表面具有很高的活性,特别容易吸附其他原子或与其他原子发生化学反应。这种表面原子的活性不但引起纳米粒子表面输运和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[11,12]。2.3.2 体积效应

由于纳米粒子体积极小,所包含的原子数很少,因此许多现象就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象称之为体积效应。其中有名的久保理论就是体积效应的典型例子。久保理论是针对金属纳米粒子费米面附近电子能级状态分布而提出的。随着纳米粒子直径减小,能级间距增大,电子移动困难,电阻率增大,从而使能隙变宽,金属导体将变为绝缘体[13]。2.3.2 界面效应

纳米材料具有非常大的界面,界面的原子排列是相当混乱的。原子在外力变形的条件下很容易迁移,因此表现出很好的韧性与一定的延展性,使材料具有新奇的界面效应。研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的粗晶粒金属硬3~ 5倍[13]。

3.纳米材料热力学特性

3.1热容

1996年,Bai等[14]在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减小50%。1998年,Zhang等[15]研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明: 过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,Eroshenko等[16]把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积 的扩大,将导致多相纳米体系总的热容的减小。他们还建立了多相纳米体系热容的理论模型,从理论上说明了体系热容随界面的扩大而降低。对于苯液滴,当半径达到1.05nm时,热容为零,而水滴热容等于零时的半径为1.51nm。2003年,徐慧等[17]建立了一维纳米随机链模型,应用点阵动力学的方法计算了一维纳米晶体的熵、热容以及振动自由能等,发现纳米晶体的熵比单晶的熵值高,这些结果可以用纳米晶体的特殊结构来

3.5 纳米粒子的吸附热力学

强吸附性是纳米粒子的重要特性之一。量子化学是研究纳米粒子吸附性质的主要方法之一,但是这些理论研究主要是计算计算了某个原子簇下的吸附能,且原子簇中包含的原子个数还均较少,仅有几个或十几个。在一些模拟实验中,纳米材料同普通块体材料的吸附分离效果一样也受值浓度、吸附时间、温度等因素的影响,其吸附等温线符合Langmuir、Freundlich等温曲线。不同温度下等温吸附曲线的测定和等量吸附焓的计算表明: 多壁碳纳米管对偏二甲肼的吸附是吸热的。

4.热力学在纳米材料中的应用

迄今,关于纳米材料的绝大多数工作集中于研究纳米界面的结构和特性,而忽略纳米晶粒内部的晶体对整体材料的贡献.如文献中已有的关于纳米材料热力学性质的研究,几乎全部以纳米晶界面的焓、熵和自由能作为表征整体纳米材料的热力学函数,并以之为判据探讨纳米多晶体材料的相变热力学.这一近似处理对于极细的纳米材料(如尺度小于10nm,约30%以上的原子位于界面上)是可行的,这也是Wagner[22]在其经典的界面膨胀QDA理论中首先指出的模型适用条件:“尺寸为10个纳米以下的多晶体且具有随机的晶体取向”。然而,对于较粗的纳米材料,上述近似处理则显示出局限性,尤其当晶粒尺寸超过几十纳米时,在相变热力学中对特征转变温度和临界尺寸等重要参量的预测将导致很大误差为此,因此在建立纳米界面确定型热力学函数的基础上,发展整体纳米材料的计算热力学,明确纳米尺度下多晶体的热力学函数与界面过剩体积、温度和纳米晶尺寸之间的定量关系,并将其应用于纳米材料相变热力学研究。基于热力学判据,预测纳米材料生成相、相稳定存在条件及相变行为,由此可为具有一定晶体结构和物理、机械性能的稳定纳米相的获得提供依据。

4.1纳米晶界的热力学函数

相对于完整晶体点阵结构上的原子,晶界上原子的配位数减少,原子排布密度降低,可以理解为晶界处于原子体积“胀大”了的非平衡状态。基于此考虑,Fecht和Wagner[22]认为,纳米晶界的热力学性质可以用类似于膨胀晶体的性质来描述,即建立“界面膨胀模型”。其中以界面的过剩体积△V作为描述纳米晶界面热力学性质的重要参量,它反映界面原子体积相对于晶内原子体积的增加量,定义为:△V=Vb/V0-1。

由Smith等[23]人发展的EOS定量描述了原子结合能与点阵常数之间的普适关系,并已证实成功地应用于解释双金属层的粘附、化学吸附以及表面能等问题。更重要的是,EOS对有较大比例的原子位于晶界的纳米晶体,由于“晶界膨胀”而产生的晶内负压,给出了合理的定量描述,此压力是表征纳米晶界面自由焓的

2.3r0B,(12)13lPP0其中0为参照温度下的体膨胀系数,其值取为线膨胀系数0的三倍。综合以上式子,可以得到以界面过剩体积和温度为变量的纳米晶界处的热力学函数,即焓、熵和吉布斯自由能,其具体表达式如下:

HbV,TE1Vr9l0.05V43r1V3B01V303r0323VWV0expVrBTTl30R0l,(13)SbV,T3kBIn1VVV,TVV,T,(14)

(15)GbV,THbV,T3kBTTRTSbV,T3kBInTTR, 其中

V11V13,(16)WVexpC011VC07.06E1213,(17),(18)

B0r01232V27828182r061V73WV1C0V2716,(19)

r061V2r06CoWV274r001V61V2C02VWVV43WV1C0V,(20)

2TTR,(21)V,T45892r001V6V,T2r031V10TTR,(22)

4.2.纳米晶粒内部热力学函数

纳米晶粒内部晶体的热力学函数按照块体多晶体材料的热力学性质进行计算.由经典热力学理论,计算常规多晶体的焓、熵和吉布斯自由能的函数表达式分别为:

速高效的基因组测序基因诊断 基因治疗药物,导弹,技术,可靠人工组织和器官复明复聪器件等方面的应用 在环境保护方面,纳米材料因其具有强的吸附性能,在污水处理和空气净化方面也将会起到重要作用。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革[24]。

参考文献

[1] Chamberlin R V.Mean-field cluster model for the critical behaviour of ferromagnets[J].nature.2000(408): 337~339 [2] GiebultowiczT.Nanothermodynamics-Breathing life into an old model[J].nature.2000,(408):299~300 [3] Hill T L.A different approach to nanothermodynamics[J].Nano Lett.2001,1(3):111~112 [4] Hill T L.A different approach to nanothermodynamics[J].Nano Lett.2001,1(3):159~160 [5] Hill T L.A different approach to nanothermodynamics[J].Nano Lett.2001,1(3):273~275 [6] 姜俊颖,黄在银,米艳,李艳芬,袁爱群.纳米材料热力学的研究现状及展望[J].化学进展.2010,22(6):1058~1059 [7] 曹学军.神奇的纳米技术[J].国外科技动态.2000,9(3):33~36 [8] 张全勤.纳米技术新进展[J].国防工业出版社.2005.(45):78~80 [9] 施利毅.纳米材料[D].华东理工大学出版社.2007,136(96):12~15 [10] 石士考.纳米材料的特性及其应用[D].大学化学.2001,16(2):39~40 [11] 李泉,曾广斌.纳米粒子[J].化学通报.1995,(6):29 [12] 李良果,郑庆龙,张克.纳米粒子结构分析[J].化工新型材料.1991,19(12):12 [13] 符寒光,邢建东.纳米材料特性及其在冶金工业应用的展望[J].冶金信息导刊.2001,(6):26 [14] Bai H Y,Lou J L,Jin D,etal.Free-energy diagram and spontaneous vitrification of an ion-mixed metastable hexagonal phase in the Ni-Mo system[J].Journal of materials science letters.1996,79(1):361~364 [15] ZhangHZ,BanfieldJF.Energeticsofnanocrystalline TiO2.Nanostruct[J].Mater.1998, 10(2):185~194 [16] Eroshenko V A,Stoudenets V P.Composites:Part A,2002,33(10):1349-1353 [17] 徐慧,李新梅,钟桂雄.纳米晶体热学性质的理论研究[J].电子元件与材料.2003,21(10): 10~12 [18] 刘洋.纳米材料德拜温度、体膨胀系数及热容的尺寸效应.吉林大学硕士学位论文.2008 [19] Kim H K,Huh S H,Park J W,etal.Chem.Phys.Lett.2002,354(1):165~172 [20] 蒋青,梁立红.纳米晶体的熔化与过热[J].世界科技研究与发展.2003,24(6):57~67 [21] Polak M,RubinovichL.Nanochemical Equilibrium Involving a Small Number of Molecules: A Prediction of a Distinct Confinement Effect.2008,8(10):3543~3547 [22] Wagner,Andreas Otto,Hohlbrugger,Peter.Effects of different nitrogen sources on the biogas

1a lab-scale investigation[J].Microbiological research.2011,167(10):631 [23] Smith L,NiwaO,XuY,Halsall H B,etal.Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay[J].Analytical Chemistry,1993,65(11):1559-1563 [24] 陈怡.谈谈纳米材料的发展前景与应用[J]科技信息,2007,10(38):25

第二篇:浅论纳米材料的特性及应用

浅论纳米材料的特性及应用

人类 论文关键词:纳米尺寸;性能

论文摘要:纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。

对物质世界的研究,曾小到原子、分子,大到宇宙空间。从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。物质是由原子或分子构成的,原子、分子是保持物质化学、物理理特性的最小微粒。这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。

随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,米尺度以后,它就失去原来的性质,度,大约是在1效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值。

近年来,已在医药、1医学方面的应用:

目前,国际医学行业面临新的决策,从动植物中提取必要的物质,的想法,随着健康科学的发展,高药效,发展药物定向治疗,必须凭借纳米技术。数层纳米粒子包裹的智能药物进入人体,以纳米磁性材料作为药物载体的靶定向药物,覆蛋白质表面携带药物,纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,的涂层技术,再给涂料中添加纳米材料,传统涂层功能改性从而获得传统涂层没有的功能,耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,黑静电屏蔽涂料只有单一颜色的单调性。色的效应。在汽车的装饰喷涂业中,将纳米使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;只是以前没有认识到这个尺度的范围的性能。表现出既不导电,也不导热。纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸生物、环境保护和化工等方面得到了应用,那就是用纳米尺度发展制药业。然后在纳米尺度组合,人们对药物的要求越来越高。可主动搜索并攻击癌细胞或修补损伤组织,注射到人体血管中,避免身体健康部位受损,可获得纳米复合体系涂层,实现功能的飞跃,纳米材料的颜色不仅限粒径而变,第一个真正认识到导热的铜、材料在尺寸上达到纳米尺拥有一系列的新颖的物理和化 并显示出它的独特魅力。纳米生物医学就是最大限度发挥药效,这恰恰是我国中医控制药物释放减少副作用,提纳米粒子可使药物在人体内方便传输。用称为“定向导弹”。该技术是在磁性纳米微粒包通过磁场导航输送到病变部位,可以大大减小药物的毒副作用,如;有超硬、耐磨,抗氧化、这样可以通过复合控制涂料的颜色,而具有随角度变Tio2添加在汽车、轿车的金属闪光面漆中,能 ~100纳米 尤其是因而深借助于传统使得阻燃、克服碳1银导体做成纳~100然后释放药物。

具有一般材料难以获得的优异性能。耐热、化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

4其他生活方面的应用:

纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。

其实,纳米技术最早只是合成,限于纳米微粒,后来有了其他形貌,大概3-40年。第二阶段是复合,核壳结构,薄膜,分形等,都是这个阶段,大概在90年代到2000年。第三阶段是功能化,现在的文章也很注重应用了,没有应用前景的是发不了高档次的,当然,功能化还是有点复合的味道的,因为这是一个不可分割的过程。我么现在所处的时段就是功能化。

在我的观点看来,至于纳米材料的前景,很大程度上要看这一二十年了,如果没有不可代替的应用必要,那么其前景将暗淡,会想超导材料一样,热了几十年,现在限于停滞,国外基本上不大规模搞了。

任何一项技术的进展都是十分缓慢的,既然我们生存的一个宏观世界,纳米世界的物质的安全性也要考虑的,所以很多应用还只是实验室阶段,这就限制了应用,但是这是发展的必要。

总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。

第三篇:纳米固体材料的特性及应用

纳米固体材料的特性及应用

摘要

本文阐述了纳米固体材料的概念及历史,说明了纳米固体材料的结构和由它引起的特性,介绍了纳米固体材料的各种应用。

关 键 词:纳米固体材料

特性

应用

纳米材料是目前材料科学研究的一个热点, 是21 世纪最有前途的领域。由于纳米材料具有特异的光、电、磁、热、声、力、化学等性能, 广泛应用于宇航、国防工业、磁记录材料、计算机工程、环境保护、化工、医药、建材、生物工程和核工业等领域, 其市场前景相当广阔。

目前我国从事纳米材料生产的企业有100 多家, 并建立了几个纳米材料研究基地, 有关科研部门和生产企业还对纳米复合塑料、纳米涂料、纳米橡胶和纤维的改性以及纳米材料在能源和环保等方面的应用进行了深入的研究和开发, 并取得一定的成果。近年来一些重大的研究成果不断问世, 如成功合成世界最长的碳纳米管, 制成性能优良的纳米扫描显微镜, 合成出高质量的储氢碳纳米材料等, 具有国际领先水平。我国已能生产铁、镍、锌、银、铜、铝、钴等金属纳米粉和氧化物粉末以及陶瓷粉末等30 多种, 有些产品已达国际先进水平。中国科学院化学研究所工程塑料国家重点实验室用天然粘土矿物蒙脱土作为分散相, 成功开发以聚酰胺、聚酯、聚乙烯、聚苯乙烯、环氧树脂、聚氨酯等为基材的一系列纳米材料, 并实现了部分纳米塑料的工业化生产。

纳米材料一般分为:纳米微粒、纳米薄膜(多层膜和颗粒膜)、纳米固体。

其中纳米固体材料是一类有广阔应用前景的新型材料,它是由纳米量级的超细微粒压制烧结而成的人工凝聚态固体。这种材料具有新型的固态结构,其性质与处于晶态或非晶态的同种材料大不一样,因此将它称为纳米固体材料。1963年,日本名古屋大学教授田良二首先用蒸发冷凝法获得了表面清洁的纳米粒子。1984年,由德国H.格莱特教授领导的小组首先研制成第一批人工金属固体(Cu、Pa、Ag和Fe)。同年美国阿贡实验室研制成TiO2纳米固体。20世纪80年代末,合金、半导体和陶瓷离子晶体等人工纳米固体相继问世。纳米固体材料具有全新的“类气态”结构,性能十分奇特。如纳米固体铁的断裂应力比常规铁材料一下子提高了近12倍;纳米固体铜又比一般铜材料的热扩散增强了近一倍。更为奇怪的是,普通状态下呈脆性的陶瓷,在纳米固体材料中却能被弯曲,其塑性形变竟然高达100%……来自太空的陨石和海底的锰结核中,都有超细微粒成分。人和动物的牙齿之所以特别坚硬,也与构成它们的物质是纳米尺度的超细微粒密切相关……

纳米固体材料的主要特征是具有巨大的颗粒间界面,如5纳米颗粒所构成的固体每立方厘米将含1019个晶界,原子的扩散系数要比大块材料高1014~1016倍,从而使得纳米材料具有高韧性。由于纳米粒子特有的结构,纳米粒子或纳米固体表现出一系列奇异而独特的性质,例如:①颗粒为6纳米的铁晶体,其断裂强度比普通多晶铁提高约12倍。普通陶瓷在常温下很脆,而纳米陶瓷不仅强度高,而且具有良好的韧性。②纳米金属的比热容比是普通金属的2倍,热膨胀率提高1~2倍。纳米晶体熔化时具有所谓准熔化相的中间相变过程。纳米铜晶体的自扩散率是普通点阵扩散的106~1019倍,这与纳米固体中存在较大空隙有关。③金属是电的良导体,纳米态下可能变为绝缘体。无极性的氮化硅是典型的共价键结构和绝缘体,在纳米态下不再是共价键结构,而且具有很强的极性,其高频交流电导急剧增大。一些典型的铁电体(见电介质物理学)在纳米态下变为顺电体。④铁磁性物质在纳米态下矫顽力几乎增大1000倍,但当尺寸减小到5纳米时,磁有序向磁无序转变,铁磁性消失变为顺磁性(见磁介质)。磁性金属的磁化率和饱和磁化强度均有很大改变。⑤纳米固体在较宽的波长范围内显示出对光的均匀吸收,几十纳米厚的薄膜相当于几十微米厚的普通材料的吸收效果。普通金属对光的反射率很高,而纳米金属微粒的反射率显著下降,通常低于1%。因等离子共振频率随粒子尺寸而变,当粒子尺寸改变时,对微波的吸收峰将发生频移。

固体的许多性能,在很大程度上取决于原子近邻间的状况。纳米固体的结构和原子排列的特殊性必将使其与结构相关的性能发生相当大的变化。纳米晶体物质的性能与通常的大晶粒多晶物质作比较,其差异是远远大于由晶态到非晶态的结构变化所引起性质的变化。

不同的化学组分在原子尺度的合金,是被限制在相图上所允许的范围内,即严格限制于一些在固态或熔融态中能互溶的化学成分之间。而大多数化学组分却是不互溶的……但是对于纳米固体,二元甚至多元的复合材料,可以通过把不同化学成分的超细微粒压制成多晶固体来获得,而不必考虑组成部分是否互溶。这样获得的纳米相复合材料,还不是在原子尺度上的合金,而是在纳米微粒尺度上的合金。但是如果微粒的尺寸达到有限几个原子间隙的大小时,两类合金的差异就大为缩小了。

由较大颗粒制备的常规材料中,相邻颗粒界面上的固态反应,由于参与反应的物质的颗粒和层厚较大,界面附近的原子与体内原子数量量比很小。所以,只能引起固体局部结构性质的改变。而纳米固体中存在的浓度极大且具有高度无序结构的界面,使得内部原子输运出现异常现象,导致自扩散系数的剧烈增大。加之纳米尺度的层厚及粒度使反应的距离变短,使相邻微粒之间的固态反应在较低的温度下就能进行。这将足以使纳米固体材料的界面组元中实现原子的混合,形成各种不同的亚稳相,实现材料的整体转变。这样,人们就有可能按预定的目的来改造和设计材料的性能。除了自扩散外,纳米固体中的量子隧道效应还使电子输运反常,某些合金的电导率可下降百倍以上,而其电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。

纳米固体在较宽的频谱范围内,显示出对电磁波均匀的吸收性能……“隐身飞机”需在其外壳包上某种吸波材料(又称隐身材料)。而几十纳米的纳米固体薄膜的吸收效果,与比它厚1000倍的现有吸波材料相同。

纳米陶瓷TiO2在常温下具有很好的韧性和延展性能。由于其高纯度的边界及小尺寸的晶粒,可在较低温度下烧结,并大大改善其性能。室温下的纳米陶瓷TiO2在压实中已结合得很好。当烧结温度高于500℃时就迅速增稠,而晶粒尺度却仅有微小增加。所以它能在比大晶粒样品低600℃的温度下达到类似于普通陶瓷的硬度……在冷加工成形后,可使之转变到常规陶瓷。若采用表面退火的办法,就能制成一种表面保持常规陶瓷的硬度和稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷……

利用纳米粒子的高度活性可制备活性极高的催化剂,应用较多的是半导体光催化剂, 特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒, 可近似地看成是一个短路的微型电池, 用能量大于半导体能隙的光照射半导体分散系时, 半导体纳米粒子吸收光产生电子——空穴对。在电场作用下, 电子与空穴分离,分别迁移到粒子表面的不同位置, 与溶液中相似的组分进行氧化和还原反应。

纳米铝粉是一种纳米金属催化剂, 因粒径小, 烃类与催化剂的混合接触充分, 传质效果好。无锡威孚吉大应用开发研究所, 投入资金约500 万元, 进行纳米铝粉应用于改进三元催化剂的研究和开发。同时公司还将纳米技术应用于汽车尾气净化, 应用前景较乐观。武汉塑料工业集团股份有限公司以中科院化学所工程塑料国家重点实验室为技术依托, 建设两条纳米材料生产线, 制造高性能聚合物/ 粘土纳米复合材料。该材料具有高强度、耐热、高阻隔及自熄灭性等优点, 在汽车、电子、建材、包装等领域有较大的应用潜力。另外, 江苏五菱常泰纳米材料股份有限责任公司也进行纳米材料及其产品的研究、制造及营销。江苏和陕西等地也分别建成纳米氧化锌生产线。

在火箭固体燃料中掺入铝的纳米微粒,可提高燃烧效率若干倍。利用铁磁纳米材料具有很高矫顽力的特点,可制成磁性信用卡、磁性钥匙,以及高性能录像带等。利用纳米材料等离子共振频率的可调性可制成隐形飞机的涂料。纳米材料的表面积大,对外界环境(物理的和化学的)十分敏感,在制造传感器方面是有前途的材料,目前已开发出测量温度、热辐射和检测各种特定气体的传感器。在生物和医学中也有重要应用。

Nano solid material properties and applications

Tiansainan Chemistry engineering of Beijing Institute of Petrochemical Technology Beijing 1026174;化092

090040 This paper expounds the concept and nano solid materials history, explained the structure of solid materials and nanotechnology caused by its characteristics, this paper introduces the application of nano solid materials.参考文献

(1)文斋;纳米科技发展史[N];北京科技报;2000年

(2)杜郑帅.水性UV节能环保涂料的研究和应用[D].江南大学, 2009(3)钟俊辉 纳米固体材料 稀有金属材料与工程 , Rare Metal Materials and Engineering, 1993年 04期(4)胡善荣;刘佩华 纳米固体材料

物理, Physics, 1991年 05期

(5)杨得全

范垂祯 纳米固体材料的界面及其对性能的影响 《真空与低温》1995年03期(6)Gleiter H Nanostructured Materials 1997(01)

(7)Saryanarayana C.Frose F H Thestructure and Mechanical Properties of Metallic Nanocrystals 1992(8)林晨.纳米材料在化工行业中的应用[J].化学工程与装备, 2010,(07).(9)平德海.李斗星.叶恒强 几种纳米固体材料的微观结构特征 1995(02)(10)饶欣.浅谈纳米材料在化工生产中的应用[J].大众科学(科学研究与实践), 2007,(10)(11)魏方芳 纳米材料的研究及应用 [期刊论文]-化学工程与装备2007(3)

第四篇:纳米天线的超常特性及应用

纳米天线的超常特性

都世民

最近笔者发现有多则科技报道与纳米光学天线有关。为此从百度文库、道客巴巴文库、光明网、科学网、腾讯网、国家纳米研究中心网、中科院纳米研究中心网等,查询纳米光学天线有关资料,分析整理后,对有关问题进行一些讨论。

近日,武汉大学电子信息学院,用一种新穎的反射式金納米天线阵列,成功应用於激光全息領域。这是一種在襯底表面加工出超薄金属微納結构材料,与光波相互作用,呈現出一些超常特性。武汉大学郑国兴与伯明翰大学教授張霜开展合作,在实验中不仅捕捉到令人滿意的爱因斯坦激光全息图像,而且实現了高达80%的实測衍射效率。這一成果超越了传統材料的激光全息水平,而且工艺流程大大简化——仅需一步光刻工艺。

另据报道,苏格兰大学物理学联盟高校的科学家,在实验室内成功降低了光的速度,即便光子回到自由的空间中,仍然以较低的速度运行。在自由空间中光速接近每秒30万公里,当光通过诸如冰体、玻璃等材料时,光速会出现降低,但只要它再次返回自由空间中,其速度就会回归正常。

美国伊利诺斯大学厄本那—香槟分校一个研究小组基曼尼·图森特,用已制作好的纳米阵列结构,在电子扫描显微镜下,调整阵列,实现对等离子光学性质进一步重组。因此人们能在制作好之后,决定所需的纳米结构,实现对光波的控制。

这种纳米天线阵列为柱-领结纳米天线(p-BNA)阵列模板,每根直径约250纳米,用金制作成领结状柱块,“领结”下垫有500纳米高的玻璃柱。用扫描电子显微镜(SEM)发出的电子束,可以让单根或多根p-BNA子阵列,以60纳米/秒的速度变形。在电子束的激发下,等离子推动纳米天线阵列,使其出现明显变形,这在金粒子之间形成纳牛(10的负9次方牛)量级的受力差异。

2015-03-05,中国科学技术大学设计了一类尺寸为50纳米,且具有内凹型结构的金属钯纳米材料,通过降低结构对称性和增大颗粒尺寸,使其能够在可见光宽谱范围内吸光,吸光后的光热效应足以为有机加氢反应提供热源。纳米结构的尖端棱角处具有超强的聚光能力从而产生局部高温。

内外科技专家上述研究进展,这些成果很受关注。无论是军用或民用上,这些成果的转化都可能产生颠覆性影响。其应用前景十分广阔。当然这些领域的研究是相互交叉的,有一个较长时期的融合过程。将会在哪些方面出现巨大变化,还需试目以待。这是笔者关注的原因之一。另外,笔者从事天线技术五十年,专业上爱好和兴趣也是一个原因。

纳米光学天线的基本关注点

[size=14.0000pt]1.纳米光学天线最小尺寸

纳米光学天线与传统天线比较,首先在维度上是最小尺寸。1985年,wessel教授基于金属小颗粒能有类似于传统天线接收入射电磁波的属性,最早提出光学天线的概念。随后,Pohl教授对这种类似性进行系统的讨论,通过比较近场光学探针与传统天线的相似性,得出传统天线理论可以应用于近场光学。由于光学偶极子天线谐振长度远远小于入射光半波长,这与传统天线理论相悖,Novotny教授用有效波长的概念解决了该问题。

2010年03月17日新华网报道:日本广岛大学的研究小组日前开发出纳米级超小型天线.天线宽75至125纳米、长500纳米,相当于把普通电视天线缩小到百万分之一。构成天线的5根“枝杈”是用金制作的,固定在透明的氧化硅板中。这种天线能够收发波长为400至800纳米的电磁波。纳米光学天线是自赫兹发明天线以来,所有天线中最小天线,它的工作频段进入光频段,即THz。然而纳米天线进入光频段,出现一些超常特性。2.纳米光学天线的超常特性

天线是接收和辐射电磁能的工具,具有非常广泛的应用,在光学波段可以利用光学天线在纳米尺度对光波进行调控。基于表面等离子体共振的纳米光学天线的一个独特性质是约束场。一个很小金属颗粒受光激后,经常被看作一个偶极子天线,纳米粒子可以通过外场的激发,而成为光源,并拥有其独特的光学性能。纳米天线对特定波长的辐射,具有强吸收和强散射的特性,该特性与粒子的大小、形状、介质环境等因素紧密相关。

当表面等离子体谐振时,纳米金属粒子的极化作用明显增强,诱发的偶极子也极大地增强,这也导致电磁场大大增强。这种性能常常被用来增强某些光学过程的弱辐射截面,如拉曼散射、荧光现象或者提高非线性光学响应。这种性能与微波线天线受外场激励后,在谐振状态,产生的感应电流在平行极化时,会使天线辐射场明显增强,这两者有相类似的现象。A.频谱调控:

据科学时报2010年1月27日报道:中国科学技术大学科研人员发现:无线电通信天线尖端尺寸减少到纳米量级,并非常接近另一金属表面而形成一个纳米腔室时,就可以调控局域等离激元谐振模式,来对腔内荧光体的发光特性进行有效控制,在光频区实现新奇的电光效应:电致热荧光、上转换发光和“彩色”频谱调控。这些发现及其隐含的物理机制,揭示了局域的纳腔等离激元场,可以作为一种近场相干光源,在光电耦合与转化过程中,起着至关重要的调控与放大作用,为纳米光电集成提供了新的思路。B.实现高增益单波束辐射:

单向纳米天线可以为任何无方向性的光发射器(如微激光器、纳激光器或等离子激光器(Spasers),甚至量子点)引入方向性。立方体天线通过精确控制光束宽度与方向,实现光会聚。特殊结构的纳米天线能够改变与其相耦合的点光源的方向性,甚至可实现高增益单波束辐射。调天线单元间距可实现对光束指向的微调。

C.利用非对称光学缝隙纳米天线,可以调控光的耦合和辐射方向。

D.圆偏振光的调控: 利用L形光学缝隙纳米天线,通过调节天线尺寸来改变两个相互正交的线偏振的不同模式的相位,可以获得90度的相位差和近似相等的强度,从而实现圆偏振光。

E.增强自发光辐射: 用由金制成的外部天线,来增强铟镓砷磷(InGaAsP)制成的纳米棒的自发光辐射,可增加115倍。

F.产生开关效应: 由北京大学物理学院、美国Rice大学、国家纳米科学中心、北京大学前沿交叉学院共同合作完成的“导电衬底金属九聚体纳米天线结构Fano共振开关效应”.G.改变纳米天线尺寸与波长的关系: 使用不规则碎片形状,可改变纳米天线尺寸至非常小,或增大至人类头发的宽度.H.改善天线的性能: 使用3D打印技术制成的半球立体天线,其性能比普通的单极天线高一个数量级,同时也能大大减小纳米天线尺寸,不足波长的十二分之一.I.创建负折射现象来控制光的偏振: 2011年12月26日 ,科技日报报道:(http://www.xiexiebang.com)实验证明,纤细的等离子体纳米天线阵列能采用新奇的方式对光进行精确地操控,改变光的相位,形成负折射现象.通过改变光的相位,能显著改变光的传播方式,同一种光波通过折射率不同的物质时,相位就会发生变化。创建负折射现象,也可以控制光的偏振。有别于经典的折射和反射定律。普渡大学的科研团队制造出了这种纳米天线阵列,光波波介于1微米(百万分之一米)到1.9微米之间的近红外光附近,大大改变了光波的相位和传播方向。J.控制和引导吸收光的能量: 据美国物理学家组织网2011年7月10日报道,加拿大科学家从植物的光合作用装置——捕光天线中获取灵感,研制出了新型纳米捕光“天线”,它能控制和引导吸光能量。这是整合在DNA(脱氧核糖核酸)和半导体研究两方面的先进成果,发明了这种方法,让某些类型的纳米粒子相互依附在一起,自我组装成最新的纳米天线复合物,并将这种由量子点自我组装而成的材料命名为“人造分子”。令人吃惊的是,这种天线能自我组装而成,用筛选出来的特定DNA序列包裹不同类型的纳米粒子,将其整合在一起。随后按照自然规律,自我组装成拥有特定属性的类似于分子的纳米粒子复合物。这种新型纳米天线能增加吸收光的能量,还可以将此光能量释放到该复合物内特定的位置上。新复合物也能捕捉太阳光中所包含的各种波长的光。这是一种新型能量产生器,这对探索小宇宙内能量形成机制有很好的启发。

K.调控光的速度: 苏格兰大学物理学联盟高校的科学家,在实验室内成功降低光的速度,即便光子回到自由的空间中,仍然以较低的速度运行。

L.重组光的性质:纳米纹理表面就像一种预编程序,入射光与表面相互作用后,光的性质就会发生改变。用已制作好的纳米阵列结构,在电子扫描显微镜下对阵列进行调整,实现对等离子光学性质进一步重组。因此能在制作好之后,而不是之前,决定所需的纳米结构来改变光的性质。

[size=15.0000pt]3.纳米光学天线形状与结构

纳米光学天线结构种类繁多,常见结构:分别是纳米棒、蝴蝶结形、纳米粒子对、八木-宇田天线、纳米粒子阵列。对称振子纳米光学天线,由两片金属薄膜和馈电间隙构成。共振时天线长度约为入射光波长的一半。振子臂形状除了长方形外,也可以为梯形,蝴蝶结形、圆盘形、三角形等。金属纳米颗粒的不同结构或组合决定了其等离子体共振峰值的位置,也就是结构决定其工作波长。不同结构的纳米天线具有不同的光学性能,这也提供了对基于纳米光学天线的光学元件的调控方法。.新近科技报道表明,纳米光学天线还有下列形状:

A.澳大利亚spacedaily网站2015年2月25日报道:澳大利亚科学家发明200纳米绝缘材料组成的立方体形状的纳米天线.性能优于先前的由导体和半导体材料组成的球形天线。B.纳米光学L形缝隙天线,可以辐射出圆偏振光。

C.不规则碎片形,也就是说它们由重复样板组成,复制最小属性的形状,以打造相似却更大的结构。使用这一不规则碎片形法,意味着研究人员研发的纳米天线可缩小至非常小的尺寸,或扩大至人类头发的宽度.D 3D立体半球天线

美国伊利诺伊大学电子和计算机工程系以及材料科学和工程系的两位教授联手,造出了一种突破性的“3D天线”。使用纳米级的“银墨水”,用类似打印机的原理,在一颗半球体表面上“打印”出了依附在弧形表面上的立体天线。这种3D立体天线的性能比普通的单极天线高一个数量级,同时尺寸也能大大缩小,不足波长的十二分之一。通过计算机设计多种天线形状,可以实现在各种基板,包括塑料薄膜、纸质、陶瓷等表面,实现“一键”打印天线,该技术非常便捷,可以实现诸如办公室打印文档一样快速打印制造天线。

E.V型结构纳米天线:普渡大学的科研团队制造出了纳米天线阵列,这种纳米天线是蚀刻在一层硅上方的金做成的V型结构,它们是一种“超材料”(一般都是所谓的等离子体结构),宽40纳米。科学家们也已证明,他们能让光通过一个宽度仅为光波波长五十分之一的超薄“等离子体纳米天线层”。

F.人造分子式纳米天线:让某些类型的纳米粒子相互依附在一起,自我组装成最新的纳米天线复合物,将这种由量子点自我组装而成的材料命名为“人造分子”。

G.Bow-tie金属天线,通过利用双光子荧光增强作用,得到了天线间隙处场增强大约在1000量级。Bow-tie天线间隙处的场高度增强,应用于双光子聚合,得到30 nm的分辨率。H.单极纳米天线:在SNOM针尖上,制备单极光学天线,探测单分子荧光,得到了~25nm的光学分辨率。

I.金子塔形的纳米天线:荷兰阿姆斯特丹FOM研究所和飞利浦研究所的研究人员,设计了一种新型小金子塔形的纳米天线,而不是通常所采用的直柱形。这种形状能够增强光的电场与磁场之间的干涉,使场增强或改变光束的方向。[size=15.0000pt]4.纳米光学天线的材料

按材料的不同,光学天线可分为介质光学天线和金属光学天线。其中,介质光学天线可以作为近场光学探针对样本表面的隐逝场进行散射,实现局域场与传播场的相互转换。金属(金、银、铜、铝等)光学天线,一般由金属纳米结构组成,利用金属纳米结构与光的作用,实现传播场与局域场的相互转换和电磁场局域增强。

A.对称振子纳米光学天线,由两片金属薄膜和馈电间隙构成。两片金属薄膜材料多为金、银,也可用碳纳米管制成。

B.3D立体半球天线.使用纳米级的“银墨水”,用类似打印机的原理,在一颗半球体表面上“打印”出了依附在弧形表面上的立体天线。

C.纳米捕光“天线”.让某些类型的纳米粒子相互依附在一起,自我组装成最新的纳米天线复合物,这种由量子点自我组装而成的材料命名为“人造分子”。

D.创建负折射现象,控制光的偏振。有别于经典的折射和反射定律.制造出了纳米天线阵列并大大改变了光波波长介于1微米(百万分之一米)到1.9微米之间的近红外线附近光波的相位和传播方向。

E.使用由金制成的外部天线,并使用铟镓砷磷(InGaAsP)制成纳米棒光学天线。

F.用一种新穎的反射式金納米天线阵列,在襯底表面加工出超薄金属微納結构材料,与光波相互作用,呈現出一些超常特性。

G.使用绝缘材料组成的立方体形状的纳米天线。H.使用由导体和半导体材料组成的球形天线。

I.使用微型半导体量子级联(QC)激光器,在QC激光器上安装纳米天线,实现了纳米级的精度对激光点聚焦,从而可以使QC激光器执行亚微米级的扫描。使分辨率提高到可见光波长的百分之一。使体积更小,有更好的信噪比。

J.石墨烯制作的纳米天线: 佐治亚理工学院(Georgia Institute of Technology)的研究人员,通过计算机模拟,用石墨烯制作的纳米天线,可以用于纳米机器的网络中。除了能够在纳米机器之间通信外,石墨烯天线还能用于移动手机和网络连接的笔记本上,使它们得到更远的通信距离。石墨烯使用非常少的能源就能够运行。由于石墨烯的蜂窝结构,所以它的表面产生表面波的范围也最广。这种天线的特性是,在大小相同的情况下,辐射频率比普通材料天线的辐射频率还要低。

在 0.1 到 10 太赫兹之间波段,石墨烯纳米天线将无线网络中的数据速率提高超过两个数量级。

K.稀土掺杂上转换纳米发光材料具有高光化学稳定性、几乎无毒性、窄线宽、长荧光寿命、可调谐荧光发射波长等优势,是目前普遍看好且有望成为替代传统下转换荧光探针的新一代荧光生物标记材料。

L.用具有内凹型结构的金属钯纳米材料,制作的纳米天线.这种独特设计的金属钯纳米材料,具有高催化活性和太阳能利用价值,在光驱动有机加氢反应中,展现出优异的催化性能.

第五篇:先进技术应用中的纳米结构材料

先进技术应用中的纳米结构材料

Johann Peter Reithmaier, University of

Kassel Germany

Nanostructured Materials

for Advanced

Technological Applications

2009, 547pp.Hardcover

ISBN 9781402099144

Johann Peter Reithmaier著

本书是2008年6月在保加利亚的索佐波尔市举行的NATO项目中关于纳米材料应用的高级讲习班的讲义文集。

NATO项目主要资助一些关于反恐、国家安全的科学会议。本次会议的主要目的是评估最新的技术进展以及纳米材料应用的未来前景,主要聚焦在材料结构、功能性质以及潜在应用之间的关系。第二个目的在于培养和训练与会者关于纳米材料制备、性质以及应用的相关知识。第三个目的是希望致力于纳米材料领域的NATO项目资助的青年科学家们可以跨学科地进行交叉合作以取得突破性的成就。

本书共分六个部分,第一部分是概述,对纳米材料在先进技术应用方面给出一个简单的概论;第二部分是理论部分,主要介绍了电子电气、光学以及其他如纳米粒子、超导体等领域的理论模拟知识;第三部分是表征方法的概论,主要介绍了拉曼光谱技术、动态光散射技术在表征纳米材料中的应用;第四部分是制备方法的概论,主要介绍了快重离子辐射法、离子注入法、激光快速成型法在合成纳米材料方面的应用;第五部分详细讲述了各种纳米材料的合成及表征方法,主要介绍了碳纳米管,各种纳米粒子包括量子点、金纳米粒子、银纳米粒子、氧化锌纳米粒子、纳米复合材料、薄膜、硫族化合物以及其他玻璃系统的制备与表征方法;第六部分是纳米材料的应用,主要介绍了纳米材料在电学、数据存储、光电领域以及生物技术领域的应用。

本书作者均是NATO项目的杰出科学家,在纳米材料领域均有一定的造诣。本书兼顾基础知识与前沿进展,对广大研究纳米材料的老师与同学均是一本不可多得的参考书。

程恩隽,博士生(国家纳米科学中心)

Chengenjun, DoctoralCandidate

(National Center for Nanoscience and Nanotechnology ,China)

下载纳米材料的结构及其热力学特性的研究与应用word格式文档
下载纳米材料的结构及其热力学特性的研究与应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    纳米材料研究现状及应用前景要点

    纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要......

    纳米材料的应用

    纳米材料的应用纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米......

    纳米材料航天应用

    纳米材料定义: 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 纳米材料特......

    材料热力学与动力学

    材料热力学与动力学 参考书目:1. Peter Atkins , Julio de Paula .Oxford University Press 2002. 2. William F.Smith 2006. 3.WilliamD.Callister2009. ※1.Cp为什么是个......

    纳米材料及其应用(共5则)

    暑 假 实习论 文 题 目: 纳米材料及其应用 学 院 软件与通信工程学院 学生姓名 XXX 学 号 XXXX 专 业 电子科学与技术届 别 2011届 指导教师 白耀辉博士 李刚博士 尧文......

    金属纳米颗粒论文:金属纳米颗粒的性质研究及其应用

    金属纳米颗粒论文:金属纳米颗粒的性质研究及其应用 【中文摘要】纳米材料的合成和应用证明了其在物理、化学、材料科学等领域的巨大发展潜力,尤其是纳米材料所具有表面效应......

    材料热力学应用于研究的作用

    材料热力学应用于研究的作用 摘要:材料热力学是材料科学的重要基础之一。材料学的核心问题是求得材料成分-组织结构-各种性能之间的关系。问题的前半部分,即材料成分-组织结构的......

    浅谈图书馆如何简单应用大数据特性

    浅谈图书馆如何简单应用大数据特性 重庆师范大学涉外商贸学院【摘 要】随着现代社会和科学技术的发展,以及大数据的概念出现以后,大数据已经渐渐融入到我们生活中的各个领域,正......