A.必定都为负
B.总是一正一负
C.可以都为正
D.至少有一个负数
10、、互为相反数,且,那么的值为〔
〕
A.2
B.2或3
C.4
D.2或411、如果表示有理数,那么的值……………………………………………
()
A、可能是负数
B、必定是正数
C、不可能是负数
D、可能是负数也可能是正数
12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,那么桌子的高度是〔
〕
A.73cm
B.74cm
C.75cm
D.76cm13、假设a>0>b>c,a+b+c=1,M=,N=,P=,那么M、N、P之间的大小关系是()
A、M>N>P B、N>P>M C、P>M>N D、M>P>N14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,那么15次后共有纸片()
A.30张
B.15张
C.16张
D.以上答案都不对
15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有〔
〕
A.1个
B.2个
C.3个
D.4个
16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购置乙站的液化气,第1罐按照原价销售,假设用户继续购置,那么从第2罐开始以7折优惠,促销活动都是一年.假设小明家每年购置8罐液化气,那么购置液化气最省钱的方法是〔 〕
A.
买甲站的B.
买乙站的C.
买两站的都可以
D.
先买甲站的1罐,以后再买乙站的三、简答题
四、17、2021年月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量万辆.某汽车厂方案一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与方案量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期
一
二
三
四
五
六
日
增减
(1)
根据记录的数据可知该厂星期五生产汽车
辆;
(2)
产量最多的一天比产量最少的一天多生产汽车
辆;
(3)
根据记录的数据可知该厂本周实际生产汽车
辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是
元.
18、对于有理数ab6,定义运算“〞,a~b=a·b-a-b-2.
(1)计算(-2)3的值;
(2)填空:4(-2)_______(-2)4(填“>〞“=〞或“<〞);
(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“〞是否满足交换律?请说明理由.
19、探索性问题
数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合〞的根底。请利用数轴答复以下问题:
点A、B在数轴上分别表示数a、b.(1)填写下表:
数
列A
列B
列C
列D
列E
列F
a
-2.5
b
0
-2.5
A、B两点的距离
(2)任取上表一列数,你发现距离表示可列式为,那么轴上表示和的两点之间的距离可表示为
.(3)假设表示一个有理数,且,那么=
.(4)假设A、B两点的距离为
d,那么d与a、b有何数量关系.20、【阅读】
表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;可以看做,表示5与-2的差的绝对值,也
可理解为5与-2两数在数轴上所对应的两点之间的距离.
【探索】
(1)
=___________.
(2)
利用数轴,找出所有符合条件的整数,使所表示的点到5和—2的距离之和为7
(3)
由以上探索猜测,对于任何有理数,是否有最小值?
如果有,写出最
小值;如果没有,说明理由.
参考答案
一、填空题1、5或9;
2、+5或-5。3、14、.15、30;
6、1
二、选择题
7、C8、D9、D10、D11、C12、C13、D14、C15、A16、考点:
有理数的混合运算;有理数大小比拟.
专题:
应用题;压轴题.
分析:
购置液化气最省钱的意思是,在质和量都相同的条件下,花钱最少.分别计算出每年到甲、乙两家液化气站购置8罐液化气的价钱,进行比拟即可得出结果.
解答:
解:设每罐液化气的原价为a,那么在甲站购置8罐液化气需8×〔1﹣25%〕a=6a,在乙站购置8罐液化气需a+7×0.7a=5.9a,由于6a>5.9a,所以购置液化气最省钱的方法是买乙站的.
应选B.
点评:
此题考查了有理数的大小比拟在实际问题中的应用.比拟有理数的大小的方法如下:〔1〕负数<0<正数;〔2〕两个负数,绝对值大的反而小.
三、简答题
17、(1)17
(2)7
(3)145
7250018、(1)-9
(2)=
(3)满足,理由略19、20、〔1〕7
〔2〕-2,-1,0,1,2,3,4,5
〔3〕有最小值,是5