第一篇:初高中数学教学衔接培养阶段性反思
初中数学
初高中数学教学衔接培养反思
高波
昌邑奎聚李家埠初中
联系电话:***
摘要:初高中数学教学衔接问题的妥善解决,有助于进一步提高教学质量。初高中数学存在的主要差异。搞好初高中数学教学衔接所采取的主要措施。初中数学 高中数学 衔接 初高中数学教学的过渡与衔接问题,是广大中学数学教师所共识的问题,高一学生普遍认为高中数学难学,对如何学好数学产生困惑,甚至失去信心。尤其是近两年来,随着高中办学规模的扩大,文化素质层次不一的新生涌入高级中学,这给高中低年级顺利进行数学教学带来一定困难。因此。如何解决好初高中数学教学的衔接与过渡,是每一位中学数学教师必须探讨和解决的问题。
关键词:知识衔接、学习兴趣、差异、措施
初中数学
初高中数学教学衔接培养反思
初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就这个问题进行分析,探讨其原因,寻找解决对策。
一、初高中数学教学存在的主要差异。
1.从教学内容上看,与初中相比,高中现行教材有如下特点:(1)内容广、难度大。以新教材第一、二章为例,概念多达三十多个,性质、法则、定理多达二十多个,而且在这两章中渗透了高中所有必须掌握的数学思想和数学方法,如集合与对应、分类讨论、数形结合、等价转化等数学思想及配方法、换元法、反证法、待定系数法等数学方法.由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。(2)内容抽象。高中教材不仅有大量抽象的概念难以理解,如函数、集合、增(减)函数等等,而且还要掌握大量抽象的数学符号和数学术语,如y=f(x)等等,我们既要准确理解他们的意义,同时还要能够运用它们进行推理、运算,这对刚进高中而且抽象思维能力不强的学生来说有一种上陡坎的感觉。(3)起点高。从整个高中教材编排体系来看,虽然把立体几何安排在高二,降低了高一上学期学习内容难度,但由于《函数》这一章太难,仍然是学生学习高中数学的拦路虎。老教材把命题和充要条件放在高二,那是因为高二学生已具备了一定的抽象思维能力,所以接受起来比较轻松,但新教材把它们安排在高一的第一章中,仍超出了部分学生的思维水平和接受能力,学生学习起来比较困难。(4)知识脱节。一些与高中联系较大的知识,在初中并不是重点,因此在教学中浅尝辄止,没有深入,进入高中后再深入的话使难点过于集中,加上中考后假期过长,部分学生思维松懈,使许多与高中联系较密切的知识被遗忘,造成知识脱节。2.从数学思维能力来看。初中生主要是以经验性为主的抽象逻辑思维,在这一阶段虽然抽象逻辑日益占有主要地位,但具体形象仍然起着重要作用。而高中生主要是以理论性为主的抽象性逻辑思维,要求他们具有更高的抽象概括能力,不仅能理解大量的抽象概念,会根据数量、形体的本质属性给数学概念下定义,而且还要能运用概念进行复杂的判断、推理,揭露事物的矛盾与运动,从而逐步形成辩证逻辑思维。对逻辑推理能力的要求相当高,要求他们思维严谨、做到有理有据;他们的观察力更加精确、深刻,能够洞悉事物的现象与本质之间的必然联系,注意力日趋稳定,有意记忆与理解识记占绝对优势,力求在理解的基础上识记数学材料。初中数学
3、从教学方法来看。由于初中生正处于“假大人”状态,是依赖性和独立性、自觉性与幼稚性相互交织时期,学习目的不是很明确,自觉性不是很强,所以教师在教学中不是很放心,不敢大胆放手,因而在教学中一要扶、二要逼,讲得多,讲得细、讲得慢;而高中生的智力发展已接近成熟,他们较前一阶段的学习更具有目的性、系统性、全面性和深刻性,有较强的自觉性,而且自学能力也有了一定的提高,课堂教学注重思维训练、能力培养及创新精神的培养。教学方法灵活多样,课堂课外相结合。4.学习方法与学习习惯及学习态度来看。初中生在学习过程中表现出极大的依附性,机械记忆所起的作用相当大,解题注重套模式,对知识缺乏整体认识,对知识间的内在联系也把握不够。而高中生在学习过程中特别注意理解,注重数学思想与数学方法在解题中的指导意义,注重对解题规律与方法的总结,元认知能力不断发展。他们不仅要掌握每一个知识点,而且还要掌握知识的形成过程,弄清各个知识点在知识体系中的地位和作用以及知识间的内在联系,并不断的构建、完善知识体系。学生自主学习的空间很大,要求他们课前要预习、上课要做笔记……..同时随着高中数学学习的不断深入,不少学生愈来愈困难,信心愈来愈差,有的干脆放弃,考试经常出现几分的现环境与心理的变化。
二、搞好初高中数学教学衔接所采取的主要措施1.做好准备工作,为搞好衔接打好基础。(1)搞好入学教育。这是搞好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基矗这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。(2)摸清底数,规划教学。为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底测试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。2.优化课堂教学环节,搞好初高中衔接。(1)立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实困难较大。因此,在教学中,应从高一学生实际出发,采劝低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。(2)重视新旧知识的联初中数学
系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。(3)重视展示知识的形成过程和方法探索过程,培养学生创造能力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。(4)重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。(5)重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指点,有意渗透数学思想方法。3.加强学法指导。高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等等。具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。4.优化教育管理环节,促进初高中良好衔接。(1)重视运用情感和成功原理,唤起学生学好数学的热情。搞好初高中衔接,除了优化教学环节外,还应充分发挥情感和心理的积极作用。我们在高一教学中,注意运用情感和成功原理,调动学生学习热情,培养学习数学兴趣。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。给他们多讲数学在各行各业广泛应用,讲祖国四化建设需要大批懂数学的专家学者;讲爱因斯坦在初中一次数学竟没有考及格,但他没有气馁,终于成了一名伟大科学家,华罗庚在学生时代奋发图强,终于在数学研究中做出了卓越贡献,等等。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。(2)重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。初中数学
平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。(3)重视知识的反馈和落实。通过建立多渠道的反馈途径,及时收集学生对知识的掌握情况和对教学的意见,为及时矫上学生的错误,调整教学,提高教学针对性提供依据。知识落实的思路为:以落实“三基”为中心,实行分层落实,做到提优补差。主要措施是:平时练习层次化,单元结束考查制度化,做到章节会,单元清。5.激发学生的学习兴趣,充分调动学生的主动性和积极性。(1)兴趣是进行有效活动的必要条件,是成功的源泉。所以,要使学生学好数学,首先要进一步激发他们对数学的兴趣,调动他们学习的主动性,使学生认识并体会到学习数学的意义,感觉到学习数学的乐趣。帮助学生树立信心,培养学生良好的学习习惯。鼓励学生质疑和提问,向老师“刨根问底”,甚至提出“标新立异”、“异想天开”的见解,对于他们在思维过程中出现的任何小小的“闪光点”都要给予充分的肯定。(2)教学要重视创设数学情境,便于学生产生感性认识。讲授新内容时,教师应注意创设问题的情境,尽量做到问题的提出、内容的引入和拓宽生动自然,并能自然地引导学生去思考、尝试和探索,在数学问题的不断解决中,让学生随时享受到由于自己的艰苦努力而得到成功的喜悦,从而促使学生的学习兴趣持久化,并能达到对知识的理解和记忆的效果。特别是在讲授一些著名的、重要的定理时,要创设情境,尽量做到再现数学家的发现过程,在同等情境下让我们的学生去探索,并经过引导达到真正认识、理解。
我们的目标是使所有的学生在努力之后,都能摘到相应的果实,所以我们要不惜时间与精力,进行包含知识、能力、心理素质以及意志品质各方面的中小学数学教学衔接及初高中数学教学衔接。让“衔接教学”更好的为高一新生铺设一条成功的路。
第二篇:2014初高中数学衔接材料04
第四讲 不 等 式
【例1】解不等式xx60. 【例2】解下列不等式:(1)(x2)(x3)6【例3】解下列不等式:
(1)x2x80
(2)(x1)(x2)(x2)(2x1)
(3)xx20
(2)x4x40
【例4】已知对于任意实数x,kx2xk恒为正数,求实数k的取值范围. 【例5】已知关于x的不等式kx2(k21)x30的解为1k3,求k的值. 【例6】解下列不等式:
(1)
2x3
0x1
(2)
x3
0 2
xx1
3 x2
【例8】求关于x的不等式mx22mxm的解.
【例7】解不等式
【例9】已知关于x的不等式kkxx2的解为x,求实数k的值. 2
A组
1.解下列不等式:
(1)2xx0
(2)x3x180(4)x(x9)3(x3)
(3)xx3x12.解下列不等式:
x1
0 x12
(3)1
x
(1)
3x1
2 2x12x2x1
0(4)
2x1
(2)(2)
3.解下列不等式:
1211xx0 235
4.已知不等式xaxb0的解是2x3,求a,b的值. 5.解关于x的不等式(m2)x1m.
6.已知关于x的不等式kx2kk2x的解是x1,求k的值.
7.已知不等式2xpxq0的解是2x1,求不等式pxqx20的解.
(1)x2x2x2
B组
1.已知关于x的不等式mxxm0的解是一切实数,求m的取值范围.
x2x3
12的解是x3,求k的值. kk
3.解关于x的不等式56xaxa.
4.a取何值时,代数式(a1)2(a2)2的值不小于0?
2.若不等式
c0的解是x,其中0,求不等式5.已知不等式axbxcx2bxa0的解.
第三篇:初高中数学衔接问题初探
初高中数学衔接问题初探
李俊林
摘要:学生由初中升入高中将面临许多变化,受这些变化的影响,许多学生不能尽快适应高中学习,学习成绩大幅度下降,过早地失去学数学的兴趣,甚至打击他们的学习信心。如何搞好初高中数学教学的衔接,帮助学生尽快适应高中数学教学特点和学习特点,度过“难关”,就成为高一数学教学的首要任务。
关键词: 成绩分化;差异;衔接;措施
一、关于初高中数学成绩分化原因的分析
(一)环境与心理的变化
对高一新生来讲,学习环境是全新的,新教材、新同学、新教师、新集体,学生需要有一个由陌生到熟悉的适应过程。另外,考取了高中,有些学生会产生“松口气”的想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前就耳闻高中数学很难学,高中数学课一开始也确有些难理解的抽象概念,如集合、充要条件等,使他们从开始就处于被动局面。
(二)教材的变化
首先,初中教材偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义,三角函数的定义就是如此;对不少数学定理没有严格论证,或直接用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的;教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。高中教材从知识内容上整体数量较初中剧增;在知识的呈现、过程和联系上注重逻辑性,在数学语言在抽象程度上发生了突变,高一教材开始就是集合、函数定义及相关证明、逻辑关系等,概念多而抽象,符号多,定义、定理严格、论证严谨逻辑性强,教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了“起点高、难度大、容量多”的特点。另外,初中数学教材中每一新知识的引入往往与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握。
(三)课时的变化
在初中,由于内容少,题型简单,课时较充足。因此课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有足够的时间进行举例示范,学生也有足够的时间进行巩固。而到高中,由于知识点增多,灵活性加大,自习辅导课减少,课容量增大,进度加快,对重难点内容没有更多的时间强调,对各类题型也不可能讲全讲细以及巩固强化。这也使高一新生开始不适应高中学习而影响成绩的提高。
(四)教学方法的变化
初、高中教学方法上的差异也是高一新生成绩下降的一个重要原因。初中数学教学中重视直观、形象教学,一些重点题目学生可以反复练习,强化学习效果。而高中数学教学则更强调数学思想和方法,注重举一反三,在严格的论证和推理上下工夫。高中数学的课堂教学
往往采用粗线条模式,为学生构建一定的知识框架,讲授一些典型例题,以落实“双基”培养能力。刚进入高中的学生不容易适应这种教学方法.听课时存在思维障碍,难以适应快速的教学推进速度,从而产生学习障碍,影响学习成绩。
(五)学习方法的变化
在初中,教师讲得细,类型归纳得全,练得熟。考试时学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩。因此,学生习惯于围着教师转,不注重独立思考和对规律的归纳总结。到高中,由于内容多时间少,教师不可能把知识应用形式和题型讲全讲细,只能选讲一些具有典型性的题目。因此,高中数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。然而,刚入学的高一新生往往继续沿用初中学法,致使学习困难增多,完成当天作业都很困难,更别提预习、复习及总结等自我消化自我调整的时间。这显然不利于良好学法的形成和学习质量的提高。
二、搞好初高中衔接所采取的主要措施
高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力和分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法也正是高考命题的要求。
(一)做好准备工作,为搞好衔接打好基础
1.搞好入学教育
这是搞好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础。这里主要做好几项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是适当在刚开学时用一定时间复习初中数学中比较重要的基础知识、重点题型、重要方法;三是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;四是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项,尽快适应高中学习。
2.摸清底细,规划教学
为了搞好初高中衔接,教师首先要摸清学生的学习基础,然后以此来规划自己的教学和落实教学要求,以提高教学的针对性。在教学实际中,我们一方面通过进行摸底考试和对入学成绩的分析,了解学生的基础;另一方面,认真学习和比较初高中教学大纲和教材,以全面了解初高中数学知识体系,找出初高中知识的衔接点、区别点和需要铺路搭桥的知识点,以使备课和讲课更符合学生实际,更具有针对性。
(二)优化课堂教学环节,搞好初高中衔接
立足于大纲和教材,尊重学生实际,实行层次教学。重视新旧知识的联系与区别,建立知识网络。展示知识的形成过程和方法探索过程,培养学生创造能力。培养学生自我反思自
我总结的良好习惯,提高学习的自觉性。重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法的指点,有意渗透数学思想方法。
(三)加强学法指导,培养良好学习习惯
良好学习习惯是学好高中数学的重要因素。它包括:制定计划、课前自习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习这几个方面。改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中解放出来;引导学生养成课前预习的习惯。可布置一些思考题和预习作业,保证听课时有针对性。还要引导学生学会听课,要求做到“心到”,即注意力高度集中;“眼到”,即仔细看清老师每一步板演;“手到”,即适当做好笔记;“口到”,即随时回答老师的提问,以提高听课效率。引导学生养成及时复习的习惯,下课后要反复阅读书本,回顾堂上老师所讲内容,查阅有关资料,或向教师同学请教,以强化对基本概念、知识体系的理解和记忆。引导学生养成独立作业的习惯,要独立地分析问题,解决问题。切忌有点小问题,或习题不会做,就不加思索地请教老师同学。引导学生养成系统复习小结的习惯,将所学新知识融入有关的体系和网络中,以保持知识的完整性。
(四)培养学生的数学兴趣
心理学研究成果表明:推动学生进行学习的内部动力是学习动机,而兴趣则是构建学习动机中最现实、最活跃的成份。浓厚的学习兴趣无疑会使人的各种感受尤其是大脑处于最活泼的状态,使感知更清晰、观察更细致、思维更深刻、想象更丰富、记忆更牢固,能够最佳地接受教学信息。不少学生之所以视数学学习为苦役、为畏途,主要原因还在于缺乏对数学的兴趣。因此,教师要着力于培养和调动学生学习数学的兴趣。课堂教学的导言,需要教师精心构思,一开头,就能把学生深深吸引,使学生的思维活跃起来。在教学过程中,教师还要通过生动的语言、精辟的分析、严密的推理、让学生从行之有效的数学方法和灵活巧妙的解题技巧中感受数学的无穷魅力,从枯燥乏味中解放出来,进入其乐无穷的境地,以保持学习兴趣的持久性。平时多注意观察学生情绪变化,开展心理咨询,做好个别学生思想工作。学生学不好数学,少责怪学生,要多找自己的原因。要深入学生当中,从各方面了解关心他们,特别是差生,帮助他们解决思想、学习及生活上存在的问题。使学生提高认识,增强学好数学的信心。在提问和布置作业时,从学生实际出发,多给学生创设成功的机会,以体会成功的喜悦,激发学习热情。
(五)培养学生的自学能力
培养学生自学能力,是初高中数学衔接非常重要的环节,在高一年级开始,可选择适当内容在课内自学。教师根据教材内容拟定自学提纲──基本内容的归纳、公式定理的推导证明、数学中研究问题的思维方法等。学生自学后由教师进行归纳总结,并给以自学方法的指导,以后逐步放手让学生自拟提纲自学,并向学生提出预习及进行章节小结的要求。应要求
学生把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的总结,以便推广和灵活运用。
(六)培养学生良好心理素质
重视培养学生正确对待困难和挫折的良好心理素质。由于高中数学的特点,决定了高一学生在学习中的困难大挫折多。为此,我们在教学中注意培养学生正确对待困难和挫折的良好心理素质,使他们善于在失败面前,能冷静地总结教训,振作精神,主动调整自己的学习,并努力争取今后的胜利。
三、结束语
总之,在高一数学的起步教学阶段,分析清楚学生学习数学困难的原因,抓好初高中数学教学衔接,便能使学生尽快适应新的学习模式,从而更高效、更顺利地接受新知和发展能力,为他们的高中学习奠定坚实的基础。
[参考文献]
[1]江家齐.《教育与新学科》.修订2版.广东:广东教育出版社,1993年.156页
[2]郑和钧.《协同教学原则》.《湖南教育》,1993年11月.28页
[3]张筱玮.《中学数学理论与实践》.修订版.吉林:东北师范大学出版,2000年.125页
[4]钟以俊.《中外实用教学方法手册》.广西教育出版社,1990年10月.98页
作者简介:中学一级教师,专科,从事初高中数学教育多年,研究方向为数学教学。
第四篇:2014初高中数学衔接材料06
第六讲 简单的二元二次方程组
2xy0(1)xy11(1)
【例1】解方程组2【例2】解方程组 2
xy28(2)xy30(2)
222xy5(xy)(1)xxy12(1)
【例3】解方程组2【例4】解方程组 22
xxyy43(2)xyy4(2)x2y226(1)xyx3(1)
【例5】解方程组【例6】解方程组
3xyy8(2)xy5(2)
1.解下列方程组:
(1)xy26
yx
(3)xy12 2x3xyy2
52.解下列方程组:
(1)xy3
xy2
3.解下列方程组:
(1)x(2x3)0
yx2
1
(3)(xy2)(xy)0 x2y2
8
4.解下列方程组: 22(1)xy3
x2y2
0
1.解下列方程组:
(1)x2y3x22y3x20
2.解下列方程组:
(1)
xy3
xy2
3.解下列方程组:
(1)22
3xy8x2xyy2
4
4.解下列方程组:(1)x2y25
xy2
A组
(2)x22y28
y2
x
(4)x2y03x22xy10
(2)xy1
xy6
(2)(3x4y3)(3x4y3)0
3x2y5
(4)
(xy)(xy1)0
(xy)(xy1)0
(2)
xyx16
xyx8
B组
(2)2x3y12x23xyy2
4x3y30
(2)
x2y4
2xy21
(2)xy24
xy21
2
(2)xy4x2y2
10
第五篇:初高中数学衔接练习题
初中升高中衔接练习题(数学)
乘法公式1.填空:(1)();
(2);
(3)
.
2.选择题:(1)若是一个完全平方式,则等于()
(A)
(B)
(C)
(D)
(2)不论,为何实数,的值()
(A)总是正数
(B)总是负数
(C)可以是零
(D)可以是正数也可以是负数
因式分解
一、填空题:1、把下列各式分解因式:
(1)__________________________________________________。
(2)__________________________________________________。
(3)__________________________________________________。
(4)__________________________________________________。
(5)__________________________________________________。
(6)__________________________________________________。
(7)__________________________________________________。
(8)__________________________________________________。
(9)__________________________________________________。
(10)__________________________________________________。
2、若则。
二、选择题:(每小题四个答案中只有一个是正确的)
1、在多项式(1)(2)(3)(4)
(5)中,有相同因式的是()
A.只有(1)(2)
B.只有(3)(4)
C.只有(3)(5)
D.(1)和(2);(3)和(4);(3)和(5)
2、分解因式得()
A
B
C
D3、分解因式得()
A、B、C、D、4、若多项式可分解为,则、的值是()
A、,B、,C、,D、,5、若其中、为整数,则的值为()
A、或
B、C、D、或
三、把下列各式分解因式1、2、3、4、提取公因式法
一、填空题:1、多项式中各项的公因式是_______________。
2、__________________。
3、____________________。
4、_____________________。
5、______________________。
6、分解因式得_____________________。
7.计算=
二、判断题:(正确的打上“√”,错误的打上“×”)
1、…………………………………………………………
()
2、……………………………………………………………
()
3、……………………………………………
()
4、………………………………………………………………
()
公式法
一、填空题:,的公因式是___________________________。
二、判断题:(正确的打上“√”,错误的打上“×”)
1、…………………………
()
2、…………………………………
()
3、…………………………………………………
()
4、…………………………………………
()
5、………………………………………………
()
三、把下列各式分解1、2、3、4、分组分解法
用分组分解法分解多项式(1)
(2)
关于x的二次三项式ax2+bx+c(a≠0)的因式分解.
1.选择题:多项式的一个因式为()
(A)
(B)
(C)
(D)
2.分解因式:(1)x2+6x+8;
(2)8a3-b3;
(3)x2-2x-1;
(4).
根的判别式
1.选择题:(1)方程的根的情况是()
(A)有一个实数根
(B)有两个不相等的实数根
(C)有两个相等的实数根
(D)没有实数根
(2)若关于x的方程mx2+
(2m+1)x+m=0有两个不相等的实数根,则实数m的取值范围是()(A)m<
(B)m>-
(C)m<,且m≠0
(D)m>-,且m≠0
2.填空:(1)若方程x2-3x-1=0的两根分别是x1和x2,则=
.
(2)方程mx2+x-2m=0(m≠0)的根的情况是
.
(3)以-3和1为根的一元二次方程是
.
3.已知,当k取何值时,方程kx2+ax+b=0有两个不相等的实数根?
4.已知方程x2-3x-1=0的两根为x1和x2,求(x1-3)(x2-3)的值.
习题2.1
A
组1.选择题:(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是()
(A)-3
(B)3
(C)-2
(D)2
(2)下列四个说法:
①方程x2+2x-7=0的两根之和为-2,两根之积为-7;
②方程x2-2x+7=0的两根之和为-2,两根之积为7;
③方程3
x2-7=0的两根之和为0,两根之积为;
④方程3
x2+2x=0的两根之和为-2,两根之积为0.
其中正确说法的个数是()
(A)1个
(B)2个(C)3个
(D)4个
(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是()
(A)0
(B)1
(C)-1
(D)0,或-1
2.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=
.
(2)方程2x2-x-4=0的两根为α,β,则α2+β2=
.
(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是
.
(4)方程2x2+2x-1=0的两根为x1和x2,则|
x1-x2|=
.
3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1)
x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?
4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.
B
组1.选择题:若关于x的方程x2+(k2-1)
x+k+1=0的两根互为相反数,则k的值为().(A)1,或-1
(B)1
(C)-1
(D)0
2.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于
.
(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2是
.
3.已知关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围.
4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1和x2.求:
(1)|
x1-x2|和;
(2)x13+x23.
5.关于x的方程x2+4x+m=0的两根为x1,x2满足|
x1-x2|=2,求实数m的值.
C
组1.选择题:
(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于()
(A)
(B)3
(C)6
(D)9
(2)若x1,x2是方程2x2-4x+1=0的两个根,则的值为()
(A)6
(B)4
(C)3
(D)
(3)如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为()
(A)α+β≥
(B)α+β≤
(C)α+β≥1
(D)α+β≤1
(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况是()
(A)没有实数根
(B)有两个不相等的实数根
(C)有两个相等的实数根
(D)有两个异号实数根
2.填空:若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m=
.
3.已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)(x1-2
x2)=-成立?若存在,求出k的值;若不存在,说明理由;
(2)求使-2的值为整数的实数k的整数值;(3)若k=-2,试求的值.
4.已知关于x的方程.
(1)求证:无论m取什么实数时,这个方程总有两个相异实数根;
(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m的值及相应的x1,x2.
5.若关于x的方程x2+x+a=0的一个大于1、零一根小于1,求实数a的取值范围.
二次函数y=ax2+bx+c的图象和性质
1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()
(A)y=2x2
(B)y=2x2-4x+2
(C)y=2x2-1
(D)y=2x2-4x
(2)函数y=2(x-1)2+2是将函数y=2x2()
(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题
(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n=
.
(2)已知二次函数y=x2+(m-2)x-2m,当m=
时,函数图象的顶点在y轴上;当m=
时,函数图象的顶点在x轴上;当m=
时,函数图象经过原点.
(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为
;当x=
时,函数取最
值y=
;当x
时,y随着x的增大而减小.
3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;
(2)y=1+6
x-x2.
4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:
(1)x≤-2;
(2)x≤2;
(3)-2≤x≤1;
(4)0≤x≤3.
二次函数的三种表示方式
1.选择题:
(1)函数y=-x2+x-1图象与x轴的交点个数是()
(A)0个
(B)1个
(C)2个
(D)无法确定
(2)函数y=-(x+1)2+2的顶点坐标是()
(A)(1,2)
(B)(1,-2)
(C)(-1,2)
(D)(-1,-2)
2.填空:
(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a
(a≠0)
.
(2)二次函数y=-x2+2x+1的函数图象与x轴两交点之间的距离为
.
二次函数的简单应用
选择题:(1)把函数y=-(x-1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为()
(A)y=
(x+1)2+1
(B)y=-(x+1)2+1
(C)y=-(x-3)2+4
(D)y=-(x-3)2+1