第一篇:小学数学应用题分析解答方法
小学数学教学论文:培养学生解答应用题的能力
应用题在小学数学中占有很大的比例,所涉及的面也很广。解答应用题既要综合运用小学数学中的概念、性质、法则、公式等基础知识,还要具有分析、综合、判断、推理的能力。所以,应用题教学不仅可以巩固基础知识,而且有助于培养学生初步的逻辑思维能力。
怎样培养学生解答应用题的能力呢?下面谈谈自己的体会。
一、牢固地掌握基本的数量关系
是解答应用题的基础
应用题的特点是用语言或文字叙述日常生活和生产中一件完整的事情,由已知条件和问题两部分组成,其中涉及到一些数量关系。解答应用题的过程就是分析数量之间的关系,进行推理,由已知求得未知的过程。学生解答应用题时,只有对题目中的数量之间的关系一清二楚,才有可能把题目正确地解答出来。换一个角度来说,如果学生对题目中的某一种数量关系不够清楚,那么也不可能把题目正确地解答出来。因此,牢固地掌握基本的数量关系是解答应用题的基础。
什么是基本的数量关系呢?根据加法、减法、乘法、除法的意义决定了加、减、乘、除法的应用范围,应用范围里涉及到的内容就是基本的数量关系。例如:加法的应用范围是:求两个数的和用加法计算;求比一个数多几的数用加法计算。这两个问题就是加法中的基本数量关系。
怎样使学生掌握好基本的数量关系呢?
首先要加强概念、性质、法则、公式等基础知识的教学。举例来说,如果学生对乘法的意义不够理解,那么在掌握“单价×数量=总价”这个数量关系式时就有困难。
其次,基本的数量关系往往是通过一步应用题的教学来完成的。人们常说,一步应用题是基础,道理也就在于此。研究怎样使学生掌握好基本的数量关系,就要注重对一步应用题教学的研究。学生学习一步应用题是在低、中年级,这时学生年龄小,他们容易接受直观的东西,而不容易接受抽象的东西。所以在教学中,教师要充分运用直观教学,通过学生动手、动口、动脑,在获得大量感性知识的基础上,再通过抽象、概括上升到理性认识。下面以建立有关倍的数量关系为例来说明。
两个数量相比,既可以比较数量的多少,也可以比较数量间的倍数关系。这就是说,“倍”也是在比较中产生的。在教有关“倍”的数量关系时,核心问题是对“倍”的认识。为了使学生理解“倍”的意义,教学中可以这样进行:
第一步从同样多入手。教师在第一行摆了2个△,第二行摆了2个○,启发学生说出○与△的个数同样多。
第二步引出差,使差与比的标准同样多。接着教师在第二行再摆上1个○,这时○比△多1个。然后在第二行再摆上1个○,使学生说出○比△多2个;再引导学生通过观察得出:○比△多的部分与△的个数同样多。
第三步从份数入手建立“倍”的概念。接上面,如果把2个△看作1份,○有这样的几份呢?○有这样的2份,我们就说○的个数是△个数的2倍。
把“倍”的概念理解透了,那么教有关“倍”的数量关系时就比较容易了。例如教“求一个数的几倍是多少”这种数量关系时,可以使用下面这样的应用题:
有3只黑兔,白兔的只数是黑兔的4倍,白兔有几只?
在这道简单应用题中,“白兔的只数是黑兔的4倍”这个条件是关键。通过教具演示和学生动手操作,学生清楚地知道这句话的含意是:把3只黑兔看作1份,白兔有这样的4份。求3只的4倍是多少,就是求4个3只是多少。用乘法计算列式是:3×4=12(只)。从而使学生掌握“求一个数的几倍是多少”,用乘法计算。
如果在建立每一种数量关系时,都能使学生透彻地理解,牢固地掌握,那么就为多步应用题的教学打下良好的基础。
此外,人们在工作和学习中,把一些常见的数量关系概括成关系式,如:单价×数量=总价、速度×时间=路程、工作效率×工作时间=工作总量、亩产量×亩数=总产量,应使学生在理解的基础上熟记,这对学生掌握数量关系及寻找应用题的解题线索都是有好处的。
再有,对一些名词术语的含意也要使学生很好地掌握。如:和、差、积、商的意义,提高、提高到、提高了、增加、减少、扩大、缩小等的意义。否则会在分析数量关系时造成错误。
二、掌握应用题的分析方法
是解答应用题的关键
学生掌握了基本的数量关系后,能否顺利地解答应用题,关键在于是否掌握了分析应用题的方法。可以这样说,应用题教学成败的标志也在于此。
(一)常用的分析方法
分析应用题常用的方法是综合法和分析法。
1.综合法
综合法的解题思路是由已知条件出发转向问题的分析方法。其分析方法是:选择两个已知数量,提出可以解决的问题;再选择两个已知数量(所求出的数量这时就成为已知数量),又提出可以解决的问题;这样逐步推导,直到求出题目的问题为止。
2.分析法
分析法的解题思路是从应用题的问题入手,根据数量关系,找出解这个问题所需要的条件。这些条件中有的可能是已知的,有的是未知的,再把未知的条件做为中间问题,找出解这个中间问题所需要的条件,这样逐步推理,直到所需要的条件都能从题目中找到为止。
以上这两种分析方法不是孤立的,而是相互关联的。由条件入手分析时,要考虑题目的问题,否则推理会失去方向;由问题入手分析时,要考虑已知条件,否则提出的问题不能用题目中的已知条件来求得。在分析应用题时,往往是这两种方法结合使用,从已知找到可知,从问题找到需知,这样逐步使问题与已知条件建立起联系,从而达到顺利解题的目的。以下面这道应用题的分析为例,就可以看出两种分析方法结合运用的过程。
例:某工厂计划全年生产机床480台,实际提前3个月就完成了全年计划的1.2倍。照这样计算,这个厂全年实际生产机床多少台?
分析过程用图64表示如下。
顺便再提一下,如果在分析这个题时,从条件入手分析而不兼顾问题的话,很容易根据“计划全年生产机床480台”这个已知条件,先提出“计划每月生产机床多少台”这个问题,而提出的这个问题与解题是无关的,使分析偏离了所要解决的问题。从而再一次说明,在分析应用题时,一定要瞻前顾后,统观全题。
(二)特殊的分析比较
有些应用题由于结构比较特殊,单纯用综合法和分析法分析还是有困难的,这就需要再掌握一些特殊的分析应用题的方法,这样有助于提高分析解答应用题的能力。常用的特殊的分析方法有以下几种。1.转化法
由于已知条件和问题的不同,转化的方法又可以细分为以下五种。
(1)把一事物转化成它事物
例妈妈买了3千克桔子和4千克苹果,共花了23.4元。每千克苹果的价钱是桔子的1.5倍。每千克苹果和桔子各多少元?
这个题由于桔子和苹果的重量不相等,故而需要转化。“每千克苹果的价钱是桔子的1.5倍”是转化的条件。可以这样分析:买1千克苹果的钱可以买1.5千克桔子,那么买4千克苹果的钱可以买(4×1.5)千克桔子。从而可知,买苹果
和桔子花去的23.4元钱相当于买(3+4×1.5)千克桔子的钱。通过这样的转化,题目就迎刃而解了。
解:23.4÷(3+4×1.5)=2.6(元)
2.6×1.5=3.9(元)
答:每千克苹果3.9元,每千克桔子2.6元。
(2)单位“1”的转化
根据题意,先画出线段图(见图65)。
是不相同的,只有统一了单位“1”才能解题,这就需要进行单位“1”的转化。
答:这箱灯泡共有294个。
此题也可以余下的个数为“1”,用转化法求出总数是余下个数的几倍。这样转化解题的步骤要多,不如上面这样转化解题简便。
(3)运用“同样多”的概念进行转化
例二月份甲的奖金是乙的4倍。三月份甲比上月多得奖金8元,乙比上月少得奖金2元,三月份甲的奖金是乙的6倍。问三月份乙得奖金多少元?
由题意可知,二月份和三月份甲的奖金都是以乙的奖金数为“1”,但二月份和三月份乙的奖金数是不一样的,所以题目中的“4倍”与“6倍”的单位“1”是不相同的,这就需要用转化法统一单位“1”。但是转化的方法与上题不同,为了便于说明,先画出图(见图66)。
已知二月份甲的奖金是乙的4倍,把甲二月份奖金4份中的每一份去掉2元,那么每一份余下的部分就与乙三月份的奖金同样多。这就是说,甲二月份的奖金比乙三月份奖金的4倍多8元。从而可知,乙三月份奖金的6倍比乙三月份奖金的4倍多16元。运用“同样多”的概念,就把“4倍”与“6倍”的单位“1”统一成以乙三月份的奖金为单位“1”了。
解:(2×4+8)÷(6-4)=8(元)
答:乙三月份的奖金是8元。
(4)利用常识进行转化
例一个水塘里有一些龟和鹤,足数共120只,鹤的只数是龟的3倍。问龟、鹤各有多少只?
从题目的已知条件看,鹤与龟足数之和是120只,可倍数关系却给的不是足数之间的关系,这就需要把只数之间的倍数关系转化成足数之间的倍数关系。这种转化是应用常识进行转化的。因为龟有4只足,鹤有2只足,即2只鹤的足数与1只龟的足数相同。所以当鹤的只数是龟的3倍时,鹤的足数只是龟的1.5倍。至此题目就成为一道和倍问题,可以求出龟与鹤的足数,进而就可以求出龟与鹤的只数。
解:120÷(1+3÷2)=48(只)
48÷4=12(只)
12×3=36(只)
答:龟有12只,鹤有36只。
(5)图形的转化
因为本文是谈应用题教学,所以关于图形的转化就不再举例说明了。
综上所述,凡是能用转化法解的题目其本身都必定存在着可转化的条件。用转化法解这种题时,关键是要正确地找出转化的条件。2.假设法
在我国古代数学名著《孙子算经》中载有鸡兔同笼问题,其解题方法应用的就是假设法。假设法应用的范围也是比较广的,请看下面几个题。
例1一件工程,甲独做10天完成,乙独做15天完成,丙独做20天完成。现在三人合做,甲因病中途休息,这样到第6天才完成任务,求甲休息了几天。
这是一道工程问题,一般的解法是:
应用假设法解此题可以这样想:假设甲没有休息,那么甲、乙、丙三人合做6天必然超额完成任务。甲完成超额部分的天数,就是他休息的天数。
答:甲休息了3天。
例2有一批零件,师傅单独加工比徒弟少用3小时。师傅每小时加工10个,徒弟每小时加工8个,这批零件有多少个?
解法一假设师傅加工的时间与徒弟相同,那么师傅可多加工30个零件。由已知条件可知,师傅每小时比徒弟多加工2个零件,根据这两个条件就可求出徒弟加工这批零件所用的时间,进而就可以求出这批零件的个数。
解:8×[10×3÷(10-8)] =8×15 =120(个)
答:这批零件有120个。
解法二假设徒弟加工的时间与师傅相同,那么徒弟就有24个零件没有加工。由已知条件可知,徒弟比师傅每小时少加工2个零件,根据这两个条件就可求出师傅加工这批零件所用的时间,进而也就可以求出这批零件的个数。
解:10×[8×3÷(10-8)]
=10×12
=120(个)
答:同上。
例3甲乙两个仓库内原来共存货物480吨,现在甲仓又运进它所存货物的40%,乙仓又运进它所存货物的25%,这时两仓共存货物645吨。原来两仓各存货物多少吨?
这个题中的百分率40%和25%的单位“1”不相同,但是不具备转化的条件,所以采用假设法来分析。
假设两仓都运进所存货物的40%,那么可知共运进货物480×40%=192吨。而实际两仓共运进货物645-480=165吨。从而可知多算了192-165=27吨,为什么多算了27吨呢?就是因为乙仓实际运进了所存货物的25%,而也当做运进所存货物的40%计算了。从而可知,乙仓原来所存货物的40%与25%的差相当于27吨,于是可知乙仓原来存货物的吨数。
解:480×40%=192(吨)
645-480=165(吨)
192-165=27(吨)
27÷(40%-25%)=180(吨)
480-180=300(吨)
答:原来甲仓存货物300吨,乙仓存货物180吨。
此题也可以假设两仓都运进所存货物的25%,其思路可以仿照上面所述,这里就不多谈了。
用假设法解题的思考方法是:先根据解题的需要对已知条件做出假设,通过假设引出矛盾,然后分析产生矛盾的原因,把原因分析清楚了,题目就可以解答出来了。3.对应法
用对应法解答的应用题,主要是求平均数问题和分数、百分数应用题。
例1同学们分成三个组糊纸盒,第一组15人,1.5小时共糊了405个;第二组12人,2小时共糊了384个;第三组10人,2.5小时共糊了500个。问:①平均每组糊纸盒多少个?②三个组平均每人糊纸盒多少个?③三个组平均每小时糊纸盒多少个?
①求平均每组糊纸盒多少个,这是求简单平均数问题。需要用三个组共糊纸盒数除以3.也就是三个组共糊纸盒数与组数要相对应。即:
②求三个组平均每人糊纸盒多少个,就需要用三个组糊纸盒总数除以三个组的总人数。也就是纸盒的总数与糊纸盒的总人数相对应。即:
③求三个组平均每小时糊纸盒多少个,就需要用三个组糊纸盒的总数除以三个组用的总时间。也就是纸盒总数与糊纸盒用的总时间相对应。即:
第②③两问都属于求加权平均数问题。求加权平均数的关系式一般写作:总数量÷总份数=平均数。其中总数量与总份数要相对应。学生在学习这种应用题时,容易出现的错误恰恰是总数量与总份数不相对应。教这类应用题时,如果在讲清算理的基础上,概括出解题的关系式,并突出讲清总数量与总份数的对应关系,那么学生解题时就不会出现上述不对应的错误了。
例2加工一批零件,甲独做需18小时,乙独做需15小时。两人合做,完成任务时甲比乙少做了90个。这批零件共有多少个?
这是一道工程问题与分数问题相复合的应用题。学生解答这个题最容易
分数应用题中的“量”与“率”的对应关系没掌握好。怎样找它们的对应关系呢?可以通过下面的两条途径。
求出这批零件的总数。
答:这批零件共有990个。
上面解法中的最后一步很充分地体现出了“量”与“率”的对应关系,简单地概括成一句话就是:1小时的量差与1小时的率差相对应。
对应关系,就可以求出零件的总数。
答:同上。
为了提高学生解答分数应用题的能力,除了要正确确定单位“1”,选择正确的算法外,掌握“量”与“率”的对应关系是关键,学生出现错误往往是在这个地方。所以在教学中要突出“量”与“率”的对应关系。
4.消去法
应用消去法解答的应用题的结构一般是:在两组(或几组)相关联的量中,只知道两种(或几种)物品的数量和总价之和,而问题是求每类物品的单价。解这类题目的基本思想,是应用消去法消去一些未知数,使题目中只含有一个未知的数。
例 小明请小红代买5支铅笔和8个练习本,按价钱交给小红2.04元。结果小红却买了8支铅笔和5个练习本,找回0.18元。求一支铅笔多少元。
先把已知条件排列出来。
5支铅笔——8个练习本——共2.04元
8支铅笔——5个练习本——共(2.04-0.18元)元
解这个题的难点在于两组相关联的量中,同类量的数量是不相等的。既然题目的问题是求一支铅笔多少元,可以用扩大倍数的办法,使练习本的数量相同,于是得到下式:
25支铅笔——40本练习本——共10.2元
64支铅笔——40个练习本——共14.88元
练习本的数量相同,那么所花的钱也相同。14.88元比10.2元多的钱数就是(64-25)支铅笔的钱数。至此问题就解决了。
解:[(2.04-0.18)×8-2.04×5]÷(8×8-5×5)
=[14.88-10.2]÷(64-25)
=4.68÷39 =0.12(元)
答:每支铅笔0.12元。
用消去法解的题还可以有很多变化,但其基本的解题思想是不变的,所以就不再举例了。5.图示法
图示法就是用线段图(或其它图形)把题目中的已知条件和问题表示出来,这样可以把抽象的数量关系具体化,往往可以从图中找到解题的突破口。图示法解题的面是很宽的,无论是整数和小数应用题,还是分数和百分数应用题,以及几何初步知识方面的应用题,都可以采用这种方法。前面在讲其它解题方法时,有些题目就已经使用了图示法。所以图示法既可以单独使用,也可以与其它解题方法结合使用。
例1 有大、小两个正方形,边长相差3厘米,面积相差63平方厘米。这两个正方形的面积各是多少?
这是一道几何初步知识方面的应用题,题目要求两个正方形的面积各是多少,这就需要求出其中一个正方形的边长。但正方形的边长、边长之差、面积之差等之间的关系抽象地分析是不容易找出它们之间的联系的。为此可用图示法帮助解决这个难点。这个题宜画几何图形(见图67)
把小正方形放在大正方形内,再添加两条辅助线,于是边长之差与面积之差都反映出来了。又清楚地看出,面积之差是由三部分组成的:Ⅰ是边长为3厘米的正方形,Ⅱ和Ⅲ是两个面积相等的长方形,它们的长就是小正方形的边长,宽就是边长之差。通过图示法,把题目的已知条件与问题之间的联系都找出来了,按照图提供的解题思路就可以顺利解题了。
解:(63-3×3)÷2÷3=9(厘米)
9×9=81(平方厘米)
81+63=144(平方厘米)
答:大正方形的面积是144平方厘米,小正方形的面积是81平方厘米。
例2 有三堆棋子,每堆棋子数一样多,并且都只有黑白两色棋子。第
把这三堆棋子集中在一起,问白子占全部棋子的几分之几?
这个题是第一届华罗庚金杯少年数学邀请赛复赛中的一个题。此题在理解题意上就有一定的困难,解题的线索在哪里更不容易找出来了,为此可以采用图示法。此题宜画示意图,用三个一样大的长方形代表三堆数目相等的棋子,用阴影部分代表黑棋子。
从图68中我们可以看出,把第二堆里的黑子与第一堆里的白子对换,第
以下应用转化法就可以求出全部黑子占全部棋子的几分之几,问题也就迎刃而解了。
下面再看一道第一届华罗庚金杯少年数学邀请赛复赛中的试题。
例3 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,甲 的人数的几分之几?
这道题很抽象,如果不画图,简直不知从何处下手解答。画图时可以这样考虑:用两条一样长的线段表示两班人数,把甲班参加天文小组的与乙班没参加天文小组的分别画在两条线段的同一端,这样有助于反映出数量之间的关系,如图69示。
等。找到了这个重要的线索,应用转化法就可以解题了。
画图分析应用题是一种能力,这种能力需要在整个应用题教学过程中逐步培养。在低年级可以先培养学生看懂图,从中年级开始可逐步培养学生画图。画图的过程就是理解题意和分析数量关系的过程,从这个意义上讲,画图能力的强弱也反映了解题能力的高低。所以在应用题的教学过程中,要注意培养学生画图分析应用题的能力。
三、加强训练是提高学生解
答应用题能力的途径
学生掌握了解答应用题的基础知识,也学习了分析应用题的思考方法,是不是学生就能很顺利地解答应用题了呢?回答是“不见得”。打个比喻,一个游泳运动员掌握了游泳的理论,而不下水刻苦练习,也是游不出好成绩的。游泳是如此,解应用题也是如此。因此,加强训练是提高学生解答应用题的能力不可缺少的一环。怎样训练呢?下面谈谈个人的看法。
(一)要训练学生能用流利的语言叙述解题思路
应用题教学的目的是培养学生有根有据的、有条有理的、前后无矛盾的分析问题和解决问题的能力,即《大纲》要求的逻辑思维能力。
有些学生虽然能把题目正确地解答出来,但不一定能把思考过程说得清清楚楚。教学中,有些教师也只满足于学生会解题,而忽视让学生叙述解题思路,这是不够的。让学生叙述解题思路有以下几点好处:
第一,有利于培养学生的口头表达能力。第二,教师可以了解学生的思维状况。思维是畅通的呢,还是不畅通的;若思维不畅通,症结在什么地方,教师可以有的放矢地进行帮助。第三,节约时间。一节课的时间是个常数,如果只有等学生把题目做出得数来才能判断他们是否分会析应用题(在解题过程中还要进行大量的计算),那么一节课做不了几个题。且学生做题有快有慢,等慢的同学做完题,快的同学要白白浪费许多时间。如果让学生口头分析应用题,可以节约大量时间,练习的题量会大大增加。
学生用语言叙述应用题的分析过程,开始时往往语言噜嗦,层次不够清楚,因果关系说得不确切等,这时,教师不妨给学生一个分析过程的固定模式。即:用分析法分析时,这样说:要求××××问题,就得知道××××和××××;用综合法分析时,这样说:已知××××和××××,就可以求出××××。例如:
东风服装厂原计划18天生产服装1800件,实际提前3天完成了任务,平均每天实际比计划多生产多少件?
用综合法分析:已知原计划18天生产服装1800件,就可求出原计划1天生产服装的件数。已知原计划用18天,实际提前3天完成任务,就可以求出实际完成任务的天数。已知要生产服装1800件,又知实际完成任务的天数,就可以求出实际1天生产服装的件数。已知实际1天和计划1天生产服装的件数,就可求出平均每天实际比计划多生产的件数。
用分析法分析:要想求平均每天实际比计划多生产多少件,就得知道实际每天生产多少件和计划每天生产多少件。要想求计划每天生产多少件,就得知道要生产服装多少件和计划用几天完成,这两个条件都是已知的。要想求实际每天生产多少件,就得知道要生产服装的件数和实际用几天完成。生产服装的件数是已知的;要想求实际用几天完成,就得知道计划用几天和实际比计划提前了几天,这两个条件都是已知的。分析完毕。
(二)要训练学生看到两个有联系的已知条件,能提出可以解答的问题;看到一个问题,能够想到与问题有联系的已知条件
这样训练的目的,既可使学生牢固地掌握数量关系,也可以提高学生分析解答应用题的能力。这种训练方式各年级都可使用。例如:
已知:小明有8支铅笔,小红有4支铅笔。
可以提出的问题:
(1)小明和小红共有几支铅笔?
(2)小明比小红多几支?
(3)小红比小明少几支?
(4)小明给小红几支后两人铅笔同样多?
(5)小明的铅笔支数是小红的几倍(或百分之几)?
(6)小明的铅笔支数比小红多百分之几?
(7)小红的铅笔支数是小明的几分之几(或百分之几)?
(8)小红的铅笔支数比小明少百分之几?
(9)小明与小红铅笔支数的比是几比几?
……
又如:
问题是:每支铅笔多少元?
可以想到与问题有直接联系的已知条件:
(1)买铅笔的支数和一共所花的钱数;
(2)买一支铅笔和一块橡皮(或其它文具,以下略)共花的钱数和一块橡皮的价钱;
(3)一块橡皮的价钱和一支铅笔比一块橡皮多多少元(或少多少元);
(4)一块橡皮的价钱和一支铅笔的价钱是一块橡皮的几倍(或几分之几);
(5)一块橡皮的价钱和一块橡皮比一支铅笔多多少元(或少多少元);
(6)一块橡皮的价钱和一块橡皮的价钱是一支铅笔的几倍(或几分之几);
(7)买一支铅笔和一块橡皮共花的钱数和铅笔的价钱占共花钱数的几分之几(或百分之几);
(8)一支铅笔与一块橡皮一共多少元和铅笔与橡皮价钱的比;
……
以上谈到的问题与已知条件搭配的练习,可以根据学生掌握知识的多寡适当增减内容。另外,练习的形式可以多种多样,不必仅仅局限于上述一种形式。
(三)要训练学生会把一道简单应用题扩展为多步应用题
这种训练的目的,是使学生看清怎样把一个与问题有直接联系的已知条件隐蔽起来,变为间接条件;看清一道多步应用题是怎样在简单应用题的基础上演变而来的。学生看清这一过程后,在分析应用题时,就能顺利地把隐蔽条件找出来,并转化为已知条件,这样必将能提高学生解答应用题的能力。
例 服装厂计划做660套衣服,已经做了375套,还剩多少套没做?(一步)
扩展题:
(1)服装厂计划做660套衣服,已经做了5天,平均每天做75套,还剩多少套没做?(两步)
(2)服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的要3天做完,平均每天应做多少套?(三步)
(3)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天做95套,还需几天完成?(三步)
(4)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,还需几天完成?(四步)
(5)服装厂计划做660套衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,做完这批衣服共用了多少天?(五步)
(6)服装厂计划做一批衣服,已经做了5天,平均每天做75套,以后平均每天比原来每天多做20套,又做了3天正好做完。这批衣服共有多少套?(四步)
做扩展题目的练习时,题目的变化都要围绕着基本题,可以从不同的角度变化已知条件或问题。这样,题目虽多而条理清晰。
(四)要训练学生能多角度地思考问题
同一个问题从不同的角度去分析,可以得到几种不同的解题方法,即一题多解。这种训练的目的,既可以加深学生对数量关系的理解,掌握知识间的内在联系,使学到的知识融会贯通,也可以使学生思路开阔,有助于培养学生灵活的解题能力。
例1 张华和李明买同样的练习本,张华买5本用去1.8元,李明用去2.88元。李明比张华多买了几本练习本?
解法一
思路分析,先求出一本练习本的价钱,再求出李明买了几本,就可求出他们买练习本的差。
解: 2.88÷(1.8÷5)-5
=2.88÷0.36-5
=8-5
=3(本)
答:李明比张华多买了3本练习本。
解法二
思路分析:李明比张华买练习本多花的钱数里包含有几个一本练习本的价钱,就是李明比张华多买练习本的本数。
解:(2.88-1.8)÷(1.8÷5)
=1.08÷0.36
=3(本)解法三
思路分析:李明买练习本所花的钱数是张华的几倍,即李明
买练习本的本数也应是张华的同数倍,从而求出李明买练习本的本数,进而可求出他们买练习本的差。
解: 5×(2.88÷1.8)-5
=5×1.6-5
=8-5
=3(本)
解法四
思路分析:把张华买练习本的本数看做1倍,先求出李明买练习本所花的钱数比李明多的倍数,即李明买练习本的本数比张华多同数倍。用多的倍数去乘1倍数的实际数量,即可求出李明比张华多买练习本的本数。
解: 5×(2.88÷1.8-1)
=5×0.6
=3(本)
这是一道整、小数应用题,虽然四种解法都是三步,但是思考问题的角度是不相同的。下面再看一道涉及到百分数的复合应用题。
例2 孙师傅加工一批机器零件,原计划每天加工40个。由于任务紧迫,需12.5天完成,这就需要比原计划每天多加工零件20%。问原计划多少天完成?
解法一
思路分析:先求出实际每天的工作效率,进而可求出零件的个数,最后就可求出原计划多少天完成。
解: 40×(1+20%)×12.5÷40
=48×12.5÷40 =15(天)
答:原计划15天完成。
解法二
思路分析:把加工一批零件的个数看做“1”,那么实际每天加工这批
量“1”除以原计划每天的工作效率,就可求出原计划完成的天数。
解法三
思路分析:根据题意可写出下面的数量关系式:
工作效率×工作时间=工作总量。
由题意可知,工作总量是一定的。根据“因数的变化引起积的变化规律”
间从而就可以求出原计划完成的天数。
解:12.5×(1+20%)=15(天)
解法四
思路分析:因为工作总量是一定的。所以根据原计划的工作效率乘以原计划的工作时间与实际工作效率乘以实际工作时间的等量关系,可以用方程解。
解:设计划x天完成。根据题意列方程,得
40x=40×(1+20%)×12.5 40x=600 x=15
进行一题多解后,教师要引导学生比较几种解法的优劣。以上题为例,解法一是最常用的解法,解法三由于思路巧妙,故而解法最简捷。从而使学生懂得,在解应用题时,要尽可能地选用最简捷的方法。
培养学生解答应用题的能力所涉及到的问题是很多的,以上就这个问题谈了三点个人的体会,仅供老师们教学中参考。
第二篇:小学数学应用题及解答方法
小学数学应用题及解答方法大全
超人资讯
百家号06-0921:40
小学数学除了简单的计算,到了小学高年级阶段,开始出现应用题。应用题是把含有数量关系的实际问题用文字叙述出来所形成的题目。下面是小编为大家整理的小学数学应用题大全。
1归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例
1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 2归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例
1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
例
2、小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
例
3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例
1、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 例
2、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。例
3、有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
例
4、甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐? 4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 ÷(几倍+1)=较小的数 总和- 较小的数 = 较大的数 较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例
1、果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
例
2、东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
例
3、甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
例
4、甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少? 5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数
例
1、果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
例
2、爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
例
3、商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
例
4、粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍? 6 倍比问题 【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量 【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元? 7 相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。8 追及问题 【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人? 例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。9 植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】 线形植树 棵数=距离÷棵距+1 环形植树 棵数=距离÷棵距 方形植树 棵数=距离÷棵距-4 三角形植树 棵数=距离÷棵距-3 面积植树 棵数=面积÷(棵距×行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳? 例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯? 10 年龄问题
【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢? 例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍? 例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少? 11 行船问题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2 逆水速=船速×2-顺水速=顺水速-水速×2 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时? 12 列车问题
【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】 火车过桥:过桥时间=(车长+桥长)÷车速
火车追及: 追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇: 相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米? 例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?
例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间? 例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?
例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少? 13 时钟问题
【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。
【数量关系】 分针的速度是时针的12倍,二者的速度差为11/12。通常按追及问题来对待,也可以按差倍问题来计算。
【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合? 例2 四点和五点之间,时针和分针在什么时候成直角? 例3 六点与七点之间什么时候时针与分针重合? 14 盈亏问题
【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。
【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有: 参加分配总人数=(盈+亏)÷分配差 如果两次都盈或都亏,则有: 参加分配总人数=(大盈-小盈)÷分配差 参加分配总人数=(大亏-小亏)÷分配差
例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?
例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?
例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人? 15 工程问题
【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量=工作效率×工作时间 工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)【解题思路和方法】 变通后可以利用上述数量关系的公式。
例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成? 例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管? 正反比例问题
【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。
【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。
正反比例问题与前面讲过的倍比问题基本类似。
例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?
例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题? 例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完? 17 按比例分配问题
【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和
【解题思路和方法】 先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?
例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。
例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人? 18 百分数问题
【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。
在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量 标准量=比较量÷百分数
【解题思路和方法】 一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。
例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?
例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?
例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?
例4 红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?
例5 百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有: 增长率=增长数÷原来基数×100% 合格率=合格产品数÷产品总数×100% 出勤率=实际出勤人数÷应出勤人数×100% 出勤率=实际出勤天数÷应出勤天数×100% 缺席率=缺席人数÷实有总人数×100% 发芽率=发芽种子数÷试验种子总数×100% 成活率=成活棵数÷种植总棵数×100% 出粉率=面粉重量÷小麦重量×100% 出油率=油的重量÷油料重量×100% 废品率=废品数量÷全部产品数量×100% 命中率=命中次数÷总次数×100% 烘干率=烘干后重量÷烘前重量×100% 及格率=及格人数÷参加考试人数×100% 19 “牛吃草”问题
【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】 草总量=原有草量+草每天生长量×天数 【解题思路和方法】 解这类题的关键是求出草每天的生长量。
例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完? 例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?
第三篇:2018考研数学应用题四大类模型及解答方法
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学概率论与数理统计复习建
议
考研数学中,除数学二外,数一和数三都考查概率统计的知识,而且分值占比很高。这部分内容考题一般难度不大,只要认真复习,拿满分都是没有问题的。下面,就带着大家看看概率论和数理统计是如何复习拿满分的。
基本公式要掌握
首先必须会计算古典型概率,这个用高中数学的知识就可解决,如果在解古典概率方面有些薄弱,就应该系统地把高中数学中的概率知识复习一遍了,而且要将每类型的概率求解问题都做会了,虽然不一定会考到,但也要预防万一,而且为后面的复习做准备。
随机事件和概率是概率统计的
凯程考研辅导班,中国最权威的考研辅导机构
习资料把基本概念、公式、定理掌握好了,例题、习题多做些,历年真题里的相关题目认真做几遍,这样下来概率统计部分掌握的也就差不多了,相信各位考生一定会考出个好成绩。
页 共 2 页
第四篇:小学数学应用题解题的十大方法
小学数学应用题解题的十大方法 1.观察法
观察法,是通过观察题目中数字的变化规律及位置特点、条件与结论之间的关系、题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
2.尝试法
解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫做“尝试探索法”。在尝试时可以提出假设、猜想,无论是假设还是猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结论是什么,从而减少尝试的次数,提高解题的效率。
3.列举法
解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。
4.综合法
从已知数量和未知数量的关系入手,逐步分析出已知数量和未知数量间的关系,一起到求出未知数量的解题方法叫做综合方法。
以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题„„一直到解出应用题所求解的未知数量。
运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。
5.分析法
从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法,叫做分析法。用分析法解应用题时,如果解题所需要的两个条件(或其中一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。分析法适用于解答数量关系比较复杂的应用题。
6.综合-分析法
综合法和分析法是解应用题时常用的两种基本方法。在解比较复杂的应用题时,由于单纯用综合法或分析法时,思维会出现障碍,所以要把综合法和分析法结合起来使用把这一方
法叫做综合-分析法。
7.归一法
先求出单位数量(如单价、工效、单位面积的产量等),再以单位数量为标准,计算出所求数量的解题方法叫做归一法。
8.归总法
已知单位数量和单位数量的个数,先求出总数量,再按另一个单位数量或单位数量的个数求未知数量的解题方法叫妆总法。
解答这类问题的基本原理是:
(1)总数量=单位数量×单位数量的个数;
(2)另一单位数量(或个数)=总数量÷单位数量的个数(或单位数量)。
9.分解法
“由整体到部分、由部分到整体”是认识事物的规律。一道多步复杂的应用题是由几道一步的基本应用题组成。在分析应用题时,可把一道复杂的应用题拆分成几道基本应用题,从中找到解题的线索。把这种解题的思考方法称作分解法。
10.假设法
当应用题用一般方法很难解答时,可假设题目中的情节发生了变化,假设题目中两个或几个数量相等、假设题目中某个数量增加了或减少了,然后在假设的基础上推理调整由于假设而引发的变化的数量的大小,题目中隐藏的数量关系就可能变得明显,从而找到解题方法。这种解题方法就叫做假设法。
当应用题中没有解题必须的具体数量,且已有数量间的关系很抽象,如果假设题中有个具体的数量,或假设题目中某个未知数的数量是单位1,题目数量之间的关系就会变得清晰明确,从而便于找到解决问题的方法,这种解题的方法叫做设数法。
在用设数法解答应用题设具体数量时,要注意两点:一是所设数量要尽量小一些;二是所设的数量要便于分析数量关系和计算。
解决问题的四大策略
1. 画图 2. 列表
3. 猜想与尝试
4. 从简单处入手寻找解决问题的规律
第五篇:小学数学应用题解题方法及例题:鸡兔问题
小学数学应用题解题方法及例题:鸡兔问题 所属专题:小升初数学复习资料 来源:互联网 要点:小学数学应用题 收藏
编辑点评:小学数学应用题一向是师生家长非常关注的一类题型,要做好应用题需要学生多思考多做练习。小编在这里为大家汇总了典型应用题的解题方法并附上例题,希望能助大家一臂之力。
鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”,又称鸡兔同笼问题。
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:
(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
【例题】 鸡兔同笼共 50 个头,170 条腿。问鸡兔各有多少只?
【分析】
兔子只数(170-2 × 50)÷ 2 =35(只)
鸡的只数 50-35=15(只)