初高中数学衔接练习题

2020-11-24 09:00:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《初高中数学衔接练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初高中数学衔接练习题》。

初中升高中衔接练习题(数学)

乘法公式1.填空:(1)();

(2);

(3)

2.选择题:(1)若是一个完全平方式,则等于()

(A)

(B)

(C)

(D)

(2)不论,为何实数,的值()

(A)总是正数

(B)总是负数

(C)可以是零

(D)可以是正数也可以是负数

因式分解

一、填空题:1、把下列各式分解因式:

(1)__________________________________________________。

(2)__________________________________________________。

(3)__________________________________________________。

(4)__________________________________________________。

(5)__________________________________________________。

(6)__________________________________________________。

(7)__________________________________________________。

(8)__________________________________________________。

(9)__________________________________________________。

(10)__________________________________________________。

2、若则。

二、选择题:(每小题四个答案中只有一个是正确的)

1、在多项式(1)(2)(3)(4)

(5)中,有相同因式的是()

A.只有(1)(2)

B.只有(3)(4)

C.只有(3)(5)

D.(1)和(2);(3)和(4);(3)和(5)

2、分解因式得()

A

B

C

D3、分解因式得()

A、B、C、D、4、若多项式可分解为,则、的值是()

A、,B、,C、,D、,5、若其中、为整数,则的值为()

A、或

B、C、D、或

三、把下列各式分解因式1、2、3、4、提取公因式法

一、填空题:1、多项式中各项的公因式是_______________。

2、__________________。

3、____________________。

4、_____________________。

5、______________________。

6、分解因式得_____________________。

7.计算=

二、判断题:(正确的打上“√”,错误的打上“×”)

1、…………………………………………………………

()

2、……………………………………………………………

()

3、……………………………………………

()

4、………………………………………………………………

()

公式法

一、填空题:,的公因式是___________________________。

二、判断题:(正确的打上“√”,错误的打上“×”)

1、…………………………

()

2、…………………………………

()

3、…………………………………………………

()

4、…………………………………………

()

5、………………………………………………

()

三、把下列各式分解1、2、3、4、分组分解法

用分组分解法分解多项式(1)

(2)

关于x的二次三项式ax2+bx+c(a≠0)的因式分解.

1.选择题:多项式的一个因式为()

(A)

(B)

(C)

(D)

2.分解因式:(1)x2+6x+8;

(2)8a3-b3;

(3)x2-2x-1;

(4).

根的判别式

1.选择题:(1)方程的根的情况是()

(A)有一个实数根

(B)有两个不相等的实数根

(C)有两个相等的实数根

(D)没有实数根

(2)若关于x的方程mx2+

(2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()(A)m<

(B)m>-

(C)m<,且m≠0

(D)m>-,且m≠0

2.填空:(1)若方程x2-3x-1=0的两根分别是x1和x2,则=

(2)方程mx2+x-2m=0(m≠0)的根的情况是

(3)以-3和1为根的一元二次方程是

3.已知,当k取何值时,方程kx2+ax+b=0有两个不相等的实数根?

4.已知方程x2-3x-1=0的两根为x1和x2,求(x1-3)(x2-3)的值.

习题2.1

A

组1.选择题:(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是()

(A)-3

(B)3

(C)-2

(D)2

(2)下列四个说法:

①方程x2+2x-7=0的两根之和为-2,两根之积为-7;

②方程x2-2x+7=0的两根之和为-2,两根之积为7;

③方程3

x2-7=0的两根之和为0,两根之积为;

④方程3

x2+2x=0的两根之和为-2,两根之积为0.

其中正确说法的个数是()

(A)1个

(B)2个(C)3个

(D)4个

(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是()

(A)0

(B)1

(C)-1

(D)0,或-1

2.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=

(2)方程2x2-x-4=0的两根为α,β,则α2+β2=

(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是

(4)方程2x2+2x-1=0的两根为x1和x2,则|

x1-x2|=

3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1)

x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?

4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.

B

组1.选择题:若关于x的方程x2+(k2-1)

x+k+1=0的两根互为相反数,则k的值为().(A)1,或-1

(B)1

(C)-1

(D)0

2.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于

(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2是

3.已知关于x的方程x2-kx-2=0.

(1)求证:方程有两个不相等的实数根;

(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围.

4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1和x2.求:

(1)|

x1-x2|和;

(2)x13+x23.

5.关于x的方程x2+4x+m=0的两根为x1,x2满足|

x1-x2|=2,求实数m的值.

C

组1.选择题:

(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于()

(A)

(B)3

(C)6

(D)9

(2)若x1,x2是方程2x2-4x+1=0的两个根,则的值为()

(A)6

(B)4

(C)3

(D)

(3)如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为()

(A)α+β≥

(B)α+β≤

(C)α+β≥1

(D)α+β≤1

(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况是()

(A)没有实数根

(B)有两个不相等的实数根

(C)有两个相等的实数根

(D)有两个异号实数根

2.填空:若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m=

3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)(x1-2

x2)=-成立?若存在,求出k的值;若不存在,说明理由;

(2)求使-2的值为整数的实数k的整数值;(3)若k=-2,试求的值.

4.已知关于x的方程.

(1)求证:无论m取什么实数时,这个方程总有两个相异实数根;

(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.

5.若关于x的方程x2+x+a=0的一个大于1、零一根小于1,求实数a的取值范围.

二次函数y=ax2+bx+c的图象和性质

1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()

(A)y=2x2

(B)y=2x2-4x+2

(C)y=2x2-1

(D)y=2x2-4x

(2)函数y=2(x-1)2+2是将函数y=2x2()

(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题

(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n=

(2)已知二次函数y=x2+(m-2)x-2m,当m=

时,函数图象的顶点在y轴上;当m=

时,函数图象的顶点在x轴上;当m=

时,函数图象经过原点.

(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为

;当x=

时,函数取最

值y=

;当x

时,y随着x的增大而减小.

3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;

(2)y=1+6

x-x2.

4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:

(1)x≤-2;

(2)x≤2;

(3)-2≤x≤1;

(4)0≤x≤3.

二次函数的三种表示方式

1.选择题:

(1)函数y=-x2+x-1图象与x轴的交点个数是()

(A)0个

(B)1个

(C)2个

(D)无法确定

(2)函数y=-(x+1)2+2的顶点坐标是()

(A)(1,2)

(B)(1,-2)

(C)(-1,2)

(D)(-1,-2)

2.填空:

(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a

(a≠0)

(2)二次函数y=-x2+2x+1的函数图象与x轴两交点之间的距离为

二次函数的简单应用

选择题:(1)把函数y=-(x-1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为()

(A)y=

(x+1)2+1

(B)y=-(x+1)2+1

(C)y=-(x-3)2+4

(D)y=-(x-3)2+1

下载初高中数学衔接练习题word格式文档
下载初高中数学衔接练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初高中数学衔接教案

    第一讲 数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 绝对值的几何意义:一个数的绝对值,是数轴......

    初高中数学衔接研究报告

    初高中数学衔接教学的实验与研究研究报告平舆县第一高级中学“初高中数学衔接教学的实验与研究”课题组 执笔人:韩雨濛 摘要: 国家教委在八十年代对初中数学教学要求和内容的......

    初高中数学衔接问题初探

    初高中数学衔接问题初探 李俊林 摘要:学生由初中升入高中将面临许多变化,受这些变化的影响,许多学生不能尽快适应高中学习,学习成绩大幅度下降,过早地失去学数学的兴趣,甚至打击......

    初高中英语教学衔接

    经过前期的资料阅读整理,结合自己对本课题的认识体会及同事的交流意见,对课题中期研究小结如下:介绍 初高中英语教学衔接的问题一直以来都是教师们研究的话题之一,原因可能比较......

    浅议初高中数学的衔接[最终版]

    浅议初高中数学的衔接 姓名:张伟 单位:重庆一中 邮编:400030 【摘要】初中数学和高中数学是中学数学的两个不同阶段,作为中学数学教师,我们应该把这两个阶段当做一个有机的整体......

    2014初高中数学衔接材料06

    第六讲 简单的二元二次方程组 2xy0xy11 【例1】解方程组2【例2】解方程组 2 xy28xy30 222xy5(xy)xxy12 【例3】解方程组2【例4】解方程组 22 xxyy43xy......

    初高中数学教学衔接的探求

    初高中数学教学衔接的探求 陈 琳 初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想......

    初高中数学教学衔接的几个问题

    初高中数学教学衔接的几个问题 一、初高中数学新课程标准的对比 (一)两个标准的对比 1.基本理念 两个“标准”都强调数学课程的基础性和发展性。初中数学新课程标准强调: 义务......